RESUMO
Many studies have been published in recent years regarding the fact that moderate wine consumption, as a part of a balanced diet can have a beneficial effect on human health. The biologically active components of wine continue to be the subject of intense research today. In this study, the bioactive molecules of Hungarian aszú from the Tokaj wine region were analyzed using high-performance liquid chromatography (HPLC) and investigated in an in vitro model system of endothelial cells induced by bacterial-derived lipopolysaccharide. The HPLC measurements were performed on a reversed phased column with gradient elution. The non-cytotoxic concentration of the active substance was determined based on 3-[4,5-dimethylthiazol-2-yl]-2,5 diphenyltetrazolium bromide (MTT)-, apoptosis, and necrosis assays. The antioxidant effect of the extract was determined by evaluating its ability to eliminate ROS. The expressions of the interleukin-(IL)1α, IL1-ß, IL-6, and IL-8 pro-inflammatory cytokines and nitric oxide synthase (eNOS) at the mRNA level were evaluated using a quantitative polymerase chain reaction (qPCR). We found that the lipopolysaccharides (LPS)-induced increases in the expressions of the investigated cytokines were significantly suppressed by Hungarian aszú extract, excluding IL-6. In our experimental setup, our treatment had a positive effect on the eNOS expression, which was impaired as a result of the inflammatory manipulation. In our experimental model, the Hungarian aszú extract decreased the LPS-induced increases in the expression of the investigated cytokines and eNOS at the mRNA level, which presumably had a positive effect on the endothelial dysfunction caused by inflammation due to its strong antioxidant and anti-inflammatory effects. Collectively, this research contributes to a more thorough understanding of the bioactive molecules of aszú from the Tokaj wine region.
Assuntos
Polifenóis , Vinho , Humanos , Polifenóis/farmacologia , Polifenóis/análise , Cromatografia Líquida de Alta Pressão , Interleucina-6/análise , Vinho/análise , Células Endoteliais , Hungria , Lipopolissacarídeos/farmacologia , Inflamação/tratamento farmacológico , Citocinas/análise , Extratos Vegetais/farmacologia , RNA Mensageiro/análiseRESUMO
MicroRNAs are short non-coding RNA molecules that are involved in tumor development and are considered to be promising candidates in cancer therapy. Here, we studied the role of miR-30s in the pathophysiology of ovarian cancer. According to our results miR-30a-5p, miR-30d-5p, and miR-30e-5p were overexpressed in the estrogen receptor α (ERα)-expressing PEO1 cell line compared to A2780 that lacks this receptor. Furthermore, the expression of miR-30a-5p, miR-30d-5p, and miR-30e-5p were induced in response to high-dose estrogen treatment in PEO1 where intensive cell death was observed according to the induction of apoptosis and autophagy. Lacking or blocking ERα function reduced tolerance to high-dose estrogen that suggests the importance of ERα-mediated estrogen response in the maintenance of proliferation. MiR-30d-5p mimic reduced cell proliferation in both A2780 and PEO1. Furthermore, it decreased the tolerance of PEO1 cells to high-dose estrogen by blocking the ERα-mediated estrogen response. This was accompanied by decreased SOX4 expression that is thought to be involved in the regulation of the PI3K/AKT pathway. Blocking this pathway by AZD8835 led to the same results. MiR-30d-5p or AZD8835 sensitized PEO1 cells to tamoxifen. We suggest that miR-30d-5p might be a promising candidate in the therapy of ovarian cancer.
RESUMO
Increased permeability of the epithelial and endothelial cell layers results in the onset of pathogenic mechanisms. In both cell types, cell-cell connections play a regulatory role in altering membrane permeability. The aim of this study was to investigate the modulating effect of anthocyanin-rich extract (AC) on TJ proteins in inflammatory Caco-2 and HUVEC monolayers. Distribution of Occludin and zonula occludens-1 (ZO-1) were investigated by immunohistochemical staining and the protein levels were measured by flow cytometry. The mRNA expression was determined by quantitative real-time PCR. The transepithelial electrical resistance (TEER) values were measured during a permeability assay on HUVEC cell culture. As a result of inflammatory induction by TNF-α, redistribution of proteins was observed in Caco-2 cell culture, which was reduced by AC treatment. In HUVEC cell culture, the decrease in protein and mRNA expression was more dominant during inflammatory induction, which was compensated for by the AC treatment. Overall, AC positively affected the expression of the examined cell-binding structures forming the membrane on both cell types.
Assuntos
Ocludina , Extratos Vegetais , Prunus avium , Junções Íntimas , Proteína da Zônula de Oclusão-1 , Antocianinas/metabolismo , Células CACO-2 , Humanos , Mucosa Intestinal/metabolismo , Ocludina/genética , Ocludina/metabolismo , Extratos Vegetais/farmacologia , Prunus avium/química , RNA Mensageiro/metabolismo , Junções Íntimas/metabolismo , Proteína da Zônula de Oclusão-1/genética , Proteína da Zônula de Oclusão-1/metabolismoRESUMO
Diabetes mellitus (DM)-related morbidity and mortality are steadily rising worldwide, affecting about half a billion people worldwide. A significant proportion of diabetic cases are in the elderly, which is concerning given the increasing aging population. Proper nutrition is an important component in the effective management of diabetes in the elderly. A plethora of active substances of plant origin exhibit potency to target the pathogenesis of diabetes mellitus. The nutraceutical and pharmaceutical effects of anthocyanins have been extensively studied. In this study, the effect of Hungarian sour cherry, which is rich in anthocyanins, on hyperglycemia-induced endothelial dysfunction was tested using human umbilical cord vein endothelial cells (HUVECs). HUVECs were maintained under both normoglycemic (5 mM) and hyperglycemic (30 mM) conditions with or without two concentrations (1.50 ng/µL) of anthocyanin-rich sour cherry extract. Hyperglycemia-induced oxidative stress and inflammatory response and damaged vasorelaxation processes were investigated by evaluating the level of reactive oxygen species (ROS) and gene expression of four proinflammatory cytokines, namely, tumor necrosis factor-alpha (TNF-α), interleukin-6 (IL-6), interleukin-8 (IL-8), and interleukin-1α (IL-1α), as well as the gene expression of nitric oxide synthase (NOS) endothelin-1 (ET-1) and endothelin-converting enzyme-1 (ECE-1). It was found that hyperglycemia-induced oxidative stress was significantly suppressed by anthocyanin-rich sour cherry extract in a concentration-dependent manner. The gene expression of the tested proinflammatory cytokines increased under hyperglycemic conditions but was significantly reduced by both 1 and 50 ng/µL anthocyanin-rich sour cherry extract. Further, although increased ET-1 and ECE-1 expression due to hyperglycemia was reduced by anthocyanin-rich sour cherry extract, NOS expression was increased by the extract. Collectively, these data suggest that anthocyanin-rich sour cherry extract could alleviate hyperglycemia-induced endothelial dysfunction due to its antioxidant, anti-inflammatory, and vasorelaxant effects.
Assuntos
Antocianinas/farmacologia , Anti-Inflamatórios/farmacologia , Antioxidantes/farmacologia , Fatores Relaxantes Dependentes do Endotélio/farmacologia , Hiperglicemia/tratamento farmacológico , Extratos Vegetais/farmacologia , Prunus avium , Linhagem Celular , Citocinas/metabolismo , Endotélio Vascular/efeitos dos fármacos , Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos , Humanos , Inflamação , Óxido Nítrico Sintase Tipo I/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Vasodilatação/efeitos dos fármacosRESUMO
Diabetes mellitus-related morbidity and mortality is a rapidly growing healthcare problem, globally. Several nutraceuticals exhibit potency to target the pathogenesis of diabetes mellitus. The antidiabetic effects of compounds of garlic have been extensively studied, however, limited data are available on the biological effects of a certain garlic component, allithiamine. In this study, allithiamine was tested using human umbilical cord vein endothelial cells (HUVECs) as a hyperglycaemic model. HUVECs were isolated by enzymatic digestion and characterized by flow cytometric analysis using antibodies against specific marker proteins including CD31, CD45, CD54, and CD106. The non-cytotoxic concentration of allithiamine was determined based on MTT, apoptosis, and necrosis assays. Subsequently, cells were divided into three groups: incubating with M199 medium as the control; or with 30 mMol/L glucose; or with 30 mMol/L glucose plus allithiamine. The effect of allithiamine on the levels of advanced glycation end-products (AGEs), activation of NF-κB, release of pro-inflammatory cytokines including IL-6, IL-8, and TNF-α, and H2O2-induced oxidative stress was investigated. We found that in the hyperglycaemia-induced increase in the level of AGEs, pro-inflammatory changes were significantly suppressed by allithiamine. However, allithiamine could not enhance the activity of transketolase, but it exerts a potent antioxidant effect. Collectively, our data suggest that allithiamine could alleviate the hyperglycaemia-induced endothelial dysfunction due to its potent antioxidant and anti-inflammatory effect by a mechanism unrelated to the transketolase activity.
Assuntos
Anti-Inflamatórios , Antioxidantes , Endotélio Vascular/fisiopatologia , Alho/química , Hiperglicemia/tratamento farmacológico , Hiperglicemia/fisiopatologia , Fitoterapia , Tiamina/análogos & derivados , Citocinas/metabolismo , Endotélio Vascular/metabolismo , Produtos Finais de Glicação Avançada/metabolismo , Células Endoteliais da Veia Umbilical Humana , Humanos , Hiperglicemia/metabolismo , Mediadores da Inflamação/metabolismo , NF-kappa B/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Tiamina/isolamento & purificação , Tiamina/farmacologia , Tiamina/uso terapêutico , Transcetolase/metabolismoRESUMO
We have shown previously that endocannabinoids promote sebaceous lipogenesis, and sebocytes are involved in the metabolism of the endocannabinoid-like substance oleoylethanolamide (OEA). OEA is an endogenous activator of GPR119, a recently deorphanized receptor, which currently is being investigated as a promising antidiabetic drug target. In this study, we investigated the effects of OEA as well as the expression and role of GPR119 in human sebocytes. We found that OEA promoted differentiation of human SZ95 sebocytes (elevated lipogenesis, enhanced granulation, and the induction of early apoptotic events), and it switched the cells to a proinflammatory phenotype (increased expression and release of several proinflammatory cytokines). Moreover, we could also demonstrate that GPR119 was expressed in human sebocytes, and its small interfering RNA-mediated gene silencing suppressed OEA-induced sebaceous lipogenesis, which was mediated via c-Jun N-terminal kinase, extracellular signal-regulated kinase 1/2, protein kinase B, and CRE-binding protein activation. Finally, our pilot data demonstrated that GPR119 was downregulated in the sebaceous glands of patients with acne, arguing that GPR119 signaling may indeed be disturbed in acne. Collectively, our findings introduce the OEA/GPR119 signaling as a positive regulator of sebocyte differentiation and highlight the possibility that dysregulation of this pathway may contribute to the development of seborrhea and acne.
Assuntos
Receptores Acoplados a Proteínas G/fisiologia , Glândulas Sebáceas/citologia , Glândulas Sebáceas/fisiologia , Diferenciação Celular/efeitos dos fármacos , Células Cultivadas , Citocinas/biossíntese , Endocanabinoides/farmacologia , Humanos , Ácidos Oleicos/farmacologia , PPAR alfa/fisiologia , Glândulas Sebáceas/imunologia , Transdução de Sinais/fisiologiaRESUMO
Nicotinic acid (NA) activates hydroxycarboxylic acid receptor 2 (HCA2 ), and it is widely used in treating dyslipidaemias. Since its side effects include skin dryness, whereas its deficiency can be accompanied by dyssebacia, characterized by sebaceous gland enlargement, we asked if HCA2 is expressed on human sebocytes, and if NA influences sebocyte functions. By using human immortalized SZ95 sebocytes, we found that non-cytotoxic (≤100 µmol/L; MTT-assay) concentrations of NA had no effect on the homeostatic sebaceous lipogenesis (SLG; Nile Red), but normalized excessive, acne-mimicking SLG induced by several lipogenic agents (arachidonic acid, anandamide, linoleic acid + testosterone; Nile Red; 48-hr treatments). Moreover, it exerted significant anti-proliferative actions (CyQUANT-assay), and increased [Ca2+ ]IC (Fluo-4 AM-based Ca2+ -measurement). Although NA did not prevent the lipopolysaccharide-induced pro-inflammatory response (up-regulation [Q-PCR] and release [ELISA] of several pro-inflammatory cytokines) of the sebocytes, collectively, these data support the concept that NA may be effective in suppressing sebum production in vivo. While exploring the mechanism of the sebostatic actions, we found that sebocytes express HCA2 (Q-PCR, immunofluorescent labelling), siRNA-mediated silencing of which prevented the NA-induced Ca2+ -signal and the lipostatic action. Collectively, our data introduce NA, and HCA2 activators in general, as novel, potent and most likely safe sebostatic agents, with possible anti-acne potential.
Assuntos
Acne Vulgar/genética , Adenilil Ciclases/genética , Lipogênese/efeitos dos fármacos , Niacina/farmacologia , Glândulas Sebáceas/efeitos dos fármacos , Acne Vulgar/induzido quimicamente , Acne Vulgar/patologia , Ácido Araquidônico/farmacologia , Linhagem Celular , Citocinas/metabolismo , Dislipidemias/tratamento farmacológico , Dislipidemias/patologia , Humanos , Lipogênese/genética , Niacina/efeitos adversos , Niacina/genética , RNA Interferente Pequeno/genética , Glândulas Sebáceas/patologiaRESUMO
We have previously shown that endocannabinoids (eCBs) (e.g., anandamide) are involved in the maintenance of homeostatic sebaceous lipid production in human sebaceous glands and that eCB treatment dramatically increases sebaceous lipid production. Here, we aimed to investigate the expression of the major eCB synthesizing and degrading enzymes and to study the effects of eCB uptake inhibitors on human SZ95 sebocytes, thus exploring the role of the putative eCB membrane transporter, which has been hypothesized to facilitate the cellular uptake and subsequent degradation of eCBs. We found that the major eCB synthesizing (N-acyl phosphatidylethanolamine-specific phospholipase D, and diacylglycerol lipase-α and -ß) and degrading (fatty acid amide hydrolase, monoacylglycerol lipase) enzymes are expressed in SZ95 sebocytes and also in sebaceous glands (except for diacylglycerol lipase-α, the staining of which was dubious in histological preparations). eCB uptake-inhibition with VDM11 induced a moderate increase in sebaceous lipid production and also elevated the levels of various eCBs and related acylethanolamides. Finally, we found that VDM11 was able to interfere with the proinflammatory action of the TLR4 activator lipopolysaccharide. Collectively, our data suggest that inhibition of eCB uptake exerts anti-inflammatory actions and elevates both sebaceous lipid production and eCB levels; thus, these inhibitors might be beneficial in cutaneous inflammatory conditions accompanied by dry skin.
Assuntos
Ácidos Araquidônicos/farmacologia , Endocanabinoides/metabolismo , Células Epiteliais/metabolismo , Glândulas Sebáceas/metabolismo , Amidoidrolases/metabolismo , Linhagem Celular , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/microbiologia , Humanos , Metabolismo dos Lipídeos/efeitos dos fármacos , Lipase Lipoproteica/metabolismo , Monoacilglicerol Lipases/metabolismo , Fosfolipase D/metabolismo , Glândulas Sebáceas/citologia , Glândulas Sebáceas/efeitos dos fármacos , Glândulas Sebáceas/imunologiaRESUMO
Acne is a common skin disease characterized by elevated sebum production and inflammation of the sebaceous glands. We have previously shown that a non-psychotropic phytocannabinoid ((-)-cannabidiol [CBD]) exerted complex anti-acne effects by normalizing 'pro-acne agents'-induced excessive sebaceous lipid production, reducing proliferation and alleviating inflammation in human SZ95 sebocytes. Therefore, in this study we aimed to explore the putative anti-acne effects of further non-psychotropic phytocannabinoids ((-)-cannabichromene [CBC], (-)-cannabidivarin [CBDV], (-)-cannabigerol [CBG], (-)-cannabigerovarin [CBGV] and (-)-Δ(9) -tetrahydrocannabivarin [THCV]). Viability and proliferation of human SZ95 sebocytes were investigated by MTT and CyQUANT assays; cell death and lipid synthesis were monitored by DilC1 (5)-SYTOX Green labelling and Nile Red staining, respectively. Inflammatory responses were investigated by monitoring expressions of selected cytokines upon lipopolysaccharide treatment (RT-qPCR, ELISA). Up to 10 µm, the phytocannabinoids only negligibly altered the viability of the sebocytes, whereas high doses (≥50 µm) induced apoptosis. Interestingly, basal sebaceous lipid synthesis was differentially modulated by the substances: CBC and THCV suppressed it, and CBDV had only minor effects, whereas CBG and CBGV increased it. Importantly, CBC, CBDV and THCV significantly reduced arachidonic acid (AA)-induced 'acne-like' lipogenesis. Moreover, THCV suppressed proliferation, and all phytocannabinoids exerted remarkable anti-inflammatory actions. Our data suggest that CBG and CBGV may have potential in the treatment of dry-skin syndrome, whereas CBC, CBDV and especially THCV show promise to become highly efficient, novel anti-acne agents. Moreover, based on their remarkable anti-inflammatory actions, phytocannabinoids could be efficient, yet safe novel tools in the management of cutaneous inflammations.
Assuntos
Acne Vulgar/tratamento farmacológico , Canabinoides/uso terapêutico , Canabinoides/farmacologia , Linhagem Celular , Avaliação Pré-Clínica de Medicamentos , Humanos , Lipogênese/efeitos dos fármacosRESUMO
Despite concerted efforts, diagnosis of aspergillosis is still a great challenge to clinical microbiology laboratories. Along with the requirement for high sensitivity and specificity, species-specific identification is important. We developed rapid, sensitive and species-specific qPCR assays using the TaqMan technology for the detection and identification of Aspergillus fumigatus and Aspergillus terreus. The assays were designed to target orthologs of the Streptomyces factor C gene that are only found in a few species of filamentous fungi. Fungi acquired this gene through horizontal gene transfer and divergence of the gene allows identification of species. The assays have potential as a molecular diagnosis tool for the early detection of fungal infection caused by Aspergillus fumigatus and Aspergillus terreus, which merits future diagnostic studies. The assays were sensitive enough to detect a few genomic equivalents in blood samples.