Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 56
Filtrar
1.
J Clin Invest ; 2024 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-38842935

RESUMO

Proliferative glomerulonephritis is a severe condition often leading to kidney failure. There is a significant lack of effective treatment for these disorders. Here, following the identification of a somatic PIK3CA gain-of-function mutation in podocytes of a patient, we demonstrate using multiple genetically engineered mouse models, single-cell RNA sequencing and spatial transcriptomics the crucial role played by this pathway for proliferative glomerulonephritis development by promoting podocyte proliferation, dedifferentiation and inflammation. Additionally, we show that alpelisib, a PI3Kα inhibitor, improves glomerular lesions and kidney function in different mouse models of proliferative glomerulonephritis and lupus nephritis by targeting podocytes. Surprisingly, we determined that pharmacological inhibition of PI3Kα affects B and T lymphocyte population in lupus nephritis mouse models with decrease in the production of proinflammatory cytokines, autoantibodies and glomerular complement deposition, which are all characteristic features of PI3K delta (PI3Kδ) inhibition, the primary PI3K isoform expressed in lymphocytes. Importantly, PI3Kα inhibition does not impact lymphocyte function under normal conditions. These findings were then confirmed in human lymphocytes isolated from patients with active lupus nephritis. In conclusion, we demonstrate the major role played by PI3Kα in proliferative glomerulonephritis and show that in this condition, alpelisib acts on both podocytes and the immune system.

2.
J Exp Med ; 221(8)2024 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-38869500

RESUMO

UNC93B1 is a transmembrane domain protein mediating the signaling of endosomal Toll-like receptors (TLRs). We report five families harboring rare missense substitutions (I317M, G325C, L330R, R466S, and R525P) in UNC93B1 causing systemic lupus erythematosus (SLE) or chilblain lupus (CBL) as either autosomal dominant or autosomal recessive traits. As for a D34A mutation causing murine lupus, we recorded a gain of TLR7 and, to a lesser extent, TLR8 activity with the I317M (in vitro) and G325C (in vitro and ex vivo) variants in the context of SLE. Contrastingly, in three families segregating CBL, the L330R, R466S, and R525P variants were isomorphic with respect to TLR7 activity in vitro and, for R525P, ex vivo. Rather, these variants demonstrated a gain of TLR8 activity. We observed enhanced interaction of the G325C, L330R, and R466S variants with TLR8, but not the R525P substitution, indicating different disease mechanisms. Overall, these observations suggest that UNC93B1 mutations cause monogenic SLE or CBL due to differentially enhanced TLR7 and TLR8 signaling.


Assuntos
Pérnio , Lúpus Eritematoso Sistêmico , Receptor 7 Toll-Like , Feminino , Humanos , Masculino , Pérnio/genética , Mutação com Ganho de Função , Células HEK293 , Lúpus Eritematoso Cutâneo/genética , Lúpus Eritematoso Cutâneo/patologia , Lúpus Eritematoso Sistêmico/genética , Proteínas de Membrana Transportadoras/genética , Proteínas de Membrana Transportadoras/metabolismo , Mutação de Sentido Incorreto , Linhagem , Receptor 7 Toll-Like/genética , Receptor 7 Toll-Like/metabolismo , Receptor 8 Toll-Like/genética , Receptor 8 Toll-Like/metabolismo , Pré-Escolar , Criança , Adulto Jovem , Adulto
3.
Sci Transl Med ; 16(753): eadj1597, 2024 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-38924432

RESUMO

Congenital pseudarthrosis of the tibia (CPT) is a severe pathology marked by spontaneous bone fractures that fail to heal, leading to fibrous nonunion. Half of patients with CPT are affected by the multisystemic genetic disorder neurofibromatosis type 1 (NF1) caused by mutations in the NF1 tumor suppressor gene, a negative regulator of RAS-mitogen-activated protein kinase (MAPK) signaling pathway. Here, we analyzed patients with CPT and Prss56-Nf1 knockout mice to elucidate the pathogenic mechanisms of CPT-related fibrous nonunion and explored a pharmacological approach to treat CPT. We identified NF1-deficient Schwann cells and skeletal stem/progenitor cells (SSPCs) in pathological periosteum as affected cell types driving fibrosis. Whereas NF1-deficient SSPCs adopted a fibrotic fate, NF1-deficient Schwann cells produced critical paracrine factors including transforming growth factor-ß and induced fibrotic differentiation of wild-type SSPCs. To counteract the elevated RAS-MAPK signaling in both NF1-deficient Schwann cells and SSPCs, we used MAPK kinase (MEK) and Src homology 2 containing protein tyrosine phosphatase 2 (SHP2) inhibitors. Combined MEK-SHP2 inhibition in vivo prevented fibrous nonunion in the Prss56-Nf1 knockout mouse model, providing a promising therapeutic strategy for the treatment of fibrous nonunion in CPT.


Assuntos
Camundongos Knockout , Neurofibromina 1 , Proteína Tirosina Fosfatase não Receptora Tipo 11 , Pseudoartrose , Células de Schwann , Animais , Feminino , Humanos , Masculino , Camundongos , Diferenciação Celular/efeitos dos fármacos , Fibrose , Quinases de Proteína Quinase Ativadas por Mitógeno/metabolismo , Quinases de Proteína Quinase Ativadas por Mitógeno/antagonistas & inibidores , Neurofibromatose 1/patologia , Neurofibromatose 1/metabolismo , Neurofibromatose 1/complicações , Neurofibromina 1/metabolismo , Neurofibromina 1/genética , Proteína Tirosina Fosfatase não Receptora Tipo 11/metabolismo , Proteína Tirosina Fosfatase não Receptora Tipo 11/antagonistas & inibidores , Pseudoartrose/patologia , Pseudoartrose/metabolismo , Pseudoartrose/congênito , Células de Schwann/metabolismo , Células de Schwann/efeitos dos fármacos , Células de Schwann/patologia , Células-Tronco/metabolismo , Células-Tronco/efeitos dos fármacos , Tíbia/patologia
4.
medRxiv ; 2024 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-38798321

RESUMO

IKKα, encoded by CHUK , is crucial in the non-canonical NF-κB pathway and part of the IKK complex activating the canonical pathway alongside IKKß. Absence of IKKα cause fetal encasement syndrome in human, fatal in utero, while an impaired IKKα-NIK interaction was reported in a single patient and cause combined immunodeficiency. Here, we describe compound heterozygous variants in the kinase domain of IKKα in a female patient with hypogammaglobulinemia, recurrent lung infections, and Hay-Wells syndrome-like features. We showed that both variants were loss-of-function. Non-canonical NF-κB activation was profoundly diminished in stromal and immune cells while the canonical pathway was partially impaired. Reintroducing wild-type CHUK restored non-canonical NF-κB activation. The patient had neutralizing autoantibodies against type I IFN, akin to non-canonical NF-κB pathway deficiencies. Thus, this is the first case of bi-allelic CHUK mutations disrupting IKKα kinase function, broadening non-canonical NF-κB defect understanding and suggesting IKKα's role in canonical NF-κB target gene expression in human.

5.
Cell Death Dis ; 15(5): 315, 2024 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-38704374

RESUMO

Autoimmune lymphoproliferative syndrome (ALPS) is a primary disorder of lymphocyte homeostasis, leading to chronic lymphoproliferation, autoimmune cytopenia, and increased risk of lymphoma. The genetic landscape of ALPS includes mutations in FAS, FASLG, and FADD, all associated with apoptosis deficiency, while the role of CASP10 defect in the disease remains debated. In this study, we aimed to assess the impact of CASP10 variants on ALPS pathogenesis. We benefit from thousands of genetic analysis datasets performed in our Institute's genetic platform to identify individuals carrying CASP10 variants previously suspected to be involved in ALPS outcome: p.C401LfsX15, p.V410I and p.Y446C, both at heterozygous and homozygous state. Clinical and laboratory features of the six included subjects were variable but not consistent with ALPS. Two individuals were healthy. Comprehensive analyses of CASP10 protein expression and FAS-mediated apoptosis were conducted and compared to healthy controls and ALPS patients with FAS mutations. Missense CASP10 variants (p.V410I and p.Y446C), which are common in the general population, did not disrupt CASP10 expression, nor FAS-mediated apoptosis. In contrast, homozygous p.C401LfsX15 CASP10 variant lead to a complete abolished CASP10 expression but had no impact on FAS-mediated apoptosis function. At heterozygous state, this p.C401LfsX15 variant lead to a reduced CASP10 protein levels but remained associated with a normal FAS-mediated apoptosis function. These findings demonstrate that CASPASE 10 is dispensable for FAS-mediated apoptosis. In consequences, CASP10 defect unlikely contribute to ALPS pathogenesis, since they did not result in an impairment of FAS-mediated apoptosis nor in clinical features of ALPS in human. Moreover, the absence of FAS expression up-regulation in subjects with CASP10 variants rule out any compensatory mechanisms possibly involved in the normal apoptosis function observed. In conclusion, this study challenges the notion that CASP10 variants contribute to the development of ALPS.


Assuntos
Apoptose , Síndrome Linfoproliferativa Autoimune , Caspase 10 , Mutação , Receptor fas , Humanos , Caspase 10/genética , Caspase 10/metabolismo , Síndrome Linfoproliferativa Autoimune/genética , Masculino , Feminino , Mutação/genética , Apoptose/genética , Receptor fas/genética , Receptor fas/metabolismo , Adulto , Criança , Adolescente , Pessoa de Meia-Idade
6.
Nature ; 628(8008): 620-629, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38509369

RESUMO

Epstein-Barr virus (EBV) infection can engender severe B cell lymphoproliferative diseases1,2. The primary infection is often asymptomatic or causes infectious mononucleosis (IM), a self-limiting lymphoproliferative disorder3. Selective vulnerability to EBV has been reported in association with inherited mutations impairing T cell immunity to EBV4. Here we report biallelic loss-of-function variants in IL27RA that underlie an acute and severe primary EBV infection with a nevertheless favourable outcome requiring a minimal treatment. One mutant allele (rs201107107) was enriched in the Finnish population (minor allele frequency = 0.0068) and carried a high risk of severe infectious mononucleosis when homozygous. IL27RA encodes the IL-27 receptor alpha subunit5,6. In the absence of IL-27RA, phosphorylation of STAT1 and STAT3 by IL-27 is abolished in T cells. In in vitro studies, IL-27 exerts a synergistic effect on T-cell-receptor-dependent T cell proliferation7 that is deficient in cells from the patients, leading to impaired expansion of potent anti-EBV effector cytotoxic CD8+ T cells. IL-27 is produced by EBV-infected B lymphocytes and an IL-27RA-IL-27 autocrine loop is required for the maintenance of EBV-transformed B cells. This potentially explains the eventual favourable outcome of the EBV-induced viral disease in patients with IL-27RA deficiency. Furthermore, we identified neutralizing anti-IL-27 autoantibodies in most individuals who developed sporadic infectious mononucleosis and chronic EBV infection. These results demonstrate the critical role of IL-27RA-IL-27 in immunity to EBV, but also the hijacking of this defence by EBV to promote the expansion of infected transformed B cells.


Assuntos
Infecções por Vírus Epstein-Barr , Interleucina-27 , Receptores de Interleucina , Adolescente , Adulto , Criança , Pré-Escolar , Feminino , Humanos , Lactente , Masculino , Adulto Jovem , Alelos , Linfócitos B/patologia , Linfócitos B/virologia , Linfócitos T CD8-Positivos/patologia , Infecções por Vírus Epstein-Barr/complicações , Infecções por Vírus Epstein-Barr/genética , Infecções por Vírus Epstein-Barr/terapia , Finlândia , Frequência do Gene , Herpesvirus Humano 4 , Homozigoto , Mononucleose Infecciosa/complicações , Mononucleose Infecciosa/genética , Mononucleose Infecciosa/terapia , Interleucina-27/imunologia , Interleucina-27/metabolismo , Mutação com Perda de Função , Receptores de Interleucina/deficiência , Receptores de Interleucina/genética , Receptores de Interleucina/metabolismo , Resultado do Tratamento
7.
J Clin Immunol ; 44(2): 60, 2024 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-38324161

RESUMO

TLR7 recognizes pathogen-derived single-stranded RNA (ssRNA), a function integral to the innate immune response to viral infection. Notably, TLR7 can also recognize self-derived ssRNA, with gain-of-function mutations in human TLR7 recently identified to cause both early-onset systemic lupus erythematosus (SLE) and neuromyelitis optica. Here, we describe two novel mutations in TLR7, F507S and L528I. While the L528I substitution arose de novo, the F507S mutation was present in three individuals from the same family, including a severely affected male, notably given that the TLR7 gene is situated on the X chromosome and that all other cases so far described have been female. The observation of mutations at residues 507 and 528 of TLR7 indicates the importance of the TLR7 dimerization interface in maintaining immune homeostasis, where we predict that altered homo-dimerization enhances TLR7 signaling. Finally, while mutations in TLR7 can result in SLE-like disease, our data suggest a broader phenotypic spectrum associated with TLR7 gain-of-function, including significant neurological involvement.


Assuntos
Mutação com Ganho de Função , Lúpus Eritematoso Sistêmico , Feminino , Masculino , Humanos , Receptor 7 Toll-Like , Mutação , Dimerização , RNA
8.
Cell Rep Med ; 4(12): 101333, 2023 12 19.
Artigo em Inglês | MEDLINE | ID: mdl-38118407

RESUMO

Gain-of-function mutations in stimulator of interferon gene 1 (STING1) result in STING-associated vasculopathy with onset in infancy (SAVI), a severe autoinflammatory disease. Although elevated type I interferon (IFN) production is thought to be the leading cause of the symptoms observed in patients, STING can induce a set of pathways, which have roles in the onset and severity of SAVI and remain to be elucidated. To this end, we performed a multi-omics comparative analysis of peripheral blood mononuclear cells (PBMCs) and plasma from SAVI patients and healthy controls, combined with a dataset of healthy PBMCs treated with IFN-ß. Our data reveal a subset of disease-associated monocyte, expressing elevated CCL3, CCL4, and IL-6, as well as a strong integrated stress response, which we suggest is the result of direct PERK activation by STING. Cell-to-cell communication inference indicates that these monocytes lead to T cell early activation, resulting in their senescence and apoptosis. Last, we propose a transcriptomic signature of STING activation, independent of type I IFN response.


Assuntos
Interferon Tipo I , Doenças Vasculares , Humanos , Monócitos/metabolismo , Leucócitos Mononucleares/metabolismo , Doenças Vasculares/genética , Doenças Vasculares/metabolismo , Interferon Tipo I/metabolismo , RNA
9.
Mol Ther Nucleic Acids ; 32: 229-246, 2023 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-37090420

RESUMO

Sickle cell disease (SCD) is due to a mutation in the ß-globin gene causing production of the toxic sickle hemoglobin (HbS; α2ßS 2). Transplantation of autologous hematopoietic stem and progenitor cells (HSPCs) transduced with lentiviral vectors (LVs) expressing an anti-sickling ß-globin (ßAS) is a promising treatment; however, it is only partially effective, and patients still present elevated HbS levels. Here, we developed a bifunctional LV expressing ßAS3-globin and an artificial microRNA (amiRNA) specifically downregulating ßS-globin expression with the aim of reducing HbS levels and favoring ßAS3 incorporation into Hb tetramers. Efficient transduction of SCD HSPCs by the bifunctional LV led to a substantial decrease of ßS-globin transcripts in HSPC-derived erythroid cells, a significant reduction of HbS+ red cells, and effective correction of the sickling phenotype, outperforming ßAS gene addition and BCL11A gene silencing strategies. The bifunctional LV showed a standard integration profile, and neither HSPC viability, engraftment, and multilineage differentiation nor the erythroid transcriptome and miRNAome were affected by the treatment, confirming the safety of this therapeutic strategy. In conclusion, the combination of gene addition and gene silencing strategies can improve the efficacy of current LV-based therapeutic approaches without increasing the mutagenic vector load, thus representing a novel treatment for SCD.

11.
Blood ; 141(22): 2713-2726, 2023 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-36952639

RESUMO

Dedicator of cytokinesis (DOCK) proteins play a central role in actin cytoskeleton regulation. This is highlighted by the DOCK2 and DOCK8 deficiencies leading to actinopathies and immune deficiencies. DOCK8 and DOCK11 activate CDC42, a Rho-guanosine triphosphate hydrolases involved in actin cytoskeleton dynamics, among many cellular functions. The role of DOCK11 in human immune disease has been long suspected but, to the best of our knowledge, has never been described to date. We studied 8 male patients, from 7 unrelated families, with hemizygous DOCK11 missense variants leading to reduced DOCK11 expression. The patients were presenting with early-onset autoimmunity, including cytopenia, systemic lupus erythematosus, skin, and digestive manifestations. Patients' platelets exhibited abnormal ultrastructural morphology and spreading as well as impaired CDC42 activity. In vitro activated T cells and B-lymphoblastoid cell lines from patients exhibited aberrant protrusions and abnormal migration speed in confined channels concomitant with altered actin polymerization during migration. Knock down of DOCK11 recapitulated these abnormal cellular phenotypes in monocytes-derived dendritic cells and primary activated T cells from healthy controls. Lastly, in line with the patients' autoimmune manifestations, we also observed abnormal regulatory T-cell (Treg) phenotype with profoundly reduced FOXP3 and IKZF2 expression. Moreover, we found reduced T-cell proliferation and impaired STAT5B phosphorylation upon interleukin-2 stimulation of the patients' lymphocytes. In conclusion, DOCK11 deficiency is a new X-linked immune-related actinopathy leading to impaired CDC42 activity and STAT5 activation, and is associated with abnormal actin cytoskeleton remodeling as well as Treg phenotype, culminating in immune dysregulation and severe early-onset autoimmunity.


Assuntos
Doenças do Sistema Imunitário , Síndromes de Imunodeficiência , Humanos , Masculino , Citoesqueleto de Actina/metabolismo , Autoimunidade , Fatores de Troca do Nucleotídeo Guanina/genética , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Doenças do Sistema Imunitário/metabolismo , Síndromes de Imunodeficiência/complicações , Síndromes de Imunodeficiência/genética , Linfócitos T Reguladores
12.
Blood ; 141(10): 1169-1179, 2023 03 09.
Artigo em Inglês | MEDLINE | ID: mdl-36508706

RESUMO

ß-Thalassemia (BT) is one of the most common genetic diseases worldwide and is caused by mutations affecting ß-globin production. The only curative treatment is allogenic hematopoietic stem/progenitor cells (HSPCs) transplantation, an approach limited by compatible donor availability and immunological complications. Therefore, transplantation of autologous, genetically-modified HSPCs is an attractive therapeutic option. However, current gene therapy strategies based on the use of lentiviral vectors are not equally effective in all patients and CRISPR/Cas9 nuclease-based strategies raise safety concerns. Thus, base editing strategies aiming to correct the genetic defect in patients' HSPCs could provide safe and effective treatment. Here, we developed a strategy to correct one of the most prevalent BT mutations (IVS1-110 [G>A]) using the SpRY-ABE8e base editor. RNA delivery of the base editing system was safe and led to ∼80% of gene correction in the HSPCs of patients with BT without causing dangerous double-strand DNA breaks. In HSPC-derived erythroid populations, this strategy was able to restore ß-globin production and correct inefficient erythropoiesis typically observed in BT both in vitro and in vivo. In conclusion, this proof-of-concept study paves the way for the development of a safe and effective autologous gene therapy approach for BT.


Assuntos
Talassemia beta , Humanos , Talassemia beta/genética , Talassemia beta/terapia , Edição de Genes , Sistemas CRISPR-Cas , Mutação , Globinas beta/genética
13.
Hum Reprod ; 37(12): 2952-2959, 2022 11 24.
Artigo em Inglês | MEDLINE | ID: mdl-36331510

RESUMO

STUDY QUESTION: Can mutations of genes other than AMH or AMHR2, namely PPP1R12A coding myosin phosphatase, lead to persistent Müllerian duct syndrome (PMDS)? SUMMARY ANSWER: The detection of PPP1R12A truncation mutations in five cases of PMDS suggests that myosin phosphatase is involved in Müllerian regression, independently of the anti-Müllerian hormone (AMH) signaling cascade. WHAT IS KNOWN ALREADY: Mutations of AMH and AMHR2 are detectable in an overwhelming majority of PMDS patients but in 10% of cases, both genes are apparently normal, suggesting that other genes may be involved. STUDY DESIGN, SIZE, DURATION: DNA samples from 39 PMDS patients collected from 1990 to present, in which Sanger sequencing had failed to detect biallelic AMH or AMHR2 mutations, were screened by massive parallel sequencing. PARTICIPANTS/MATERIALS, SETTING, METHODS: To rule out the possibility that AMH or AMHR2 mutations could have been missed, all DNA samples of good quality were analyzed by targeted next-generation sequencing. Twenty-four samples in which the absence of AMH or AMHR2 biallelic mutations was confirmed were subjected to whole-exome sequencing with the aim of detecting variants of other genes potentially involved in PMDS. MAIN RESULTS AND THE ROLE OF CHANCE: Five patients out of 24 (21%) harbored deleterious truncation mutations of PP1R12A, the gene coding for the regulatory subunit of myosin phosphatase, were detected. In addition to PMDS, three of these patients presented with ileal and one with esophageal atresia. The congenital abnormalities associated with PMDS in our patients are consistent with those described in the literature for PPP1R12A variants and have never been described in cases of AMH or AMHR2 mutations. The role of chance is therefore extremely unlikely. LIMITATIONS, REASONS FOR CAUTION: The main limitation of the study is the lack of experimental validation of the role of PPP1R12A in Müllerian regression. Only circumstantial evidence is available, myosin phosphatase is required for cell mobility, which plays a major role in Müllerian regression. Alternatively, PPP1R12A mutations could affect the AMH transduction pathway. WIDER IMPLICATIONS OF THE FINDINGS: The study supports the conclusion that failure of Müllerian regression in males is not necessarily associated with a defect in AMH signaling. Extending the scope of molecular analysis should shed light upon the mechanism of the initial steps of male sex differentiation. STUDY FUNDING/COMPETING INTEREST(S): The study was funded by la Fondation Maladies Rares, GenOmics 2021_0404 and la Fondation pour la Recherche Médicale, grant EQU201903007868. The authors report no conflict of interest. TRIAL REGISTRATION NUMBER: N/A.


Assuntos
Transtorno 46,XY do Desenvolvimento Sexual , Humanos , Masculino , Fosfatase de Miosina-de-Cadeia-Leve/genética , Transtorno 46,XY do Desenvolvimento Sexual/genética , Hormônio Antimülleriano/genética , Hormônio Antimülleriano/metabolismo , DNA
14.
Nat Commun ; 13(1): 6618, 2022 11 04.
Artigo em Inglês | MEDLINE | ID: mdl-36333351

RESUMO

Sickle cell disease and ß-thalassemia affect the production of the adult ß-hemoglobin chain. The clinical severity is lessened by mutations that cause fetal γ-globin expression in adult life (i.e., the hereditary persistence of fetal hemoglobin). Mutations clustering ~200 nucleotides upstream of the HBG transcriptional start sites either reduce binding of the LRF repressor or recruit the KLF1 activator. Here, we use base editing to generate a variety of mutations in the -200 region of the HBG promoters, including potent combinations of four to eight γ-globin-inducing mutations. Editing of patient hematopoietic stem/progenitor cells is safe, leads to fetal hemoglobin reactivation and rescues the pathological phenotype. Creation of a KLF1 activator binding site is the most potent strategy - even in long-term repopulating hematopoietic stem/progenitor cells. Compared with a Cas9-nuclease approach, base editing avoids the generation of insertions, deletions and large genomic rearrangements and results in higher γ-globin levels. Our results demonstrate that base editing of HBG promoters is a safe, universal strategy for treating ß-hemoglobinopathies.


Assuntos
Anemia Falciforme , Talassemia beta , Humanos , Hemoglobina Fetal/genética , Hemoglobina Fetal/metabolismo , gama-Globinas/genética , Talassemia beta/genética , Talassemia beta/terapia , Anemia Falciforme/genética , Células-Tronco Hematopoéticas/metabolismo
16.
Birth Defects Res ; 114(10): 499-504, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35426486

RESUMO

BACKGROUND: The THOC6 protein is a component of the THO complex. It is involved in mRNA transcription, processing and nuclear export. Interestingly molecular biallelic loss-of-function variants of the THOC6 gene were identified in the Beaulieu-Boycott-Innes syndrome (BBIS- OMIM # 613680). This condition was described in 17 patients and is characterized by a moderate to severe intellectual disability, facial dysmorphic features and severe birth defects such as heart, skeletal, ano-genital and renal congenital malformations. METHODS: In the present study, we report on a new family with two affected sibs. The 6-year-old female had severe intellectual disability with autistic features, feeding difficulties, growth delay, facial dysmorphic, and congenital malformations (hand, skeletal and cardiac anomalies). The male fetus presented antenatally with a cystic hygroma associated with severe aortic and left ventricular hypoplasia. Autopsy, after termination of pregnancy at 15 weeks of gestation, showed facial dysmorphic, short right thumb and hypospadias. RESULTS: Exome sequencing detected in both sibs compound heterozygous variants of the THOC6 gene (NM_024339.3, GRCh37): the already reported c.[298T>A;700G>T;824G>A] haplotype and a novel variant c.977T>G, p.(Val326Gly). DISCUSSION: We made a review of the literature of 17 BBIS reported patients including our two siblings. Severe to moderate ID and congenital malformations were constant. Prenatal and postnatal failure to thrive were frequent. Brain MRI were not specific. Prenatal findings were reported in 40% of cases but we described the first case of cystic hygroma. The present study reports extends the prenatal delineation of the phenotypic features observed in association with the presence of THOC6 variants. In addition, it underscores the intrafamilial phenotypic variability observed in BBIS.


Assuntos
Deficiência Intelectual , Linfangioma Cístico , Microcefalia , Anormalidades Musculoesqueléticas , Proteínas de Ligação a RNA , Feminino , Humanos , Deficiência Intelectual/genética , Masculino , Anormalidades Musculoesqueléticas/genética , Fenótipo , Gravidez , Proteínas de Ligação a RNA/genética , Sequenciamento do Exoma
17.
Respiration ; 101(6): 531-543, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35078193

RESUMO

BACKGROUND: Monogenic and polygenic inheritances are evidenced for idiopathic pulmonary fibrosis (IPF). Pathogenic variations in surfactant protein-related genes, telomere-related genes (TRGs), and a single-nucleotide polymorphism in the promoter of MUC5B gene encoding mucin 5B (rs35705950 T risk allele) are reported. This French-Greek collaborative study, Gen-Phen-Re-GreekS in inheritable IPF (iIPF), aimed to investigate genetic components and patients' characteristics in the Greek national IPF cohort with suspected heritability. PATIENTS AND METHODS: 150 patients with familial PF, personal-family extrapulmonary disease suggesting short telomere syndrome, and/or young age IPF were analyzed. RESULTS: MUC5B rs35705950 T risk allele was detected in 103 patients (90 heterozygous, 13 homozygous, allelic frequency of 39%), monoallelic TRG pathogenic variations in 19 patients (8 TERT, 5 TERC, 2 RTEL1, 2 PARN, 1 NOP10, and 1 NHP2), and biallelic ABCA3 pathogenic variations in 3. Overlapping MUC5B rs35705950 T risk allele and TRG pathogenic variations were shown in 11 patients (5 TERT, 3 TERC, 1 PARN, 1 NOP10, and 1 NHP2), MUC5B rs35705950 T risk allele, and biallelic ABCA3 pathogenic variations in 2. In 38 patients, neither MUC5B rs35705950 T risk allele nor TRG pathogenic variations were detectable. Kaplan-Meier curves showed differences in time-to-death (p = 0.025) where patients with MUC5B rs35705950 T risk allele alone or in combination with TRG pathogenic variations presented better prognosis. CONCLUSION: The Gen-Phen-Re-GreekS in iIPF identified multiple and overlapping genetic components including the rarest, underlying disease's genetic "richesse," complexity and heterogeneity. Time-to-death differences may relate to diverse IPF pathogenetic mechanisms implicating "personalized" medical care driven by genotypes in the near future.


Assuntos
Fibrose Pulmonar Idiopática , Estudos de Coortes , Predisposição Genética para Doença , Genótipo , Grécia , Humanos , Fibrose Pulmonar Idiopática/genética , Fenótipo
18.
Mol Ther ; 30(1): 145-163, 2022 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-34418541

RESUMO

Sickle cell disease (SCD) is caused by a mutation in the ß-globin gene leading to polymerization of the sickle hemoglobin (HbS) and deformation of red blood cells. Autologous transplantation of hematopoietic stem/progenitor cells (HSPCs) genetically modified using lentiviral vectors (LVs) to express an anti-sickling ß-globin leads to some clinical benefit in SCD patients, but it requires high-level transgene expression (i.e., high vector copy number [VCN]) to counteract HbS polymerization. Here, we developed therapeutic approaches combining LV-based gene addition and CRISPR-Cas9 strategies aimed to either knock down the sickle ß-globin and increase the incorporation of an anti-sickling globin (AS3) in hemoglobin tetramers, or to induce the expression of anti-sickling fetal γ-globins. HSPCs from SCD patients were transduced with LVs expressing AS3 and a guide RNA either targeting the endogenous ß-globin gene or regions involved in fetal hemoglobin silencing. Transfection of transduced cells with Cas9 protein resulted in high editing efficiency, elevated levels of anti-sickling hemoglobins, and rescue of the SCD phenotype at a significantly lower VCN compared to the conventional LV-based approach. This versatile platform can improve the efficacy of current gene addition approaches by combining different therapeutic strategies, thus reducing the vector amount required to achieve a therapeutic VCN and the associated genotoxicity risk.


Assuntos
Anemia Falciforme , Edição de Genes , Anemia Falciforme/genética , Anemia Falciforme/terapia , Proteína 9 Associada à CRISPR/genética , Hemoglobina Fetal/genética , Edição de Genes/métodos , Humanos , Globinas beta/genética
19.
Birth Defects Res ; 113(18): 1324-1332, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34491000

RESUMO

BACKGROUND: Neuronal ceroid lipofuscinoses (NCLs) form a clinically and genetically heterogeneous group of inherited neurodegenerative disorders that share common neuropathological features. Although they are the first cause of neurodegenerative disorders in children, their congenital forms are rarely documented. They are classically due to mutations in the CTSD gene (the CLN10 disease). Affected newborns usually present severe microcephaly, seizures and respiratory failure leading to death within the first postnatal days or weeks. CASES: We report on two siblings, in which exome sequencing identified a novel homozygous CTSD variant. The first sib presented at birth with seizures, rapidly progressive postnatal microcephaly and visual deficiency related to retinal dysfunction. Progressive neurological deterioration leads to death at the age of 24 months. Cathepsin D activity was reduced in the cultured fibroblasts of this patient. The second sib, a fetus of 36 weeks of gestation, was delivered after pregnancy termination for brain abnormalities (in accordance with French Legislation) suggesting a recurrence of the disease. Fetal postmortem examination disclosed neuropathological features consistent with NCL. CONCLUSIONS: Congenital NCL related to CTSD mutations is a neuronal storage disorder that produces in the developing brain diffuse neurodegeneration and white matter atrophy resulting in a progressive and rapidly lethal microcephaly.


Assuntos
Catepsina D , Microcefalia , Lipofuscinoses Ceroides Neuronais , Encéfalo/metabolismo , Catepsina D/genética , Feminino , Humanos , Recém-Nascido , Microcefalia/genética , Mutação/genética , Lipofuscinoses Ceroides Neuronais/genética , Gravidez
20.
Nat Commun ; 12(1): 5044, 2021 08 19.
Artigo em Inglês | MEDLINE | ID: mdl-34413298

RESUMO

Indirect somatic genetic rescue (SGR) of a germline mutation is thought to be rare in inherited Mendelian disorders. Here, we establish that acquired mutations in the EIF6 gene are a frequent mechanism of SGR in Shwachman-Diamond syndrome (SDS), a leukemia predisposition disorder caused by a germline defect in ribosome assembly. Biallelic mutations in the SBDS or EFL1 genes in SDS impair release of the anti-association factor eIF6 from the 60S ribosomal subunit, a key step in the translational activation of ribosomes. Here, we identify diverse mosaic somatic genetic events (point mutations, interstitial deletion, reciprocal chromosomal translocation) in SDS hematopoietic cells that reduce eIF6 expression or disrupt its interaction with the 60S subunit, thereby conferring a selective advantage over non-modified cells. SDS-related somatic EIF6 missense mutations that reduce eIF6 dosage or eIF6 binding to the 60S subunit suppress the defects in ribosome assembly and protein synthesis across multiple SBDS-deficient species including yeast, Dictyostelium and Drosophila. Our data suggest that SGR is a universal phenomenon that may influence the clinical evolution of diverse Mendelian disorders and support eIF6 suppressor mimics as a therapeutic strategy in SDS.


Assuntos
Mutação , Subunidades Ribossômicas Maiores de Eucariotos/metabolismo , Ribossomos/genética , Ribossomos/patologia , Síndrome de Shwachman-Diamond/genética , Síndrome de Shwachman-Diamond/patologia , Adolescente , Adulto , Animais , Fenômenos Biológicos , Células Cultivadas , Criança , Pré-Escolar , Dictyostelium , Drosophila , Fatores de Iniciação em Eucariotos/genética , Fatores de Iniciação em Eucariotos/metabolismo , Células Germinativas , Humanos , Lactente , Simulação de Dinâmica Molecular , Fatores de Alongamento de Peptídeos/genética , Fatores de Alongamento de Peptídeos/metabolismo , Ligação Proteica , Biossíntese de Proteínas , Proteínas/genética , Proteínas/metabolismo , Ribonucleoproteína Nuclear Pequena U5/genética , Ribonucleoproteína Nuclear Pequena U5/metabolismo , Ribossomos/metabolismo , Saccharomyces cerevisiae , Homologia de Sequência de Aminoácidos , Síndrome de Shwachman-Diamond/metabolismo , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA