Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 242
Filtrar
1.
Cell Rep Methods ; 4(5): 100764, 2024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38714198

RESUMO

Co-assembling enzymes with nanoparticles (NPs) into nanoclusters allows them to access channeling, a highly efficient form of multienzyme catalysis. Using pyruvate kinase (PykA) and lactate dehydrogenase (LDH) to convert phosphoenolpyruvic acid to lactic acid with semiconductor quantum dots (QDs) confirms how enzyme cluster formation dictates the rate of coupled catalytic flux (kflux) across a series of differentially sized/shaped QDs and 2D nanoplatelets (NPLs). Enzyme kinetics and coupled flux were used to demonstrate that by mixing different NP systems into clusters, a >10× improvement in kflux is observed relative to free enzymes, which is also ≥2× greater than enhancement on individual NPs. Cluster formation was characterized with gel electrophoresis and transmission electron microscopy (TEM) imaging. The generalizability of this mixed-NP approach to improving flux is confirmed by application to a seven-enzyme system. This represents a powerful approach for accessing channeling with almost any choice of enzymes constituting a multienzyme cascade.


Assuntos
L-Lactato Desidrogenase , Ácido Láctico , Nanopartículas , Fosfoenolpiruvato , Piruvato Quinase , L-Lactato Desidrogenase/metabolismo , L-Lactato Desidrogenase/química , Ácido Láctico/metabolismo , Ácido Láctico/química , Piruvato Quinase/metabolismo , Piruvato Quinase/química , Nanopartículas/química , Fosfoenolpiruvato/metabolismo , Pontos Quânticos/química , Cinética
2.
ACS Appl Mater Interfaces ; 16(17): 22334-22343, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38635042

RESUMO

The number of applications of self-assembled deoxyribonucleic acid (DNA) origami nanoparticles (DNA NPs) has increased drastically, following the development of a variety of single-stranded template DNA (ssDNA) that can serve as the scaffold strand. In addition to viral genomes, such as M13 bacteriophage and lambda DNAs, enzymatically produced ssDNA from various template sources is rapidly gaining traction and being applied as the scaffold for DNA NP preparation. However, separating fully formed DNA NPs that have custom scaffolds from crude assembly mixes is often a multistep process of first separating the ssDNA scaffold from its enzymatic amplification process and then isolating the assembled DNA NPs from excess precursor strands. Only then is the DNA NP sample ready for downstream characterization and application. In this work, we highlight a single-step purification of custom sequence- or M13-derived scaffold-based DNA NPs using photocleavable biotin tethers. The process only requires an inexpensive ultraviolet (UV) lamp, and DNA NPs with up to 90% yield and high purity are obtained. We show the versatility of the process in separating two multihelix bundle structures and a wireframe polyhedral architecture.


Assuntos
Biotina , DNA de Cadeia Simples , Nanopartículas , Biotina/química , Nanopartículas/química , DNA de Cadeia Simples/química , DNA de Cadeia Simples/isolamento & purificação , Bacteriófago M13/química , Bacteriófago M13/genética , DNA/química , DNA/isolamento & purificação , Raios Ultravioleta
3.
Commun Chem ; 7(1): 49, 2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-38424154

RESUMO

Peptide-based liquid-liquid phase separated domains, or coacervates, are a biomaterial gaining new interest due to their exciting potential in fields ranging from biosensing to drug delivery. In this study, we demonstrate that coacervates provide a simple and biocompatible medium to improve nucleic acid biosensors through the sequestration of both the biosensor and target strands within the coacervate, thereby increasing their local concentration. Using the well-established polyarginine (R9) - ATP coacervate system and an energy transfer-based DNA molecular beacon we observed three key improvements: i) a greater than 20-fold reduction of the limit of detection within coacervates when compared to control buffer solutions; ii) an increase in the kinetics, equilibrium was reached more than 4-times faster in coacervates; and iii) enhancement in the dye fluorescent quantum yields within the coacervates, resulting in greater signal-to-noise. The observed benefits translate into coacervates greatly improving bioassay functionality.

4.
J Chem Phys ; 160(3)2024 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-38230810

RESUMO

Scaffolded molecular networks are important building blocks in biological pigment-protein complexes, and DNA nanotechnology allows analogous systems to be designed and synthesized. System-environment interactions in these systems are responsible for important processes, such as the dissipation of heat and quantum information. This study investigates the role of nanoscale molecular parameters in tuning these vibronic system-environment dynamics. Here, genetic algorithm methods are used to obtain nanoscale parameters for a DNA-scaffolded chromophore network based on comparisons between its calculated and measured optical spectra. These parameters include the positions, orientations, and energy level characteristics within the network. This information is then used to compute the dynamics, including the vibronic population dynamics and system-environment heat currents, using the hierarchical equations of motion. The dissipation of quantum information is identified by the system's transient change in entropy, which is proportional to the heat currents according to the second law of thermodynamics. These results indicate that the dissipation of quantum information is highly dependent on the particular nanoscale characteristics of the molecular network, which is a necessary first step before gleaning the systematic optimization rules. Subsequently, the I-concurrence dynamics are calculated to understand the evolution of the vibronic system's quantum entanglement, which are found to be long-lived compared to these system-bath dissipation processes.

5.
ACS Omega ; 9(3): 3894-3904, 2024 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-38284012

RESUMO

Evolution has gifted enzymes with the ability to synthesize an abundance of small molecules with incredible control over efficiency and selectivity. Central to an enzyme's role is the ability to selectively catalyze reactions in the milieu of chemicals within a cell. However, for chemists it is often desirable to extend the substrate scope of reactions to produce analogue(s) of a desired product and therefore some degree of enzyme promiscuity is often desired. Herein, we examine this dichotomy in the context of the violacein biosynthetic pathway. Importantly, we chose to interrogate this pathway with tryptophan analogues in vitro, to mitigate possible interference from cellular components and endogenous tryptophan. A total of nine tryptophan analogues were screened for by analyzing the substrate promiscuity of the initial enzyme, VioA, and compared to the substrate tryptophan. These results suggested that for VioA, substitutions at either the 2- or 4-position of tryptophan were not viable. The seven analogues that showed successful substrate conversion by VioA were then applied to the five enzyme cascade (VioABEDC) for the production of violacein, where l-tryptophan and 6-fluoro-l-tryptophan were the only substrates which were successfully converted to the corresponding violacein derivative(s). However, many of the other tryptophan analogues did convert to various substituted intermediaries. Overall, our results show substrate promiscuity with the initial enzyme, VioA, but much less for the full pathway. This work demonstrates the complexity involved when attempting to analyze substrate analogues within multienzymatic cascades, where each enzyme involved within the cascade possesses its own inherent promiscuity, which must be compatible with the remaining enzymes in the cascade for successful formation of a desired product.

6.
Adv Mater ; 36(5): e2309963, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37944537

RESUMO

Synthetic biology is touted as the next industrial revolution as it promises access to greener biocatalytic syntheses to replace many industrial organic chemistries. Here, it is shown to what synthetic biology can offer in the form of multienzyme cascades for the synthesis of the most basic of new materials-chemicals, including especially designer chemical products and their analogs. Since achieving this is predicated on dramatically expanding the chemical space that enzymes access, such chemistry will probably be undertaken in cell-free or minimalist formats to overcome the inherent toxicity of non-natural substrates to living cells. Laying out relevant aspects that need to be considered in the design of multi-enzymatic cascades for these purposes is begun. Representative multienzymatic cascades are critically reviewed, which have been specifically developed for the synthesis of compounds that have either been made only by traditional organic synthesis along with those cascades utilized for novel compound syntheses. Lastly, an overview of strategies that look toward exploiting bio/nanomaterials for accessing channeling and other nanoscale materials phenomena in vitro to direct novel enzymatic biosynthesis and improve catalytic efficiency is provided. Finally, a perspective on what is needed for this field to develop in the short and long term is presented.


Assuntos
Nanoestruturas , Biocatálise , Catálise
7.
Small ; 20(14): e2303136, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37749947

RESUMO

This work investigates the effect of plasmonic gold nanoparticle (AuNP) size on the rate of thermal release of single-stranded oligonucleotides under femtosecond (fs)-pulsed laser irradiation sources. Contrary to the theoretical predictions that larger AuNPs (50-60 nm diameter) would produce the most solution heating and fastest DNA release, it is found that smaller AuNP diameters (25 nm) lead to faster dsDNA denaturation rates. Controlling for the pulse energy fluence, AuNP concentration, DNA loading density, and the distance from the AuNP surface finds the same result. These results imply that the solution temperature increases around the AuNP during fs laser pulse optical heating may not be the only significant influence on dsDNA denaturation, suggesting that direct energy transfer from the AuNP to the DNA (phonon-phonon coupling), which is increased as AuNPs decrease in size, may play a significant role.


Assuntos
Ouro , Nanopartículas Metálicas , Calefação , Lasers , DNA
8.
ACS Sens ; 9(1): 157-170, 2024 01 26.
Artigo em Inglês | MEDLINE | ID: mdl-38160434

RESUMO

Almost all pathogens, whether viral or bacterial, utilize key proteolytic steps in their pathogenesis. The ability to detect a pathogen's genomic material along with its proteolytic activity represents one approach to identifying the pathogen and providing initial evidence of its viability. Here, we report on a prototype biosensor design assembled around a single semiconductor quantum dot (QD) scaffold that is capable of detecting both nucleic acid sequences and proteolytic activity by using orthogonal energy transfer (ET) processes. The sensor consists of a central QD assembled via peptidyl-PNA linkers with multiple DNA sequences that encode complements to genomic sequences originating from the Ebola, Influenza, and COVID-19 viruses, which we use as surrogate targets. These are hybridized to complement strands labeled with a terbium (Tb) chelate, AlexaFluor647 (AF647), and Cy5.5 dyes, giving rise to two potential FRET cascades: the first includes Tb → QD → AF647 → Cy5.5 (→ = ET step), which is detected in a time-gated modality, and QD → AF647 → Cy5.5, which is detected from direct excitation. The labeled DNA-displaying QD construct is then further assembled with a RuII-modified peptide, which quenches QD photoluminescence by charge transfer and is recognized by a protease to yield the full biosensor. Each of the labeled DNAs and peptides can be ratiometrically assembled to the QD in a controllable manner to tune each of the ET pathways. Addition of a given target DNA displaces its labeled complement on the QD, disrupting that FRET channel, while protease addition disrupts charge transfer quenching of the central QD scaffold and boosts its photoluminescence and FRET relay capabilities. Along with characterizing the ET pathways and verifying biosensing in both individual and multiplexed formats, we also demonstrate the ability of this construct to function in molecular logic and perform Boolean operations; this highlights the construct's ability to discriminate and transduce signals between different inputs or pathogens. The potential application space for such a sensor device is discussed.


Assuntos
Técnicas Biossensoriais , Carbocianinas , Pontos Quânticos , Pontos Quânticos/química , Peptídeo Hidrolases/metabolismo , Transferência Ressonante de Energia de Fluorescência , Peptídeos/química , DNA/química , Endopeptidases/metabolismo
10.
Chem Soc Rev ; 52(22): 7848-7948, 2023 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-37872857

RESUMO

DNA nanotechnology has now enabled the self-assembly of almost any prescribed 3-dimensional nanoscale structure in large numbers and with high fidelity. These structures are also amenable to site-specific modification with a variety of small molecules ranging from drugs to reporter dyes. Beyond obvious application in biotechnology, such DNA structures are being pursued as programmable nanoscale optical breadboards where multiple different/identical fluorophores can be positioned with sub-nanometer resolution in a manner designed to allow them to engage in multistep excitonic energy-transfer (ET) via Förster resonance energy transfer (FRET) or other related processes. Not only is the ability to create such complex optical structures unique, more importantly, the ability to rapidly redesign and prototype almost all structural and optical analogues in a massively parallel format allows for deep insight into the underlying photophysical processes. Dynamic DNA structures further provide the unparalleled capability to reconfigure a DNA scaffold on the fly in situ and thus switch between ET pathways within a given assembly, actively change its properties, and even repeatedly toggle between two states such as on/off. Here, we review progress in developing these composite materials for potential applications that include artificial light harvesting, smart sensors, nanoactuators, optical barcoding, bioprobes, cryptography, computing, charge conversion, and theranostics to even new forms of optical data storage. Along with an introduction into the DNA scaffolding itself, the diverse fluorophores utilized in these structures, their incorporation chemistry, and the photophysical processes they are designed to exploit, we highlight the evolution of DNA architectures implemented in the pursuit of increased transfer efficiency and the key lessons about ET learned from each iteration. We also focus on recent and growing efforts to exploit DNA as a scaffold for assembling molecular dye aggregates that host delocalized excitons as a test bed for creating excitonic circuits and accessing other quantum-like optical phenomena. We conclude with an outlook on what is still required to transition these materials from a research pursuit to application specific prototypes and beyond.


Assuntos
Transferência Ressonante de Energia de Fluorescência , Pontos Quânticos , Pontos Quânticos/química , Biotecnologia , Corantes Fluorescentes/química , DNA/química
11.
Nanoscale ; 15(23): 10159-10175, 2023 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-37272342

RESUMO

Enzyme activity can be many times enhanced in configurations where they are displayed on a nanoparticle (NP) and this same format sometimes even provides access to channeling phenomena within multienzyme cascades. Here, we demonstrate that such enhancement phenomena can be expanded to enzymatic cofactor recycling along with the coupled enzymatic processes that they are associated with. We begin by showing that the efficiency of glucose driven reduction of nicotinamide adenine dinucleotide (NAD+ → NADH) by glucose dehydrogenase (GDH) is enhanced ca. 5-fold when the enzyme is displayed on nanocrystalline semiconductor quantum dots (QDs) which are utilized as prototypical NP materials in our experimental assays. Coupling this enzymatic step with NADH-dependent lactate dehydrogenase (LDH) conversion of lactate to pyruvate also increases the latter's rate by a similar amount when both enzymes were jointly incorporated into self-assembled QD-based nanoclusters. Detailed agarose gel mobility assays and transmission electron microscopy imaging studies confirm that both tetrameric enzymes assemble to and crosslink the QDs into structured nanoclusters via their multiple-pendant terminal (His)6 sequences. Unexpectedly, control experiments utilizing blocking peptides to prevent enzyme-crosslinking of QDs resulted in even further enhancement of individual enzyme on-QD kinetic activity. This activity was also probed revealing that 200-fold excess peptide/QD addition enhanced individual GDH and LDH on-QD kcat a further 2- and 1.5×, respectively, above that seen just by QD display to a maximum of ∼10-fold GDH enhancement. The potential implications for how these enzyme kinetics-enhancing phenomena can be applied to single and multi-enzyme cascaded reactions in the context of cofactor recycling and cell-free synthetic biology are discussed.


Assuntos
Nanopartículas , Pontos Quânticos , NAD/química , Cinética , Nanopartículas/química , Pontos Quânticos/química , L-Lactato Desidrogenase/metabolismo , Peptídeos/química
12.
ACS Appl Mater Interfaces ; 15(23): 27759-27773, 2023 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-37267624

RESUMO

Functional DNA origami nanoparticles (DNA-NPs) are used as nanocarriers in a variety of biomedical applications including targeted drug delivery and vaccine development. DNA-NPs can be designed into a broad range of nanoarchitectures in one, two, and three dimensions with high structural fidelity. Moreover, the addressability of the DNA-NPs enables the precise organization of functional moieties, which improves targeting, actuation, and stability. DNA-NPs are usually functionalized via chemically modified staple strands, which can be further conjugated with additional polymers and proteins for the intended application. Although this method of functionalization is extremely efficient to control the stoichiometry and organization of functional moieties, fewer than half of the permissible sites are accessible through staple modifications. In addition, DNA-NP functionalization rapidly becomes expensive when a high number of functionalizations such as fluorophores for tracking and chemical modifications for stability that do not require spatially precise organization are used. To facilitate the synthesis of functional DNA-NPs, we propose a simple and robust strategy based on an asymmetric polymerase chain reaction (aPCR) protocol that allows direct synthesis of custom-length scaffolds that can be randomly modified and/or precisely modified via sequence design. We demonstrated the potential of our strategy by producing and characterizing heavily modified scaffold strands with amine groups for dye functionalization, phosphorothioate bonds for stability, and biotin for surface immobilization. We further validated our sequence design approach for precise conjugation of biomolecules by synthetizing scaffolds including binding loops and aptamer sequences that can be used for direct hybridization of nucleic acid tagged biomolecules or binding of protein targets.


Assuntos
Nanopartículas , Nanoestruturas , DNA/química , Hibridização de Ácido Nucleico , Oligonucleotídeos , Nanoestruturas/química , Conformação de Ácido Nucleico , Nanotecnologia/métodos
13.
Nat Commun ; 14(1): 1757, 2023 03 30.
Artigo em Inglês | MEDLINE | ID: mdl-36990995

RESUMO

Access to efficient enzymatic channeling is desired for improving all manner of designer biocatalysis. We demonstrate that enzymes constituting a multistep cascade can self-assemble with nanoparticle scaffolds into nanoclusters that access substrate channeling and improve catalytic flux by orders of magnitude. Utilizing saccharification and glycolytic enzymes with quantum dots (QDs) as a model system, nanoclustered-cascades incorporating from 4 to 10 enzymatic steps are prototyped. Along with confirming channeling using classical experiments, its efficiency is enhanced several fold more by optimizing enzymatic stoichiometry with numerical simulations, switching from spherical QDs to 2-D planar nanoplatelets, and by ordering the enzyme assembly. Detailed analyses characterize assembly formation and clarify structure-function properties. For extended cascades with unfavorable kinetics, channeled activity is maintained by splitting at a critical step, purifying end-product from the upstream sub-cascade, and feeding it as a concentrated substrate to the downstream sub-cascade. Generalized applicability is verified by extending to assemblies incorporating other hard and soft nanoparticles. Such self-assembled biocatalytic nanoclusters offer many benefits towards enabling minimalist cell-free synthetic biology.


Assuntos
Nanopartículas , Pontos Quânticos , Nanopartículas/química , Pontos Quânticos/química , Biocatálise , Catálise , Cinética
14.
Commun Biol ; 6(1): 308, 2023 03 23.
Artigo em Inglês | MEDLINE | ID: mdl-36959304

RESUMO

Effective and safe vaccines are invaluable tools in the arsenal to fight infectious diseases. The rapid spreading of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) responsible for the coronavirus disease 2019 pandemic has highlighted the need to develop methods for rapid and efficient vaccine development. DNA origami nanoparticles (DNA-NPs) presenting multiple antigens in prescribed nanoscale patterns have recently emerged as a safe, efficient, and easily scalable alternative for rational design of vaccines. Here, we are leveraging the unique properties of these DNA-NPs and demonstrate that precisely patterning ten copies of a reconstituted trimer of the receptor binding domain (RBD) of SARS-CoV-2 along with CpG adjuvants on the DNA-NPs is able to elicit a robust protective immunity against SARS-CoV-2 in a mouse model. Our results demonstrate the potential of our DNA-NP-based approach for developing safe and effective nanovaccines against infectious diseases with prolonged antibody response and effective protection in the context of a viral challenge.


Assuntos
COVID-19 , Vacinas Virais , Animais , Camundongos , SARS-CoV-2 , Vacinas Virais/genética , Vacinas contra COVID-19 , Formação de Anticorpos
15.
Nanoscale ; 15(6): 2516-2528, 2023 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-36722508

RESUMO

The physical and chemical properties of synthetic DNA have transformed this prototypical biopolymer into a versatile nanoscale building block material in the form of DNA nanotechnology. DNA nanotechnology is, in turn, providing unprecedented precision bioengineering for numerous biomedical applications at the nanoscale including next generation immune-modulatory materials, vectors for targeted delivery of nucleic acids, drugs, and contrast agents, intelligent sensors for diagnostics, and theranostics, which combines several of these functionalities into a single construct. Assembling a DNA nanostructure to be programmed with a specific number of targeting moieties on its surface to imbue it with concomitant cellular uptake and retention capabilities along with carrying a specific therapeutic dose is now eminently feasible due to the extraordinary self-assembling properties and high formation efficiency of these materials. However, what remains still only partially addressed is how exactly this class of materials is taken up into cells in both the native state and as targeted or chemically facilitated, along with how stable they are inside the cellular cytosol and other cellular organelles. In this minireview, we summarize what is currently reported in the literature about how (i) DNA nanostructures are taken up into cells along with (ii) what is understood about their subsequent stability in the complex multi-organelle environment of the cellular milieu along with biological fluids in general. This allows us to highlight the many challenges that still remain to overcome in understanding DNA nanostructure-cellular interactions in order to fully translate these exciting new materials.


Assuntos
Nanoestruturas , Estudos Transversais , Nanoestruturas/química , Nanotecnologia , DNA/química , Preparações Farmacêuticas
16.
Nanoscale ; 15(7): 3284-3299, 2023 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-36723027

RESUMO

Understanding and controlling exciton coupling in dye aggregates has become a greater focus as potential applications such as coherent exciton devices, nanophotonics, and biosensing have been proposed. DNA nanostructure templates allow for a powerful modular approach. Using DNA Holliday junction (HJ) templates variations of dye combinations and precision dye positions can be rapidly assayed, as well as creating aggregates of dyes that could not be prepared (either due to excess or lack of solubility) through alternative means. Indodicarbocyanines (Cy5) have been studied in coupled systems due to their large transition dipole moment, which contributes to strong coupling. Cy5-R dyes were recently prepared by chemically modifying the 5,5'-substituents of indole rings, resulting in varying dye hydrophobicity/hydrophilicity, steric considerations, and electron-donating/withdrawing character. We utilized Cy5-R dyes to examine the formation and properties of 30 unique DNA templated homodimers. We find that in our system the sterics of Cy5-R dyes play the determining factor in orientation and coupling strength of dimers, with coupling strengths ranging from 50-138 meV. The hydrophobic properties of the Cy5-R modify the percentage of dimers formed, and have a secondary role in determining the packing characteristics of the dimers when sterics are equivalent. Similar to other reports, we find that positioning of the Cy5-R within the HJ template can favor particular dimer interactions, specifically oblique or H-type dimers.


Assuntos
Corantes , DNA , DNA/química , Carbocianinas/química , DNA Cruciforme
17.
Phys Chem Chem Phys ; 25(5): 3651-3665, 2023 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-36648290

RESUMO

Nature uses chromophore networks, with highly optimized structural and energetic characteristics, to perform important chemical functions. Due to its modularity, predictable aggregation characteristics, and established synthetic protocols, structural DNA nanotechnology is a promising medium for arranging chromophore networks with analogous structural and energetic controls. However, this high level of control creates a greater need to know how to optimize the systems precisely. This study uses the system's modularity to produce variations of a coupled 14-Site chromophore network. It uses machine-learning algorithms and spectroscopy measurements to reveal the energy-transport roles of these Sites, paying particular attention to the cooperative and inhibitive effects they impose on each other for transport across the network. The physical significance of these patterns is contextualized, using molecular dynamics simulations and energy-transport modeling. This analysis yields insights about how energy transfers across the Donor-Relay and Relay-Acceptor interfaces, as well as the energy-transport pathways through the homogeneous Relay segment. Overall, this report establishes an approach that uses machine-learning methods to understand, in fine detail, the role that each Site plays in an optoelectronic molecular network.

18.
Methods Appl Fluoresc ; 11(1)2023 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-36719011

RESUMO

Coherently coupled pseudoisocyanine (PIC) dye aggregates have demonstrated the ability to delocalize electronic excitations and ultimately migrate excitons with much higher efficiency than similar designs where excitations are isolated to individual chromophores. Here, we report initial evidence of a new type of PIC aggregate, formed through heterogeneous nucleation on DNA oligonucleotides, displaying photophysical properties that differ significantly from previously reported aggregates. This new aggregate, which we call the super aggregate (SA) due to the need for elevated dye excess to form it, is clearly differentiated from previously reported aggregates by spectroscopic and biophysical characterization. In emission spectra, the SA exhibits peak narrowing and, in some cases, significant quantum yield variation, indicative of stronger coupling in cyanine dyes. The SA was further characterized with circular dichroism and atomic force microscopy observing unique features depending on the DNA substrate. Then by integrating an AlexaFluorTM647 (AF) dye as an energy transfer acceptor into the system, we observed mixed energy transfer characteristics using the different DNA. For example, SA formed with a rigid DNA double crossover tile (DX-tile) substrate resulted in AF emission sensitization. While SA formed with more flexible non-DX-tile DNA (i.e. duplex and single strand DNA) resulted in AF emission quenching. These combined characterizations strongly imply that DNA-based PIC aggregate properties can be controlled through simple modifications to the DNA substrate's sequence and geometry. Ultimately, we aim to inform rational design principles for future device prototyping. For example, one key conclusion of the study is that the high absorbance cross-section and efficient energy transfer observed with rigid substrates made for better photonic antennae, compared to flexible DNA substrates.


Assuntos
Quinolinas , Quinolinas/química , DNA/química , DNA de Cadeia Simples , Dicroísmo Circular
19.
RSC Chem Biol ; 3(11): 1301-1313, 2022 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-36349225

RESUMO

Most of the complex molecules found in nature still cannot be synthesized by current organic chemistry methods. Given the number of enzymes that exist in nature and the incredible potential of directed evolution, the field of synthetic biology contains perhaps all the necessary building blocks to bring about the realization of applied enzymatic retrosynthesis. Current thinking anticipates that enzymatic retrosynthesis will be implemented using conventional cell-based synthetic biology approaches where requisite native, heterologous, designer, and evolved enzymes making up a given multi-enzyme pathway are hosted by chassis organisms to carry out designer synthesis. In this perspective, we suggest that such an effort should not be limited by solely exploiting living cells and enzyme evolution and describe some useful yet less intensive complementary approaches that may prove especially productive in this grand scheme. By decoupling reactions from the environment of a living cell, a significantly larger portion of potential synthetic chemical space becomes available for exploration; most of this area is currently unavailable to cell-based approaches due to toxicity issues. In contrast, in a cell-free reaction a variety of classical enzymatic approaches can be exploited to improve performance and explore and understand a given enzyme's substrate specificity and catalytic profile towards non-natural substrates. We expect these studies will reveal unique enzymatic capabilities that are not accessible in living cells.

20.
ACS Nano ; 16(12): 20693-20704, 2022 12 27.
Artigo em Inglês | MEDLINE | ID: mdl-36378103

RESUMO

Strategies utilizing the CRISPR/Cas nucleases Cas13 and Cas12 have shown great promise in the development of highly sensitive and rapid diagnostic assays for the detection of pathogenic nucleic acids. The most common approaches utilizing fluorophore-quencher molecular beacons require strand amplification strategies or highly sensitive optical setups to overcome the limitations of the readout. Here, we demonstrate a flexible strategy for assembling highly luminescent and colorimetric quantum dot-nucleic acid hairpin (QD-HP) molecular beacons for use in CRISPR/Cas diagnostics. This strategy utilizes a chimeric peptide-peptide nucleic acid (peptide-PNA) to conjugate fluorescently labeled DNA or RNA hairpins to ZnS-coated QDs. QDs are particularly promising alternatives for molecular beacons due to their greater brightness, strong UV absorbance with large emission offset, exceptional photostability, and potential for multiplexing due to their sharp emission peaks. Using Förster resonance energy transfer (FRET), we have developed ratiometric reporters capable of pM target detection (without nucleotide amplification) for both target DNA and RNA, and we further demonstrated their capabilities for multiplexing and camera-phone detection. The flexibility of this system is imparted by the dual functionality of the QD as both a FRET donor and a central nanoscaffold for arranging nucleic acids and fluorescent acceptors on its surface. This method also provides a generalized approach that could be applied for use in other CRISPR/Cas nuclease systems.


Assuntos
Ácidos Nucleicos , Pontos Quânticos , Pontos Quânticos/química , Sistemas CRISPR-Cas , DNA/química , RNA , Peptídeos/química , Transferência Ressonante de Energia de Fluorescência/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA