Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 67
Filtrar
1.
Diabetologia ; 67(7): 1386-1398, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38662135

RESUMO

AIMS/HYPOTHESIS: Exercise has a profound effect on insulin sensitivity in skeletal muscle. The euglycaemic-hyperinsulinaemic clamp (EHC) is the gold standard for assessment of insulin sensitivity but it does not reflect the hyperglycaemia that occurs after eating a meal. In previous EHC investigations, it has been shown that the interstitial glucose concentration in muscle is decreased to a larger extent in previously exercised muscle than in rested muscle. This suggests that previously exercised muscle may increase its glucose uptake more than rested muscle if glucose supply is increased by hyperglycaemia. Therefore, we hypothesised that the exercise-induced increase in muscle insulin sensitivity would appear greater after eating a meal than previously observed with the EHC. METHODS: Ten recreationally active men performed dynamic one-legged knee extensor exercise for 1 h. Following this, both femoral veins and one femoral artery were cannulated. Subsequently, 4 h after exercise, a solid meal followed by two liquid meals were ingested over 1 h and glucose uptake in the two legs was measured for 3 h. Muscle biopsies from both legs were obtained before the meal test and 90 min after the meal test was initiated. Data obtained in previous studies using the EHC (n=106 participants from 13 EHC studies) were used for comparison with the meal-test data obtained in this study. RESULTS: Plasma glucose and insulin peaked 45 min after initiation of the meal test. Following the meal test, leg glucose uptake and glucose clearance increased twice as much in the exercised leg than in the rested leg; this difference is twice as big as that observed in previous investigations using EHCs. Glucose uptake in the rested leg plateaued after 15 min, alongside elevated muscle glucose 6-phosphate levels, suggestive of compromised muscle glucose metabolism. In contrast, glucose uptake in the exercised leg plateaued 45 min after initiation of the meal test and there were no signs of compromised glucose metabolism. Phosphorylation of the TBC1 domain family member 4 (TBC1D4; p-TBC1D4Ser704) and glycogen synthase activity were greater in the exercised leg compared with the rested leg. Muscle interstitial glucose concentration increased with ingestion of meals, although it was 16% lower in the exercised leg than in the rested leg. CONCLUSIONS/INTERPRETATION: Hyperglycaemia after meal ingestion results in larger differences in muscle glucose uptake between rested and exercised muscle than previously observed during EHCs. These findings indicate that the ability of exercise to increase insulin-stimulated muscle glucose uptake is even greater when evaluated with a meal test than has previously been shown with EHCs.


Assuntos
Glicemia , Exercício Físico , Técnica Clamp de Glucose , Resistência à Insulina , Insulina , Refeições , Músculo Esquelético , Humanos , Masculino , Exercício Físico/fisiologia , Músculo Esquelético/metabolismo , Resistência à Insulina/fisiologia , Adulto , Glicemia/metabolismo , Insulina/metabolismo , Insulina/sangue , Adulto Jovem , Refeições/fisiologia
2.
Front Sports Act Living ; 5: 1173377, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37325799

RESUMO

Background: Reduced testosterone levels can influence immune system function, particularly T cells. Exercise during cancer reduces treatment-related side effects and provide a stimulus to mobilize and redistribute immune cells. However, it is unclear how conventional and unconventional T cells (UTC) respond to acute exercise in prostate cancer survivors compared to healthy controls. Methods: Age-matched prostate cancer survivors on androgen deprivation therapy (ADT) and those without ADT (PCa) along with non-cancer controls (CON) completed ∼45 min of intermittent cycling with 3 min at 60% of peak power interspersed by 1.5 min of rest. Fresh, unstimulated immune cell populations and intracellular perforin were assessed before (baseline), immediately following (0 h), 2 h, and 24 h post-exercise. Results: At 0 h, conventional T cell counts increased by 45%-64% with no differences between groups. T cell frequency decreased by -3.5% for CD3+ and -4.5% for CD4+ cells relative to base at 0 h with CD8+ cells experiencing a delayed decrease of -4.5% at 2 h with no group differences. Compared to CON, the frequency of CD8+CD57+ cells was -18.1% lower in ADT. Despite a potential decrease in maturity, ADT increased CD8+perforin+ GMFI. CD3+Vα7.2+CD161+ counts, but not frequencies, increased by 69% post-exercise while CD3+CD56+ cell counts increased by 127% and were preferentially mobilized (+1.7%) immediately following the acute cycling bout. There were no UTC group differences. Cell counts and frequencies returned to baseline by 24 h. Conclusion: Following acute exercise, prostate cancer survivors demonstrate normal T cell and UTC responses that were comparable to CON. Independent of exercise, ADT is associated with lower CD8+ cell maturity (CD57) and perforin frequency that suggests a less mature phenotype. However, higher perforin GMFI may attenuate these changes, with the functional implications of this yet to be determined.

3.
J Endocrinol ; 252(2): 91-105, 2021 12 09.
Artigo em Inglês | MEDLINE | ID: mdl-34783678

RESUMO

The aim of this study was to investigate the relationship between mitochondrial content and respiratory function and whole-body insulin resistance in high-fat diet (HFD) fed rats. Male Wistar rats were given either a chow diet or an HFD for 12 weeks. After 4 weeks of the dietary intervention, half of the rats in each group began 8 weeks of interval training. In vivo glucose and insulin tolerance were assessed. Mitochondrial respiratory function was assessed in permeabilised soleus and white gastrocnemius (WG) muscles. Mitochondrial content was determined by the measurement of citrate synthase (CS) activity and protein expression of components of the electron transport system (ETS). We found HFD rats had impaired glucose and insulin tolerance but increased mitochondrial respiratory function and increased protein expression of components of the ETS. This was accompanied by an increase in CS activity in WG. Exercise training improved glucose and insulin tolerance in the HFD rats. Mitochondrial respiratory function was increased with exercise training in the chow-fed animals in soleus muscle. This exercise effect was absent in the HFD animals. In conclusion, exercise training improved insulin resistance in HFD rats but without changes in mitochondrial respiratory function and content. The lack of an association between mitochondrial characteristics and whole-body insulin resistance was reinforced by the absence of strong correlations between these measures. Our results suggest that improvements in mitochondrial respiratory function and content are not responsible for improvements in whole-body insulin resistance in HFD rats.


Assuntos
Resistência à Insulina/fisiologia , Mitocôndrias Musculares/fisiologia , Condicionamento Físico Animal/fisiologia , Animais , Respiração Celular/fisiologia , Dieta Hiperlipídica , Glucose/metabolismo , Insulina/metabolismo , Masculino , Músculo Esquelético/metabolismo , Obesidade/metabolismo , Obesidade/fisiopatologia , Ratos , Ratos Wistar
4.
J Sport Health Sci ; 10(4): 478-487, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-32565243

RESUMO

BACKGROUND: High-intensity interval training (HIIT) induces similar or even superior adaptations compared to continuous endurance training. Indeed, just 6 HIIT sessions over 2 weeks significantly improves maximal oxygen uptake (VO2max), submaximal exercise fat oxidation, and endurance performance. Whether even faster adaptations can be achieved with HIIT is not known. Thus, we aimed to determine whether 2 sessions of HIIT per day, separated by 3 h, every other day for 5 days (double HIIT (HIIT-D), n = 15) could increase VO2max, submaximal exercise fat oxidation, and endurance capacity as effectively as 6 sessions of HIIT over 2 weeks (single HIIT (HIIT-S), n = 13). METHODS: Each training session consisted of 10 × 60 s of cycling at 100% of VO2max interspersed with 75 s of low-intensity cycling at 60 watt (W). Pre- and post-training assessments included VO2max, time to exhaustion at ∼80% of VO2max, and 60-min cycling trials at ∼67% of VO2max. RESULTS: Similar increases (p < 0.05) in VO2max (HIIT-D: 7.7% vs. HIIT-S: 6.0%, p > 0.05) and endurance capacity (HIIT-D: 80.1% vs. HIIT-S: 79.2%, p > 0.05) were observed. Submaximal exercise carbohydrate oxidation was reduced in the 2 groups after exercise training (HIIT-D: 9.2%, p = 0.014 vs. HIIT-S: 18.8%, p = 0.012) while submaximal exercise fat oxidation was significantly increased in HIIT-D (15.5%, p = 0.048) but not in HIIT-S (9.3%, p = 0.290). CONCLUSION: Six HIIT sessions over 5 days was as effective in increasing VO2max and endurance capacity and was more effective in improving submaximal exercise fat oxidation than 6 HIIT sessions over 2 weeks.


Assuntos
Tecido Adiposo/metabolismo , Treinamento Intervalado de Alta Intensidade/métodos , Consumo de Oxigênio/fisiologia , Resistência Física/fisiologia , Adaptação Fisiológica , Adulto , Voluntários Saudáveis , Humanos , Masculino , Oxirredução , Adulto Jovem
5.
Exp Physiol ; 105(9): 1524-1539, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32715550

RESUMO

NEW FINDINGS: What is the central question of this study? What are the characteristics of the NK cell response following acute moderate-intensity aerobic exercise in prostate cancer survivors and is there a relationship between stress hormones and NK cell mobilization? What is the main finding and its importance? NK cell numbers and proportions changed similarly between prostate cancer survivors and controls following acute exercise. Consecutive training sessions can likely be used without adverse effects on the immune system during prostate cancer treatment. ABSTRACT: Prostate cancer treatment affects multiple physiological systems, although the immune response during exercise has been minimally investigated. The objective was to characterize the natural killer (NK) cell response following acute exercise in prostate cancer survivors. Prostate cancer survivors on androgen deprivation therapy (ADT) and those without (PCa) along with non-cancer controls (CON) completed a moderate intensity cycling bout. NK cells were phenotyped before and 0, 2 and 24 h after acute exercise using flow cytometry. CD56 total NK cell frequency increased by 6.2% at 0 h (P < 0.001) and decreased by 2.5% at 2 h (P < 0.01) with similar findings in CD56dim cells. NK cell counts also exhibited a biphasic response. Independent of exercise, ADT had intracellular interferon γ (IFNγ) expression that was nearly twofold higher than CON (P < 0.01). PCa perforin expression was reduced by 11.4% (P < 0.05), suggesting these cells may be more prone to degranulation. CD57- NK cells demonstrated increased perforin and IFNγ frequencies after exercise with no change within the CD57+ populations. All NK and leukocyte populations returned to baseline by 24 h. NK cell mobilization and egress with acute exercise appear normal, as cell counts and frequencies in prostate cancer survivors change similarly to CON. However, lower perforin proportions (PCa) and higher IFNγ expression (ADT) may alter NK cytotoxicity and require further investigation. The return of NK cell proportions to resting levels overnight suggests that consecutive training sessions can be used without adverse effects on the immune system during prostate cancer treatment.


Assuntos
Exercício Físico , Células Matadoras Naturais/citologia , Ativação Linfocitária , Neoplasias da Próstata , Idoso , Antagonistas de Androgênios/uso terapêutico , Contagem de Células Sanguíneas , Antígenos CD57/metabolismo , Estudos de Casos e Controles , Humanos , Interferon gama/metabolismo , Masculino , Pessoa de Meia-Idade , Perforina/metabolismo , Neoplasias da Próstata/imunologia
6.
J Physiol ; 598(18): 3859-3870, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32588910

RESUMO

KEY POINTS: AMP-activated protein kinase (AMPK) is considered a major regulator of skeletal muscle metabolism during exercise. However, we previously showed that, although AMPK activity increases by 8-10-fold during ∼120 min of exercise at ∼65% V̇O2peak in untrained individuals, there is no increase in these individuals after only 10 days of exercise training (longitudinal study). In a cross-sectional study, we show that there is also a lack of activation of skeletal muscle AMPK during 120 min of cycling exercise at 65% V̇O2peak in endurance-trained individuals. These findings indicate that AMPK is not an important regulator of exercise metabolism during 120 min of exercise at 65% V̇O2peak in endurance trained men. It is important that more energy is directed towards examining other potential regulators of exercise metabolism. ABSTRACT: AMP-activated protein kinase (AMPK) is considered a major regulator of skeletal muscle metabolism during exercise. Indeed, AMPK is activated during exercise and activation of AMPK by 5-aminoimidazole-4-carboxyamide-ribonucleoside (AICAR) increases skeletal muscle glucose uptake and fat oxidation. However, we have previously shown that, although AMPK activity increases by 8-10-fold during ∼120 min of exercise at ∼65% V̇O2peak in untrained individuals, there is no increase in these individuals after only 10 days of exercise training (longitudinal study). In a cross-sectional study, we examined whether there is also a lack of activation of skeletal muscle AMPK during 120 min of cycling exercise at 65% V̇O2peak in endurance-trained individuals. Eleven untrained (UT; V̇O2peak = 37.9 ± 5.6 ml.kg-1  min-1 ) and seven endurance trained (ET; V̇O2peak = 61.8 ± 2.2 ml.kg-1  min-1 ) males completed 120 min of cycling exercise at 66 ± 4% V̇O2peak (UT: 100 ± 21 W; ET: 190 ± 15 W). Muscle biopsies were obtained at rest and following 30 and 120 min of exercise. Muscle glycogen was significantly (P < 0.05) higher before exercise in ET and decreased similarly during exercise in the ET and UT individuals. Exercise significantly increased calculated skeletal muscle free AMP content and more so in the UT individuals. Exercise significantly (P < 0.05) increased skeletal muscle AMPK α2 activity (4-fold), AMPK αThr172 phosphorylation (2-fold) and ACCß Ser222 phosphorylation (2-fold) in the UT individuals but not in the ET individuals. These findings indicate that AMPK is not an important regulator of exercise metabolism during 120 min of exercise at 65% V̇O2peak in endurance trained men.


Assuntos
Proteínas Quinases Ativadas por AMP , Acetil-CoA Carboxilase , Estudos Transversais , Exercício Físico , Humanos , Estudos Longitudinais , Masculino , Músculo Esquelético
7.
J Physiol ; 598(19): 4251-4270, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32539156

RESUMO

KEY POINTS: Paternal obesity negatively influences metabolic outcomes in adult rat offspring. Maternal voluntary physical activity has previously been reported to improve glucose metabolism in adult rat offspring sired by healthy fathers. Here, we investigated whether a structured programme of maternal exercise training before and during gestation can attenuate the negative impacts that paternal obesity has on insulin sensitivity and secretion in female adult offspring. Exercise before and during pregnancy normalised the lower insulin sensitivity in skeletal muscle and the lower insulin secretion observed in female offspring sired by obese fathers. This paper presents a feasible, low-cost and translatable intervention strategy that can be applied perinatally to support multifactor interventions to break the cycle of metabolic dysfunction caused by paternal obesity. ABSTRACT: We investigated whether maternal exercise before and during gestation could attenuate the negative metabolic effects of paternal high-fat diet-induced obesity in female adult rat offspring. Fathers consumed a normal chow or high-fat diet before mating. Mothers exercised on a treadmill before and during gestation or remained sedentary. In adulthood, female offspring were assessed using intraperitoneal insulin and glucose tolerance tests (IPITT and IPGTT, respectively), pancreatic morphology, ex vivo skeletal muscle insulin-stimulated glucose uptake and mitochondrial respiratory function. Paternal obesity impaired whole-body and skeletal muscle insulin sensitivity and insulin secretion in adult offspring. Maternal exercise attenuated the lower insulin-stimulated glucose uptake in offspring sired by obese fathers but distal insulin signalling components (p-AKT Thr308 and Ser473, p-TBC1D4 Thr642 and GLUT4) remained unchanged (P > 0.05). Maternal exercise increased citrate synthase activity only in offspring sired by obese fathers. Maternal exercise also reversed the lower insulin secretion in vivo observed in offspring of obese fathers, probably due to an attenuation of the decrease in pancreatic beta cell mass. In summary, maternal exercise before and during pregnancy in rats attenuated skeletal muscle insulin resistance and attenuated the decrease in pancreatic beta cell mass and insulin secretion observed in the female offspring of obese fathers.


Assuntos
Pai , Condicionamento Físico Animal , Adulto , Animais , Dieta Hiperlipídica , Feminino , Glucose/metabolismo , Humanos , Insulina/metabolismo , Secreção de Insulina , Masculino , Músculo Esquelético/metabolismo , Obesidade/metabolismo , Gravidez , Ratos
10.
J Physiol ; 598(2): 303-315, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31696935

RESUMO

KEY POINTS: Increased insulin action is an important component of the health benefits of exercise, but its regulation is complex and not fully elucidated. Previous studies of insulin-stimulated GLUT4 translocation to the skeletal muscle membrane found insufficient increases to explain the increases in glucose uptake. By determination of leg glucose uptake and interstitial muscle glucose concentration, insulin-induced muscle membrane permeability to glucose was calculated 4 h after one-legged knee-extensor exercise during a submaximal euglycaemic-hyperinsulinaemic clamp. It was found that during submaximal insulin stimulation, muscle membrane permeability to glucose in humans increases twice as much in previously exercised vs. rested muscle and outstrips the supply of glucose, which then becomes limiting for glucose uptake. This methodology can now be employed to determine muscle membrane permeability to glucose in people with diabetes, who have reduced insulin action, and in principle can also be used to determine membrane permeability to other substrates or metabolites. ABSTRACT: Increased insulin action is an important component of the health benefits of exercise, but the regulation of insulin action in vivo is complex and not fully elucidated. Previously determined increases in skeletal muscle insulin-stimulated GLUT4 translocation are inconsistent and mostly cannot explain the increases in insulin action in humans. Here we used leg glucose uptake (LGU) and interstitial muscle glucose concentration to calculate insulin-induced muscle membrane permeability to glucose, a variable not previously possible to quantify in humans. Muscle membrane permeability to glucose, measured 4 h after one-legged knee-extensor exercise, increased ∼17-fold during a submaximal euglycaemic-hyperinsulinaemic clamp in rested muscle (R) and ∼36-fold in exercised muscle (EX). Femoral arterial infusion of NG -monomethyl l-arginine acetate or ATP decreased and increased, respectively, leg blood flow (LBF) in both legs but did not affect membrane glucose permeability. Decreasing LBF reduced interstitial glucose concentrations to ∼2 mM in the exercised but only to ∼3.5 mM in non-exercised muscle and abrogated the augmented effect of insulin on LGU in the EX leg. Increasing LBF by ATP infusion increased LGU in both legs with uptake higher in the EX leg. We conclude that it is possible to measure functional muscle membrane permeability to glucose in humans and it increases twice as much in exercised vs. rested muscle during submaximal insulin stimulation. We also show that muscle perfusion is an important regulator of muscle glucose uptake when membrane permeability to glucose is high and we show that the capillary wall can be a significant barrier for glucose transport.


Assuntos
Permeabilidade da Membrana Celular , Exercício Físico , Glucose/metabolismo , Insulina/farmacologia , Músculo Esquelético/metabolismo , Técnica Clamp de Glucose , Humanos , Perna (Membro)
11.
Pflugers Arch ; 471(7): 961-969, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-30900045

RESUMO

Nitric oxide (NO) is involved in skeletal muscle glucose uptake during exercise and also in the increase in insulin sensitivity after exercise. Given that neuronal nitric oxide synthase (NOS) isoform mu (nNOSµ) is a major isoform of NOS in skeletal muscle, we examined if the increase in skeletal muscle insulin-stimulated glucose uptake 3.5 h following ex vivo contraction of extensor digitorum longus (EDL) is reduced in muscles from nNOSµ+/- and nNOSµ-/- mice compared with nNOSµ+/+ mice. 3.5 h post-contraction/basal, muscles were exposed to saline or insulin (120µU/ml) with or without the presence of the NOS inhibitor NG-monomethyl-L-arginine (L-NMMA) during the last 30 min and glucose uptake was determined by radioactive tracers. Skeletal muscle insulin-stimulated glucose uptake from nNOSµ+/+, nNOSµ+/-, and nNOSµ-/- mice increased approximately twofold 3.5 h following ex vivo contraction when compared to rest. L-NMMA significantly attenuated this increase in muscle insulin-stimulated glucose uptake by around 50%, irrespective of genotype. Low levels of NOS activity were detected in muscles from nNOSµ-/- mice. In conclusion, NO mediates increases in mouse skeletal muscle insulin response following ex vivo contraction independently of nNOSµ.


Assuntos
Glucose/metabolismo , Contração Muscular/fisiologia , Neurônios/metabolismo , Óxido Nítrico Sintase Tipo I/metabolismo , Animais , Transporte Biológico/efeitos dos fármacos , Transporte Biológico/fisiologia , Inibidores Enzimáticos/farmacologia , Insulina/metabolismo , Resistência à Insulina/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Contração Muscular/efeitos dos fármacos , Músculo Esquelético/efeitos dos fármacos , Músculo Esquelético/metabolismo , Neurônios/efeitos dos fármacos , Óxido Nítrico/metabolismo , Condicionamento Físico Animal/métodos , ômega-N-Metilarginina/metabolismo
12.
J Appl Physiol (1985) ; 126(1): 239-245, 2019 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-30236052

RESUMO

Skeletal muscle contraction increases glucose uptake via an insulin-independent mechanism. Signaling pathways arising from mechanical strain are activated during muscle contractions, and mechanical strain in the form of passive stretching stimulates glucose uptake. However, the exact mechanisms regulating stretch-stimulated glucose uptake are not known. Since nitric oxide synthase (NOS) has been implicated in the regulation of glucose uptake during ex vivo and in situ muscle contractions and during exercise, and NO is increased with stretch, we examined whether the increase in muscle glucose uptake during stretching involves NOS. We passively stretched isolated extensor digitorum longus muscles (15 min at ~100-130 mN) from control mice and mice lacking either neuronal NOSµ (nNOSµ) or endothelial NOS (eNOS) isoforms, as well as used pharmacological inhibitors of NOS. Stretch significantly increased muscle glucose uptake appoximately twofold ( P < 0.05), and this was unaffected by the presence of the NOS inhibitors NG-monomethyl-l-arginine (100 µM) or NG-nitro-l-arginine methyl ester (100 µM). Similarly, stretch-stimulated glucose uptake was not attenuated by deletion of either eNOS or nNOSµ isoforms. Furthermore, stretching failed to increase skeletal muscle NOS enzymatic activity above resting levels. These data clearly demonstrate that stretch-stimulated skeletal muscle glucose uptake is not dependent on NOS. NEW & NOTEWORTHY Passive stretching is known to activate muscle glucose uptake through mechanisms that partially overlap with contraction. We report that genetic knockout of endothelial nitric oxide synthase (NOS) or neuronal NOS or pharmacological NOS inhibition does not affect stretch-stimulated glucose uptake. Passive stretch failed to increase NOS activity above resting levels. This information is important for the study of signaling pathways that regulate stretch-stimulated glucose uptake and indicate that NOS should be excluded as a potential signaling factor in this regard.


Assuntos
Glucose/metabolismo , Exercícios de Alongamento Muscular , Músculo Esquelético/metabolismo , Óxido Nítrico Sintase/metabolismo , Animais , Feminino , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout
13.
J Physiol ; 597(1): 121-136, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30406963

RESUMO

KEY POINTS: A paternal high-fat diet/obesity before mating can negatively influence the metabolism of offspring. Exercise only early in life has a remarkable effect with respect to reprogramming adult rat offspring exposed to detrimental insults before conception. Exercise only early in life normalized adult whole body and muscle insulin resistance as a result of having a high-fat fed/obese father. Unlike the effects on the muscle, early exercise did not normalize the reduced adult pancreatic beta cell mass as a result of having a high-fat fed/obese father. Early-life exercise training may be able to reprogram an individual whose father was obese, inducing long-lasting beneficial effects on health. ABSTRACT: A paternal high-fat diet (HFD) impairs female rat offspring glucose tolerance, pancreatic morphology and insulin secretion. We examined whether only 4 weeks of exercise early in life could reprogram these negative effects. Male Sprague-Dawley rats consumed a HFD for 10 weeks before mating with chow-fed dams. Female offspring remained sedentary or performed moderate intensity treadmill exercise (5 days week-1 , 60 min day-1 , 20 m min-1 ) from 5 to 9 weeks of age. Paternal HFD impaired (P < 0.05) adult offspring whole body insulin sensitivity (i.p. insulin sensitivity test), as well as skeletal muscle ex vivo insulin sensitivity and TBC1D4 phosphorylation. It also lowered ß-cell mass and reduced in vivo insulin secretion in response to an i.p. glucose tolerance test. Early-life exercise in offspring reprogrammed the negative effects of a paternal HFD on whole body insulin sensitivity, skeletal muscle ex vivo insulin-stimulated glucose uptake and TBC1D4 phosphorylation and also increased glucose transporter 4 protein. However, early exercise did not normalize the reduced pancreatic ß-cell mass or insulin secretion. In conclusion, only 4 weeks of exercise early in life in female rat offspring reprograms reductions in insulin sensitivity in adulthood caused by a paternal HFD without affecting pancreatic ß-cell mass or insulin secretion.


Assuntos
Dieta Hiperlipídica , Pai , Resistência à Insulina , Músculo Esquelético/fisiologia , Condicionamento Físico Animal , Animais , Feminino , Proteínas Ativadoras de GTPase/metabolismo , Teste de Tolerância a Glucose , Transportador de Glucose Tipo 4/metabolismo , Masculino , Obesidade , Pâncreas/patologia , Ratos Sprague-Dawley
14.
Am J Physiol Regul Integr Comp Physiol ; 315(5): R1003-R1016, 2018 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-30183338

RESUMO

It remains unclear whether high-intensity interval exercise (HIIE) elicits distinct molecular responses to traditional endurance exercise relative to the total work performed. We aimed to investigate the influence of exercise intensity on acute perturbations to skeletal muscle mitochondrial function (respiration and reactive oxygen species) and metabolic and redox signaling responses. In a randomized, repeated measures crossover design, eight recreationally active individuals (24 ± 5 yr; V̇o2peak: 48 ± 11 ml·kg-1·min-1) undertook continuous moderate-intensity [CMIE: 30 min, 50% peak power output (PPO)], high-intensity interval (HIIE: 5 × 4 min, 75% PPO, work matched to CMIE), and low-volume sprint interval (SIE: 4 × 30 s) exercise, ≥7 days apart. Each session included muscle biopsies at baseline, immediately, and 3 h postexercise for high-resolution mitochondrial respirometry ( Jo2) and H2O2 emission ( Jh2o2) and gene and protein expression analysis. Immediately postexercise and irrespective of protocol, Jo2 increased during complex I + II leak/state 4 respiration but Jh2o2 decreased ( P < 0.05). AMP-activated protein kinase and acetyl co-A carboxylase phosphorylation increased ~1.5 and 2.5-fold respectively, while thioredoxin-reductase-1 protein abundance was ~35% lower after CMIE vs. SIE ( P < 0.05). At 3 h postexercise, regardless of protocol, Jo2 was lower during both ADP-stimulated state 3 OXPHOS and uncoupled respiration ( P < 0.05) but Jh2o2 trended higher ( P < 0.08) and PPARGC1A mRNA increased ~13-fold, and peroxiredoxin-1 protein decreased ~35%. In conclusion, intermittent exercise performed at high intensities has similar dynamic effects on muscle mitochondrial function compared with endurance exercise, irrespective of whether total workload is matched. This suggests exercise prescription can accommodate individual preferences while generating comparable molecular signals known to promote beneficial metabolic adaptations.


Assuntos
Exercício Físico/fisiologia , Peróxido de Hidrogênio/metabolismo , Mitocôndrias/metabolismo , Músculo Esquelético/metabolismo , Adaptação Fisiológica/fisiologia , Adulto , Terapia por Exercício/métodos , Feminino , Treinamento Intervalado de Alta Intensidade/métodos , Humanos , Masculino , Consumo de Oxigênio/fisiologia , Adulto Jovem
15.
PLoS One ; 12(11): e0188421, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29161316

RESUMO

Obesity, sedentary lifestyle and aging are associated with mitochondrial dysfunction and impaired insulin sensitivity. Acute exercise increases insulin sensitivity in skeletal muscle; however, whether mitochondria are involved in these processes remains unclear. The aim of this study was to investigate the effects of insulin stimulation at rest and after acute exercise on skeletal muscle mitochondrial respiratory function (JO2) and hydrogen peroxide emission (JH2O2), and the associations with insulin sensitivity in obese, sedentary men. Nine men (means ± SD: 57 ± 6 years; BMI 33 ± 5 kg.m2) underwent hyperinsulinemic-euglycemic clamps in two separate trials 1-3 weeks apart: one under resting conditions, and another 1 hour after high-intensity exercise (4x4 min cycling at 95% HRpeak). Muscle biopsies were obtained at baseline, and pre/post clamp to measure JO2 with high-resolution respirometry and JH2O2 via Amplex UltraRed from permeabilized fibers. Post-exercise, both JO2 and JH2O2 during ADP stimulated state-3/OXPHOS respiration were lower compared to baseline (P<0.05), but not after subsequent insulin stimulation. JH2O2 was lower post-exercise and after subsequent insulin stimulation compared to insulin stimulation in the rest trial during succinate supported state-4/leak respiration (P<0.05). In contrast, JH2O2 increased during complex-I supported leak respiration with insulin after exercise compared with resting conditions (P<0.05). Resting insulin sensitivity and JH2O2 during complex-I leak respiration were positively correlated (r = 0.77, P<0.05). We conclude that in obese, older and sedentary men, acute exercise modifies skeletal muscle mitochondrial respiration and H2O2 emission responses to hyperinsulinemia in a respiratory state-specific manner, which may have implications for metabolic diseases involving insulin resistance.


Assuntos
Terapia por Exercício , Peróxido de Hidrogênio/metabolismo , Hiperinsulinismo/metabolismo , Mitocôndrias Musculares/metabolismo , Obesidade/metabolismo , Complexo I de Transporte de Elétrons/metabolismo , Técnica Clamp de Glucose , Humanos , Hiperinsulinismo/fisiopatologia , Hiperinsulinismo/terapia , Insulina/metabolismo , Resistência à Insulina/fisiologia , Masculino , Pessoa de Meia-Idade , Mitocôndrias Musculares/fisiologia , Obesidade/fisiopatologia , Obesidade/terapia , Respiração
16.
J Physiol ; 595(24): 7427-7439, 2017 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-29071734

RESUMO

KEY POINTS: People with insulin resistance or type 2 diabetes can substantially increase their skeletal muscle glucose uptake during exercise and insulin sensitivity after exercise. Skeletal muscle nitric oxide (NO) is important for glucose uptake during exercise, although how prior exercise increases insulin sensitivity is unclear. In the present study, we examined whether NO is necessary for normal increases in skeletal muscle insulin sensitivity after contraction ex vivo in mouse muscle. The present study uncovers, for the first time, a novel role for NO in the insulin sensitizing effects of ex vivo contraction, which is independent of blood flow. ABSTRACT: The factors regulating the increase in skeletal muscle insulin sensitivity after exercise are unclear. We examined whether nitric oxide (NO) is required for the increase in insulin sensitivity after ex vivo contractions. Isolated C57BL/6J mouse EDL muscles were contracted for 10 min or remained at rest (basal) with or without the NO synthase (NOS) inhibition (NG -monomethyl-l-arginine; l-NMMA; 100 µm). Then, 3.5 h post contraction/basal, muscles were exposed to saline or insulin (120 µU ml-1 ) with or without l-NMMA during the last 30 min. l-NMMA had no effect on basal skeletal muscle glucose uptake. The increase in muscle glucose uptake with insulin (57%) was significantly (P < 0.05) greater after prior contraction (140% increase). NOS inhibition during the contractions had no effect on this insulin-sensitizing effect of contraction, whereas NOS inhibition during insulin prevented the increase in skeletal muscle insulin sensitivity post-contraction. Soluble guanylate cyclase inhibition, protein kinase G (PKG) inhibition or cyclic nucleotide phosphodiesterase inhibition each had no effect on the insulin-sensitizing effect of prior contraction. In conclusion, NO is required for increases in insulin sensitivity several hours after contraction of mouse skeletal muscle via a cGMP/PKG independent pathway.


Assuntos
Insulina/metabolismo , Contração Muscular , Fibras Musculares Esqueléticas/metabolismo , Óxido Nítrico/metabolismo , 2',3'-Nucleotídeo Cíclico Fosfodiesterases/antagonistas & inibidores , Animais , Células Cultivadas , Proteínas Quinases Dependentes de GMP Cíclico/antagonistas & inibidores , Glucose/metabolismo , Guanilato Ciclase/antagonistas & inibidores , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Fibras Musculares Esqueléticas/efeitos dos fármacos , Fibras Musculares Esqueléticas/fisiologia , Óxido Nítrico Sintase/antagonistas & inibidores , Transdução de Sinais , ômega-N-Metilarginina/farmacologia
17.
Med Sci Sports Exerc ; 49(9): 1899-1910, 2017 09.
Artigo em Inglês | MEDLINE | ID: mdl-28398947

RESUMO

PURPOSE: This study aimed to determine the effect of preexercise metabolic acidosis and alkalosis on power output (PO) and aerobic and anaerobic energy expenditure during a 4-km cycling time trial (TT). METHODS: Eleven recreationally trained cyclists (V˙O2peak 54.1 ± 9.3 mL·kg·min) performed a 4-km TT 100 min after ingesting in a double-blind matter 0.15 g·kg of body mass of ammonium chloride (NH4Cl, acidosis), 0.3 g·kg of sodium bicarbonate (NaHCO3, alkalosis), or 0.15 g·kg of CaCO3 (placebo). A preliminary study (n = 7) was conducted to establish the optimal doses to promote the desirable preexercise blood pH alterations without gastrointestinal distress. Data for PO, aerobic and anaerobic energy expenditure, and blood and respiratory parameters were averaged for each 1 km and compared between conditions using two-way repeated-measures ANOVA (condition and distance factors). Gastrointestinal discomfort was analyzed qualitatively. RESULTS: Compared with placebo (pH 7.37 ± 0.02, [HCO3]: 27.5 ± 2.6 mmol·L), the NaHCO3 ingestion resulted in a preexercise blood alkalosis (pH +0.06 ± 0.04, [HCO3]: +4.4 ± 2.0 mmol·L, P < 0.05), whereas NH4Cl resulted in a blood acidosis (pH -0.05 ± 0.03, [HCO3]: -4.8 ± 2.1 mmol·L, P < 0.05). Anaerobic energy expenditure rate and PO were reduced throughout the trial in NH4Cl compared with placebo and NaHCO3, resulting in a lower total anaerobic work and impaired performance (P < 0.05). Plasma lactate, V˙CO2, and end-tidal CO2 partial pressure were lower and the V˙E/V˙CO2 higher throughout the trial in NH4Cl compared with placebo and NaHCO3 (P < 0.05). There was no difference between NaHCO3 and placebo for any of these variables (P > 0.05). Minimal gastrointestinal distress was noted in all conditions. CONCLUSION: Preexercise acidosis, but not alkalosis, affects anaerobic metabolism and PO during a 4-km cycling TT.


Assuntos
Acidose/fisiopatologia , Alcalose/fisiopatologia , Desempenho Atlético/fisiologia , Ciclismo/fisiologia , Metabolismo Energético/fisiologia , Acidose/complicações , Adulto , Alcalose/complicações , Cloreto de Alumínio , Compostos de Alumínio/sangue , Cloretos/sangue , Método Duplo-Cego , Gastroenteropatias/etiologia , Humanos , Concentração de Íons de Hidrogênio , Ácido Láctico/sangue , Masculino , Bicarbonato de Sódio/sangue , Fatores de Tempo
18.
Diabetes ; 66(6): 1501-1510, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-28292969

RESUMO

Insulin resistance is a major health risk, and although exercise clearly improves skeletal muscle insulin sensitivity, the mechanisms are unclear. Here we show that initiation of a euglycemic-hyperinsulinemic clamp 4 h after single-legged exercise in humans increased microvascular perfusion (determined by contrast-enhanced ultrasound) by 65% in the exercised leg and 25% in the rested leg (P < 0.05) and that leg glucose uptake increased 50% more (P < 0.05) in the exercised leg than in the rested leg. Importantly, infusion of the nitric oxide synthase inhibitor l-NG-monomethyl-l-arginine acetate (l-NMMA) into both femoral arteries reversed the insulin-stimulated increase in microvascular perfusion in both legs and abrogated the greater glucose uptake in the exercised compared with the rested leg. Skeletal muscle phosphorylation of TBC1D4 Ser318 and Ser704 and glycogen synthase activity were greater in the exercised leg before insulin and increased similarly in both legs during the clamp, and l-NMMA had no effect on these insulin-stimulated signaling pathways. Therefore, acute exercise increases insulin sensitivity of muscle by a coordinated increase in insulin-stimulated microvascular perfusion and molecular signaling at the level of TBC1D4 and glycogen synthase in muscle. This secures improved glucose delivery on the one hand and increased ability to take up and dispose of the delivered glucose on the other hand.


Assuntos
Exercício Físico/fisiologia , Glucose/metabolismo , Resistência à Insulina , Microvasos/fisiologia , Músculo Esquelético/metabolismo , Adulto , Meios de Contraste , Inibidores Enzimáticos/farmacologia , Artéria Femoral , Proteínas Ativadoras de GTPase/metabolismo , Técnica Clamp de Glucose , Glicogênio Sintase/metabolismo , Voluntários Saudáveis , Humanos , Hipoglicemiantes/farmacologia , Insulina/farmacologia , Perna (Membro) , Masculino , Microvasos/efeitos dos fármacos , Músculo Esquelético/irrigação sanguínea , Músculo Esquelético/diagnóstico por imagem , Músculo Esquelético/efeitos dos fármacos , Óxido Nítrico Sintase/antagonistas & inibidores , Fosforilação , Transdução de Sinais , Ultrassonografia , Adulto Jovem , ômega-N-Metilarginina/farmacologia
19.
Neurotherapeutics ; 14(2): 429-446, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-27921261

RESUMO

Duchenne muscular dystrophy arises from the loss of dystrophin and is characterized by calcium dysregulation, muscular atrophy, and metabolic dysfunction. The secondary reduction of neuronal nitric oxide synthase (nNOS) from the sarcolemma reduces NO production and bioavailability. As NO modulates glucose uptake, metabolism, and mitochondrial bioenergetics, we investigated whether an 8-week nitrate supplementation regimen could overcome metabolic dysfunction in the mdx mouse. Dystrophin-positive control (C57BL/10) and dystrophin-deficient mdx mice were supplemented with sodium nitrate (85 mg/l) in drinking water. Following the supplementation period, extensor digitorum longus and soleus were excised and radioactive glucose uptake was measured at rest (basal) and during contraction. Gastrocnemius was excised and mitochondrial respiration was measured using the Oroboros Oxygraph. Tibialis anterior was analyzed immunohistochemically for the presence of dystrophin, nNOS, nitrotyrosine, IgG and CD45+ cells, and histologically to assess areas of damage and regeneration. Glucose uptake in the basal and contracting states was normal in unsupplemented mdx muscles but was reduced following nitrate supplementation in mdx muscles only. The mitochondrial utilization of substrates was also impaired in mdx gastrocnemius during phosphorylating and maximal uncoupled respiration, and nitrate could not improve respiration in mdx muscle. Although nitrate supplementation reduced mitochondrial hydrogen peroxide emission, it induced mitochondrial uncoupling in red gastrocnemius, increased muscle fiber peroxynitrite (nitrotyrosine), and promoted skeletal muscle damage. Our novel data suggest that despite lower nNOS protein expression and likely lower NO production in mdx muscle, enhancing NO production with nitrate supplementation in these mice has detrimental effects on skeletal muscle. This may have important relevance for those with DMD.


Assuntos
Músculo Esquelético/metabolismo , Distrofia Muscular de Duchenne/metabolismo , Nitratos/administração & dosagem , Óxido Nítrico Sintase Tipo I/deficiência , Animais , Distrofina/deficiência , Transporte de Elétrons , Glucose/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos mdx , Mitocôndrias/fisiologia , Espécies Reativas de Oxigênio
20.
Mol Metab ; 5(11): 1083-1091, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27818934

RESUMO

OBJECTIVE: The development of skeletal muscle insulin resistance is an early physiological defect, yet the intracellular mechanisms accounting for this metabolic defect remained unresolved. Here, we have examined the role of glucose-6-phosphate dehydrogenase (G6PDH) activity in the pathogenesis of insulin resistance in skeletal muscle. METHODS: Multiple mouse disease states exhibiting insulin resistance and glucose intolerance, as well as obese humans defined as insulin-sensitive, insulin-resistant, or pre-diabetic, were examined. RESULTS: We identified increased glucose-6-phosphate dehydrogenase (G6PDH) activity as a common intracellular adaptation that occurs in parallel with the induction of insulin resistance in skeletal muscle and is present across animal and human disease states with an underlying pathology of insulin resistance and glucose intolerance. We observed an inverse association between G6PDH activity and nitric oxide synthase (NOS) activity and show that increasing NOS activity via the skeletal muscle specific neuronal (n)NOSµ partially suppresses G6PDH activity in skeletal muscle cells. Furthermore, attenuation of G6PDH activity in skeletal muscle cells via (a) increased nNOSµ/NOS activity, (b) pharmacological G6PDH inhibition, or (c) genetic G6PDH inhibition increases insulin-independent glucose uptake. CONCLUSIONS: We have identified a novel, previously unrecognized role for G6PDH in the regulation of skeletal muscle glucose metabolism.


Assuntos
Glucose/metabolismo , Glucosefosfato Desidrogenase/metabolismo , Músculo Esquelético/metabolismo , Animais , Glucose-6-Fosfato , Humanos , Insulina , Resistência à Insulina , Camundongos , Fibras Musculares Esqueléticas , Óxido Nítrico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA