Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 67
Filtrar
1.
Heliyon ; 10(6): e27431, 2024 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-38509897

RESUMO

"Intensification of Vaporization by Decompression to the Vacuum" (IVDV) has initially emerged as a technology primarily employed for expanding and enhancing the texture of biological products. However, its recent applications have showcased significant promise in the realm of extracting bioactive molecules from various plant materials. In this context, optimization using response surface methodology was conducted to investigate the impact of IVDV pretreatment on the extractability of phenolic compounds from Eryngium creticum leaves and stems, as well as their biological activities. Using IVDV preceding the extraction led to higher total phenolic content (TPC) and enhanced antiradical activities in treated materials compared to untreated ones. The optimal processing conditions in terms of water content, steam pressure and treatment time were determined in order to maximize TPC (89.07 and 20.06 mg GAE/g DM in leaves and stems, respectively) and antiradical (DPPH) inhibition percentage (93.51% and 27.54% in leaves and stems, respectively). IVDV-treated extracts showed superior antioxidant, antibacterial and antibiofilm capacities compared to raw extracts. Using RP-UHPLC-PDA-MS, caffeic acid and rosmarinic acid were identified in IVDV-treated leaves. IVDV can be implemented as an innovative treatment applied prior to extraction to boost the recovery of biomolecules from plant matrices.

2.
Molecules ; 28(13)2023 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-37446711

RESUMO

Grape seed of Obeidi, a white Lebanese autochthonous variety, was previously tested in different studies as a valuable source of bioactive molecules such as polyphenols, oils, and proteins by means of extraction procedures for the development of cosmetic and therapeutic products. However, an un-valorized, exhausted grape seed residue remains as "secondary waste" after the extraction processes. In this study, the exhausted seeds have been further exploited to produce cosmetic scrubs capable of releasing antioxidant molecules during the exfoliation process, in accordance with the principles of the circular economy and going toward a zero-waste process. The deep characterization of the exhausted seeds confirmed the presence of antioxidant phenolic molecules including gallic acid, catechins and protocatechuic acid (0.13, 0.126, and 0.089 mg/g of dry matter DM), and a high phenolic content (11.85 mg gallic acid equivalents (GAE)/g of dry matter (DM)). Moreover, these residues were shown to possess a sandy texture (Hausner ratio (HR): 1.154, Carr index (CI): 0.133, and angle of repose: 31.62 (°) degrees), similar to commercial natural exfoliants. In this respect, exhausted Obeidi grape seed residues were incorporated at increasing concentrations (0.5, 1, 1.5, and 2% w/w) in a cosmetic scrub, and stored for 5 weeks at 4, 25, and 50 °C for stability testing. All tested scrub formulations exhibited good spreadability with a spread diameter of 3.6-4.7 cm and excellent physical stability, as no phase separation or color change were observed after four cycles of heat shock at 4 and 50 °C. Finally, an in vivo skin irritation test showed that the scrub enriched with 1.5% of exhausted Obeidi grape seed residues was the most promising formulation, as it possessed a high amount of phenolic molecules (0.042 ± 0.001 mg GAE/mL of scrub) and good stability and could be safely applied to the skin with no irritation phenomena. Overall results underlined that exhausted grape seed residues can be transformed into promising systems for both physical and chemical exfoliation, thus confirming the importance of the effective exploitation of agro-industrial by-products for the development of high value cosmeceutics towards a more sustainable and zero-waste approach.


Assuntos
Antioxidantes , Vitis , Antioxidantes/química , Vitis/química , Polifenóis/química , Fenóis/química , Sementes/química , Ácido Gálico/análise
3.
Molecules ; 28(11)2023 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-37298767

RESUMO

Violacein and deoxyviolacein are bis-indole pigments synthesized by a number of microorganisms. The present study describes the biosynthesis of a mixture of violacein and deoxyviolacein using a genetically modified Y. lipolytica strain as a production chassis, the subsequent extraction of the intracellular pigments, and ultimately their purification using column chromatography. The results show that the optimal separation between the pigments occurs using an ethyl acetate/cyclohexane mixture with different ratios, first 65:35 until both pigments were clearly visible and distinguishable, then 40:60 to create a noticeable separation between them and recover the deoxyviolacein, and finally 80:20, which allows the recovery of the violacein. The purified pigments were then analyzed by thin-layer chromatography and nuclear magnetic resonance.


Assuntos
Indóis , Pigmentos Biológicos , Yarrowia , Indóis/isolamento & purificação , Fermentação , Yarrowia/química , Yarrowia/genética , Yarrowia/metabolismo , Biotecnologia , Engenharia Genética , Pigmentos Biológicos/biossíntese , Pigmentos Biológicos/genética , Pigmentos Biológicos/isolamento & purificação
4.
Life (Basel) ; 13(6)2023 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-37374071

RESUMO

Extraction of polyphenols from Centranthus longiflorus stems was conducted using ultrasound and infrared Ired-Irrad® techniques, and compared to the conventional water bath method. Response surface methodology was used to analyse the effect of time, temperature, and ethanol percentage, as well as to optimize the three extraction methods. The highest phenolic content (81 mg GAE/g DM) and antioxidant activity (76% DPPH inhibition) were recorded with the Ired-Irrad® extract obtained under the optimal conditions: 55 °C, 127 min, 48% (v/v) ethanol. Biological activities (antioxidant, antibacterial and antibiofilm) of the three extracts were assessed. All C. longiflorus stems extracts showed limited antibacterial effects regardless of the extraction method (MIC = 50 mg/mL), whereas Ired-Irrad® extract exhibited the highest biofilm eradication and prevention capacities (93% against Escherichia coli and 97% against Staphylococcus epidermidis, respectively). This bioactivity is likely related to abundant caffeoylquinic acid and quercetin rutinoside, as identified by RP-UHPLC-PDA-MS analysis. The results obtained further promote the effectiveness of Ired-Irrad® as a highly flexible and cost-efficient extraction technique.

5.
Foods ; 12(8)2023 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-37107455

RESUMO

Molecular imprinting is an efficient strategy to make the detection of compounds more specific and more selective. This targeted analytical strategy using molecularly imprinted polymer (MIP) synthesis needs to obtain the optimized conditions. A selective molecularly imprinted polymer was prepared for caffeic acid (CA) detection after varying the following synthesis parameters: functional monomer type (N-phenylacrylamide, N-PAA or methacrylic acid, MAA), solvent type (acetonitrile/methanol or acetonitrile/toluene), and the polymerization method (UV or thermal initiation). The optimal polymer was obtained using MAA as a functional monomer, acetonitrile/methanol as solvent, and UV polymerization. Morphological characterizations were done for the optimal CA-MIP using mid-infrared spectroscopy, scanning electron microscopy, and nitrogen adsorption. The optimal polymer showed good specificity and selectivity in the presence of interferents (antioxidants having a chemical structure close to CA) in a hydroalcoholic solution. The electrochemical detection of CA was performed by cyclic voltammetry (CV) after the interaction between CA and the optimal MIP in a wine sample. The linear range of the developed method was between 0 and 1.11 mM, the limit of detection (LOD) was 0.13 mM, and the limit of quantification (LOQ) was 0.32 mM. HPLC-UV was used to validate the newly developed method. Recovery values were between 104% and 111%.

6.
Environ Technol ; : 1-14, 2022 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-36524389

RESUMO

Poultry wastes are rich in organic matter, allowing their use as substrates for biogas production by anaerobic digestion (AD). The major difficulty in the anaerobic digestion of this protein-rich waste is ammonia inhibition. Different results of biochemical methane potential (BMP) were obtained after the mesophilic anaerobic digestion of different avian waste in batch mode. It was shown that using two different inoculum (Liger and Saint-Brieuc) sources and different substrate-to-inoculum (S/I) ratios does not have a significant effect on the biochemical methane potential of organic laying hen droppings (OLHD); an average of 0.272 Nm3 CH4·kg-1·VS was obtained with both inocula. Otherwise, it affects the hydrolysis constant KH, and it decreases when the substrate-to-inoculum ratio increases. Furthermore, Liger is the most suitable inoculum for our substrate because it shows stability during the process even with different organic loads. Comparing the biochemical methane potential of multiple avian wastes such as organic laying hen droppings and different slaughterhouse waste highlights the importance of slaughterhouse waste in the anaerobic digestion process because of the high methane yield observed especially with the viscera (0.779 Nm3 CH4·kg-1 VS, SD = 0.027 Nm3 CH4·kg-1 VS). Moreover, methane production was affected by increasing the ammonia concentrations; when [N-NH3] > 9.8 g·N-NH3·L-1, the biochemical methane potential decreases and the lag phase increases (λ > 30 days); a total inhibition of the process was observed when ammonia concentration is above 21.8 g·L-1.

7.
Molecules ; 27(23)2022 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-36500642

RESUMO

Plant extracts may represent an ecofriendly alternative to chemical fungicides to limit aflatoxin B1 (AFB1) contamination of foods and feeds. Mate (Ilex paraguariensis), rosemary (Romarinus officinalis) and green tea (Camellia sinensis) are well known for their beneficial properties, which are mainly related to their richness in bioactive phenolic compounds. AFB1 production is inhibited, with varying efficiency, by acetone/water extracts from these three plants. At 0.45 µg dry matter (DM)/mL of culture medium, mate and green tea extracts were able to completely inhibit AFB1 production in Aspergillus flavus, and rosemary extract completely blocked AFB1 biosynthesis at 3.6 µg DM/mL of culture medium. The anti-AFB1 capacity of the extracts correlated strongly with their phenolic content, but, surprisingly, no such correlation was evident with their antioxidative ability, which is consistent with the ineffectiveness of these extracts against fungal catalase activity. Anti-AFB1 activity correlated more strongly with the radical scavenging capacity of the extracts. This is consistent with the modulation of SOD induced by mate and green tea in Aspergillus flavus. Finally, rutin, a phenolic compound present in the three plants tested in this work, was shown to inhibit AFB1 synthesis and may be responsible for the anti-mycotoxin effect reported herein.


Assuntos
Camellia sinensis , Ilex paraguariensis , Rosmarinus , Camellia sinensis/química , Ilex paraguariensis/química , Aspergillus flavus , Aflatoxina B1 , Antioxidantes/farmacologia , Chá , Estresse Oxidativo , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Fenóis/farmacologia
8.
Molecules ; 27(22)2022 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-36432159

RESUMO

The intensification of total phenolic compound (TPC) extraction from blood orange peels was optimized using a novel green infrared-assisted extraction technique (IRAE, Ired-Irrad®) and compared to the conventional extraction using a water bath (WB). Response surface methodology (RSM) allowed for the optimization of ethanol concentration (E), time (t), and temperature (T) in terms of extracted TPC and their antiradical activity, for both WB extraction and IRAE. Using WB extraction, the multiple response optimums as obtained after 4 h at 73 °C and using 79% ethanol/water were 1.67 g GAE/100 g for TPC and 59% as DPPH inhibition percentage. IRAE increased the extraction of TPC by 18% using 52% ethanol/water after less than 1 h at 79 °C. This novel technology has the advantage of being easily scalable for industrial usage. HPLC analysis showed that IRAE enhanced the recovery of gallic acid, resveratrol, quercetin, caffeic acid, and hesperidin. IR extracts exhibited high bioactivity by inhibiting the production of Aflatoxin B1 by 98.9%.


Assuntos
Aspergillus flavus , Citrus sinensis , Aflatoxina B1 , Citrus sinensis/química , Antioxidantes/farmacologia , Antioxidantes/análise , Extratos Vegetais/química , Fenóis/química , Etanol/química , Água , Tecnologia , Proliferação de Células
9.
Plants (Basel) ; 11(21)2022 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-36365284

RESUMO

Grape seeds are the wineries' main by-products, and their disposal causes ecological and environmental problems. In this study seeds from the pomace waste of autochthonous grape varieties from Lebanon, Obeidi (white variety) and Asswad Karech (red variety) were used for a multi-step biomass fractionation. For the first step, a lipid extraction was performed, and the obtained yield was 12.33% (w/w) for Obeidi and 13.04% (w/w) for Asswad Karech. For the second step, polyphenols' recovery from the defatted seeds was carried out, resulting in 12.0% (w/w) for Obeidi and 6.6% (w/w) for Asswad Karech, with Obeidi's extract having the highest total phenolic content (333.1 ± 1.6 mg GAE/g dry matter) and antioxidant activity (662.17 ± 0.01 µg/mL of Trolox equivalent). In the third step, the defatted and dephenolized seeds were subsequently extracted under alkaline conditions and the proteins were isoelectric precipitated. The recovered protein extract was 3.90% (w/w) for Obeidi and 4.11% (w/w) for Asswad Karech seeds, with Asswad Karech's extract having the highest protein content (64 ± 0.2 mg protein/g dry matter). The remaining exhausted residue can be valorized in cosmetic scrubs formulations as a replacement for plastic microbeads. The designed zero-waste approach multi-step biomass fractionation has the potential to improve the valorization of the side products (grape seeds) of these two Lebanese autochthonous grape varieties.

10.
Plants (Basel) ; 11(19)2022 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-36235324

RESUMO

(1) Background: Eryngium creticum is a plant medicinally valued, and used in pharmacopeia to treat various diseases. No previous studies have been reported on E. creticum leaf extracts using an IR-assisted technique; thus, this study aimed to intensify polyphenol extraction using Ired-Irrad®, comparing it to the conventional water bath (WB) method. (2) Methods: Optimization of polyphenol extraction from E. creticum leaves was conducted using Response Surface Methodology. Ired-Irrad® was used and compared to the WB method. The biological activities (antiradical, antioxidant, antibacterial, and antibiofilm) of both extracts were assessed. UHPLC analysis was performed to analyze the phytochemical profile of both extracts. (3) Results: Under optimal conditions, IR improved the polyphenol extraction yield by 1.7 times, while lowering ethanol consumption by 1.5 times. Regarding the antibacterial activity, both WB and IR E. creticum leaf extracts exhibited the highest antibacterial activity against Staphylococcus epidermidis. The maximum biofilm prevention capacity was also noticed against S. epidermidis. UHPLC-MS analysis quantified two major phenolic compounds in both extracts: rutin and sinapic acid. (4) Conclusions: Ired-Irrad® technology proved to be an effective technique in intensifying polyphenol recovery, while preserving their quantity and quality.

11.
Antioxidants (Basel) ; 11(10)2022 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-36290759

RESUMO

Caffeic acid (CA) is an efficient antioxidant found in wine and in plants and can be extracted from the by-products of the food industry. A molecularly imprinted polymer specific to caffeic acid (CA-MIP) was prepared by radical polymerization using N-phenylacrylamide as the functional monomer, ethylene glycol dimethacrylate as the cross-linker, and azobisisobutyronitrile as the initiator, in the presence of CA as the template molecule. The rebinding activities between the polymers and CA were promoted by an indirect method and characterized by cyclic voltammetry (CV) using a screen-printed carbon electrode (SPCE). It is a fast method, which only requires simple and portable instrumentation. The polymer showed a high selectivity toward CA and a good repeatability. CA-MIP was then applied in wine samples spiked with CA, and the results were compared to those obtained by a chromatographic method. With a limit of detection of 0.06 mM in wine, the recovery values confirmed that the method is suitable for further applications.

12.
Molecules ; 27(16)2022 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-36014470

RESUMO

An ecofriendly extraction technology using infrared (IR) irradiation Ired-Irrad® was applied to purple corn cobs to enhance polyphenol recovery for the first time. The IR extraction efficiency was compared to that of the water bath (WB) method. Response surface methodology (RSM) using a central composite design was conducted to determine the effect of the experimental conditions (extraction time and treatment temperature) and their interactions on the total polyphenol and anthocyanin yields. Optimal extraction of total phenolic compounds (37 mg GAE/g DM) and total monomeric anthocyanins (14 mg C3G/g DM) were obtained at 63 °C for 77 min using IR as an extraction technique and water as a solvent. HPLC revealed that the recovery of peonidin 3-O-glucoside and cyanidin 3-O-glucoside was enhanced by 26% and 34%, respectively, when using IR. Finally, purple corn cobs' spray-dried extract was proven to be an important natural colorant of pickled turnip. It offers great potential for use as a healthy alternative to the carcinogenic rhodamine B synthetic dye, which was banned.


Assuntos
Antocianinas , Brassica napus , Extratos Vegetais , Polifenóis , Tecnologia , Água , Zea mays
13.
Antioxidants (Basel) ; 11(7)2022 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-35883839

RESUMO

Grape seeds are agro-industrial by-products, which if improperly managed, may be responsible for socioeconomic and environmental problems. Nevertheless, it is possible to effectively valorize them by means of extraction of the bioactive compounds, especially the antioxidant phenolic molecules, using a safe, green, and environmentally-friendly extractive medium (i.e., hydro-glyceric solution). In the present study, the extraction was performed using seeds from two Lebanese varieties, Obeidi and Asswad Karech, and three international varieties, Marselan, Syrah, and Cabernet Franc. The type and amount of phenolic compounds were identified by High-Performance Liquid Chromatography (HPLC). Marselan was the extract richer in catechins (132.99 ± 9.81 µg/g of dried matter), and it also contained a higher amount of phenolic compounds (49.08 ± 0.03 mg of gallic acid equivalent/g of dry matter and 10.02 ± 0.24 mg of proanthocyanidin content/g of dry matter). The antioxidant capacity of the extracts was assessed using three different colorimetric assays including 2,2-DiPhenyl-1-PicrylHydrazyl (DPPH), CUPRIC ion Reducing Antioxidant Capacity (CUPRAC), and Ferric Reducing Antioxidant Power (FRAP). As expected, Marselan exhibited the highest antioxidant activity; as well, the total phenolic and proanthocyanidin content were the highest. The stability of the Marselan extract incorporated into a commercial cream, was performed at three different temperatures (4, 25, and 50 °C), and four different concentrations (5, 4, 3, 2%), over a period of 4 months, using different methods such as centrifugation, Heat-Shock Cycles, pH, and viscosity. All Marselan hydro-glyceric extract formulations were proven to be stable over the entire 4 months, where the highest stability was achieved at 4 °C and the least at 50 °C. This study supports the suitability of the incorporation of phenolic extracts into commercial creams to enrich the cosmetic industry with effective, natural, and safe skincare products.

14.
Foods ; 11(10)2022 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-35627030

RESUMO

Wheat, alfalfa, and radish sprouts are well-renowned for their high nutritional content. However, their optimal imbibition and germination durations are rarely considered in the literature. In this study, reduced imbibition times of 3 h, 10 h, and 4 h were demonstrated for the wheat, alfalfa, and radish seeds, respectively. The evolution of their crude fat, proteins, polyphenols, antioxidant activity, and vitamins were investigated over 7 days of germination. The crude fat and protein loads of these sprouts slightly varied during germination, whereas the phenolic compounds and antioxidant activity maxed out at day 7, 5, and 6 for the wheat, alfalfa, and radish sprouts, respectively, with significant levels of catechin. The vitamins highly increased, showing noteworthy yet different peaks of growth depending on the seed and the vitamin analyzed. Interestingly, alfalfa and radish sprouts, taken at their optimal germination day, would decidedly contribute to meet our Recommended Daily Allowances (RDAs) of vitamins E, A, and B6. Overall, for a greater nutritional content and a potential use of these sprouts as nutraceutical ingredients, our results suggested to leave the wheat, alfalfa, and radish seeds to germinate only over 7, 4, and 6 days, respectively, after which their nutritional quality tended to decrease.

15.
Foods ; 11(1)2022 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-35010235

RESUMO

Due to its pleasant rosy scent, the aromatic alcohol 2-phenylethanol (2-PE) has a huge market demand. Since this valuable compound is used in food, cosmetics and pharmaceuticals, consumers and safety regulations tend to prefer natural methods for its production rather than the synthetic ones. Natural 2-PE can be either produced through the extraction of essential oils from various flowers, including roses, hyacinths and jasmine, or through biotechnological routes. In fact, the rarity of natural 2-PE in flowers has led to the inability to satisfy the large market demand and to a high selling price. Hence, there is a need to develop a more efficient, economic, and environmentally friendly biotechnological approach as an alternative to the conventional industrial one. The most promising method is through microbial fermentation, particularly using yeasts. Numerous yeasts have the ability to produce 2-PE using l-Phe as precursor. Some agro-industrial waste and by-products have the particularity of a high nutritional value, making them suitable media for microbial growth, including the production of 2-PE through yeast fermentation. This review summarizes the biotechnological production of 2-PE through the fermentation of different yeasts on synthetic media and on various agro-industrial waste and by-products.

16.
Mol Nutr Food Res ; 66(1): e2100670, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34806294

RESUMO

Polyphenols have attracted huge interest among researchers of various disciplines because of their numerous biological activities, such as antioxidative, antiinflammatory, antiapoptotic, cancer chemopreventive, anticarcinogenic, and antimicrobial properties, and their promising applications in many fields, mainly in the medical, cosmetics, dietary supplement and food industries. In this review, the latest scientific findings in the research on polyphenols interaction with the microbiome and mitochondria, their metabolism and health beneficial effects, their involvement in cognitive diseases and obesity development, as well as some innovations in their analysis, extraction methods, development of cosmetic formulations and functional food are summarized based on the papers presented at the 13th World Congress on Polyphenol Applications. Future implications of polyphenols in disease prevention and their strategic use as prophylactic measures are specifically addressed. Polyphenols may play a key role in our tomorrow´s food and nutrition to prevent many diseases.


Assuntos
Microbioma Gastrointestinal , Microbiota , Antioxidantes/farmacologia , Alimento Funcional , Polifenóis/metabolismo , Polifenóis/farmacologia
17.
Ultrason Sonochem ; 82: 105895, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34972073

RESUMO

The influence of ultrasound treatment (US) on cellular damage of olive leaf tissue was studied. Mechanical damage and thermal effect of US were characterized. The level of tissue damage was defined by the diffusivity disintegration index ZD based on the diffusivity of solutes extracted from olive leaves differently treated. The Arrhenius form using the temperature dependences of the thermal treatment time within the temperature interval 20-90 °C was observed for the thermal process. The corresponding activation energy ΔUT was estimated as 57 kJ/mol. The temperature dependences of electrical conductivity were measured for extracts of intact and maximally treated olive leaves. Then the diffusivity disintegration index ZD and total phenolic compounds recovery for three studied US powers were calculated (100, 200, and 400 W). The results evidenced that the mechanically stimulated damage in olive leaf tissue can occur even at a low US power of 100 W if treatment time is long enough (t = 3.5 h). The US treatment noticeably accelerated the diffusion process mechanically in addition to its thermal effect. Trials in aqueous solution revealed the dependence of polyphenols extraction on damage level with respect to the US power applied.


Assuntos
Olea , Fenóis , Folhas de Planta , Polifenóis , Ultrassom
18.
Front Public Health ; 10: 1072727, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36699892

RESUMO

Background: Aflatoxin B1 and ochratoxin A are mycotoxins produced by filamentous fungi that attack crops on field and storage. Both mycotoxins present a risk on public health since aflatoxin B1 is a hepatotoxic and hepatocarcinogenic agent while ochratoxin A can be nephrotoxic. Those mycotoxins can be found in several food items including spices, herbs, and nuts. Objectives: In Lebanon, few studies address aflatoxin B1 and ochratoxin A contamination in spices, herbs, and nuts. So, the aim of this study is to investigate the concentrations of those two mycotoxins particularly in spices and herbs and the concentration of aflatoxin B1 in nuts, and to determine the dietary exposure of the Lebanese population and their possible attribution to liver cancer and renal damage. Methods: In this work, a total of 198 samples of spices, herbs, and nuts were collected from different sites. Aflatoxin B1 and ochratoxin A were quantified using immune-affinity columns. A food frequency questionnaire was used to quantify the consumption of spices, herbs, and nuts in Lebanon. Exposure to aflatoxin B1 and ochratoxin A was calculated accordingly and liver and kidney cancer risks were evaluated. Results: Aflatoxin B1 was respectively found in 100, 20.4, and 98.6% of the spices, herbs, and nuts samples, while ochratoxin A was found in 100 and 44.4% of spices and herbs, respectively. Aflatoxin B1 was found at mean concentration of 0.97, 0.27, and 0.40 µg/kg in spices, herbs, and nuts, respectively while ochratoxin A was found at mean concentrations of 38.8 and 1.81 µg/kg in spices and herbs, respectively. Aflatoxin B1 occurrence was shown to be associated in this study with 0.017 additional cancer cases per 100,000 persons per year, and ochratoxin A weekly exposure was shown to be 5.04 ng/kg bw less than the Provisional Tolerable Weekly Intake of 100 ng/kg bw which indicates low risk of renal damage from spices and herbs consumption. Conclusion: The consumption of spices, herbs, and nuts in Lebanon could lead to an increase in health risks associated with aflatoxin B1 and ochratoxin A, specifically spices. The reported occurrence may be directly related to poor storage conditions.


Assuntos
Aflatoxina B1 , Micotoxinas , Aflatoxina B1/análise , Aflatoxina B1/toxicidade , Nozes/química , Saúde Pública , Líbano , Contaminação de Alimentos/análise , Micotoxinas/análise , Micotoxinas/toxicidade
19.
J Phys Chem Lett ; 12(26): 6218-6226, 2021 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-34196568

RESUMO

Following our previous work ( Chem. Sci. 2021, 12, 4889-4907), we study the structural dynamics of the SARS-CoV-2 Main Protease dimerization interface (apo dimer) by means of microsecond adaptive sampling molecular dynamics simulations (50 µs) using the AMOEBA polarizable force field (PFF). This interface is structured by a complex H-bond network that is stable only at physiological pH. Structural correlations analysis between its residues and the catalytic site confirms the presence of a buried allosteric site. However, noticeable differences in allosteric connectivity are observed between PFFs and non-PFFs. Interfacial polarizable water molecules are shown to appear at the heart of this discrepancy because they are connected to the global interface H-bond network and able to adapt their dipole moment (and dynamics) to their diverse local physicochemical microenvironments. The water-interface many-body interactions appear to drive the interface volume fluctuations and to therefore mediate the allosteric interactions with the catalytic cavity.


Assuntos
Simulação de Dinâmica Molecular , SARS-CoV-2/metabolismo , Proteínas da Matriz Viral/química , Água/química , Sítio Alostérico , COVID-19/patologia , COVID-19/virologia , Domínio Catalítico , Dimerização , Humanos , Ligação de Hidrogênio , Concentração de Íons de Hidrogênio , SARS-CoV-2/isolamento & purificação , Proteínas da Matriz Viral/metabolismo
20.
Food Addit Contam Part B Surveill ; 14(3): 227-235, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34109907

RESUMO

AFB1 and OTA are produced in food products due to climatic conditions like temperature and humidity. In Lebanon, few studies address AFB1 and OTA contamination in wheat and wheat products. In this study, a total of 312 samples of wheat and wheat products were collected from different sites, including port, silos, mills, and supermarkets were analysed. Wheat and wheat products consumption in Lebanon was quantified using a food frequency questionnaire. Exposure to AFB1 and OTA was calculated and liver and kidney cancer risk were evaluated. Results showed that AFB1 and OTA were, respectively, found in 65.7% and 100% of the samples, with 0.6% and 17.6% exceeding the maximum limit set by the European Commission. AFB1 was shown to be associated with 0.076 additional cancer cases per 100,000 persons per year and OTA weekly exposure was shown to be 53.2 ng/kg bw, which is less than the Provisional Tolerable Weekly Intake of 100 ng/kg bw.


Assuntos
Aflatoxina B1 , Ocratoxinas , Aflatoxina B1/análise , Contaminação de Alimentos/análise , Ocratoxinas/análise , Triticum
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA