Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Aging (Albany NY) ; 16(4): 3088-3106, 2024 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-38393697

RESUMO

Senolytics, small molecules targeting cellular senescence, have emerged as potential therapeutics to enhance health span. However, their impact on epigenetic age remains unstudied. This study aimed to assess the effects of Dasatinib and Quercetin (DQ) senolytic treatment on DNA methylation (DNAm), epigenetic age, and immune cell subsets. In a Phase I pilot study, 19 participants received DQ for 6 months, with DNAm measured at baseline, 3 months, and 6 months. Significant increases in epigenetic age acceleration were observed in first-generation epigenetic clocks and mitotic clocks at 3 and 6 months, along with a notable decrease in telomere length. However, no significant differences were observed in second and third-generation clocks. Building upon these findings, a subsequent investigation evaluated the combination of DQ with Fisetin (DQF), a well-known antioxidant and antiaging senolytic molecule. After one year, 19 participants (including 10 from the initial study) received DQF for 6 months, with DNAm assessed at baseline and 6 months. Remarkably, the addition of Fisetin to the treatment resulted in non-significant increases in epigenetic age acceleration, suggesting a potential mitigating effect of Fisetin on the impact of DQ on epigenetic aging. Furthermore, our analyses unveiled notable differences in immune cell proportions between the DQ and DQF treatment groups, providing a biological basis for the divergent patterns observed in the evolution of epigenetic clocks. These findings warrant further research to validate and comprehensively understand the implications of these combined interventions.


Assuntos
Metilação de DNA , Flavonóis , Quercetina , Humanos , Quercetina/farmacologia , Dasatinibe/farmacologia , Dasatinibe/uso terapêutico , Senoterapia , Estudos Longitudinais , Projetos Piloto , Envelhecimento , Epigênese Genética
2.
bioRxiv ; 2024 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-38293193

RESUMO

Background: Differentially methylated imprint control regions (ICRs) regulate the monoallelic expression of imprinted genes. Their epigenetic dysregulation by environmental exposures throughout life results in the formation of common chronic diseases. Unfortunately, existing Infinium methylation arrays lack the ability to profile these regions adequately. Whole genome bisulfite sequencing (WGBS) is the unique method able to profile these regions, but it is very expensive and it requires not only a high coverage but it is also computationally intensive to assess those regions. Findings: To address this deficiency, we developed a custom methylation array containing 22,819 probes. Among them, 9,757 probes map to 1,088 out of the 1,488 candidate ICRs recently described. To assess the performance of the array, we created matched samples processed with the Human Imprintome array and WGBS, which is the current standard method for assessing the methylation of the Human Imprintome. We compared the methylation levels from the shared CpG sites and obtained a mean R 2 = 0.569. We also created matched samples processed with the Human Imprintome array and the Infinium Methylation EPIC v2 array and obtained a mean R 2 = 0.796. Furthermore, replication experiments demonstrated high reliability (ICC: 0.799-0.945). Conclusions: Our custom array will be useful for replicable and accurate assessment, mechanistic insight, and targeted investigation of ICRs. This tool should accelerate the discovery of ICRs associated with a wide range of diseases and exposures, and advance our understanding of genomic imprinting and its relevance in development and disease formation throughout the life course.

3.
J Neurosurg Spine ; 40(3): 312-323, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38039536

RESUMO

OBJECTIVE: Surgery for spinal deformity has the potential to improve pain, disability, function, self-image, and mental health. These surgical procedures carry significant risk and require careful selection, optimization, and risk assessment. Epigenetic clocks are age estimation tools derived by measuring the methylation patterns of specific DNA regions. The study of biological age in the adult deformity population has the potential to shed insight onto the molecular basis of frailty and to improve current risk assessment tools. METHODS: Adult patients who underwent deformity surgery were prospectively enrolled. Preoperative whole blood samples were used to assess epigenetic age and telomere length. DNA methylation patterns were quantified and processed to extract 4 principal component (PC)-based epigenetic age clocks (PC Horvath, PC Hannum, PC PhenoAge, and PC GrimAge) and the instantaneous pace of aging (DunedinPACE). Telomere length was assessed using both quantitative polymerase chain reaction (telomere to single gene [T/S] ratio) and a methylation-based telomere estimator (PC DNAmTL). Patient demographic and surgical data included age, BMI, American Society of Anesthesiologists Physical Status Classification System class, and scores on the Charlson Comorbidity Index, adult spinal deformity frailty index (ASD-FI), Edmonton Frail Scale (EFS), Oswestry Disability Index, and Scoliosis Research Society-22r questionnaire (SRS-22r). Medical or surgical complications within 90 days of surgery were collected. Spearman correlations and beta coefficients (ß) from linear regression, adjusted for BMI and sex, were calculated. RESULTS: Eighty-three patients were enrolled with a mean age of 65 years, and 45 were women (54%). All patients underwent posterior fusion with a mean of 11 levels fused and 33 (40%) 3-column osteotomies were performed. Among the epigenetic clocks adjusted for BMI and sex, DunedinPACE showed a significant association with ASD-FI (ß = 0.041, p = 0.002), EFS (ß = 0.696, p = 0.026), and SRS-22r (ß = 0.174, p = 0.013) scores. PC PhenoAge showed associations with ASD-FI (ß = 0.029, p = 0.028) and SRS-22r (ß = 0.159, p = 0.018) scores. PC GrimAge showed associations with ASD-FI (ß = 0.029, p = 0.037) and SRS-22r (ß = 0.161, p = 0.025) scores. Patients with postoperative complications were noted to have shorter telomere length (T/S 0.790 vs 0.858, p = 0.049), even when the analysis controlled for BMI and sex (OR = 1.71, 95% CI 1.07-2.87, p = 0.031). CONCLUSIONS: Epigenetic clocks showed significant associations with markers of frailty and disability, while patients with postoperative complications had shorter telomere length. These data suggest a potential role for aging biomarkers as components of surgical risk assessment. Integrating biological age into current risk calculators may improve their accuracy and provide valuable information for patients, surgeons, and payers.


Assuntos
Fragilidade , Adulto , Humanos , Feminino , Idoso , Masculino , Fragilidade/genética , Estudos Retrospectivos , Complicações Pós-Operatórias/epidemiologia , Medição de Risco , Biomarcadores , Envelhecimento/genética , Epigênese Genética/genética
4.
bioRxiv ; 2023 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-37904959

RESUMO

Biological aging is a multifactorial process involving complex interactions of cellular and biochemical processes that is reflected in omic profiles. Using common clinical laboratory measures in ~30,000 individuals from the MGB-Biobank, we developed a robust, predictive biological aging phenotype, EMRAge, that balances clinical biomarkers with overall mortality risk and can be broadly recapitulated across EMRs. We then applied elastic-net regression to model EMRAge with DNA-methylation (DNAm) and multiple omics, generating DNAmEMRAge and OMICmAge, respectively. Both biomarkers demonstrated strong associations with chronic diseases and mortality that outperform current biomarkers across our discovery (MGB-ABC, n=3,451) and validation (TruDiagnostic, n=12,666) cohorts. Through the use of epigenetic biomarker proxies, OMICmAge has the unique advantage of expanding the predictive search space to include epigenomic, proteomic, metabolomic, and clinical data while distilling this in a measure with DNAm alone, providing opportunities to identify clinically-relevant interconnections central to the aging process.

5.
Genome Med ; 15(1): 59, 2023 07 31.
Artigo em Inglês | MEDLINE | ID: mdl-37525279

RESUMO

BACKGROUND: Changes in cell-type composition of tissues are associated with a wide range of diseases and environmental risk factors and may be causally implicated in disease development and progression. However, these shifts in cell-type fractions are often of a low magnitude, or involve similar cell subtypes, making their reliable identification challenging. DNA methylation profiling in a tissue like blood is a promising approach to discover shifts in cell-type abundance, yet studies have only been performed at a relatively low cellular resolution and in isolation, limiting their power to detect shifts in tissue composition. METHODS: Here we derive a DNA methylation reference matrix for 12 immune-cell types in human blood and extensively validate it with flow-cytometric count data and in whole-genome bisulfite sequencing data of sorted cells. Using this reference matrix, we perform a directional Stouffer and fixed effects meta-analysis comprising 23,053 blood samples from 22 different cohorts, to comprehensively map associations between the 12 immune-cell fractions and common phenotypes. In a separate cohort of 4386 blood samples, we assess associations between immune-cell fractions and health outcomes. RESULTS: Our meta-analysis reveals many associations of cell-type fractions with age, sex, smoking and obesity, many of which we validate with single-cell RNA sequencing. We discover that naïve and regulatory T-cell subsets are higher in women compared to men, while the reverse is true for monocyte, natural killer, basophil, and eosinophil fractions. Decreased natural killer counts associated with smoking, obesity, and stress levels, while an increased count correlates with exercise and sleep. Analysis of health outcomes revealed that increased naïve CD4 + T-cell and N-cell fractions associated with a reduced risk of all-cause mortality independently of all major epidemiological risk factors and baseline co-morbidity. A machine learning predictor built only with immune-cell fractions achieved a C-index value for all-cause mortality of 0.69 (95%CI 0.67-0.72), which increased to 0.83 (0.80-0.86) upon inclusion of epidemiological risk factors and baseline co-morbidity. CONCLUSIONS: This work contributes an extensively validated high-resolution DNAm reference matrix for blood, which is made freely available, and uses it to generate a comprehensive map of associations between immune-cell fractions and common phenotypes, including health outcomes.


Assuntos
Metilação de DNA , Linfócitos T , Masculino , Humanos , Feminino , Linfócitos T/metabolismo , Fenótipo , Obesidade/metabolismo , Avaliação de Resultados em Cuidados de Saúde
6.
Epigenetics ; 18(1): 2214392, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37216580

RESUMO

Tobacco, alcohol, and marijuana consumption is an important public health problem because of their high use worldwide and their association with the risk of mortality and many health conditions, such as hypertension, which is the commonest risk factor for death throughout the world. A likely pathway of action of substance consumption leading to persistent hypertension is DNA methylation. Here, we evaluated the effects of tobacco, alcohol, and marijuana on DNA methylation in the same cohort (N = 3,424). Three epigenome-wide association studies (EWAS) were assessed in whole blood using the InfiniumHumanMethylationEPIC BeadChip. We also evaluated the mediation of the top CpG sites in the association between substance consumption and hypertension. Our analyses showed 2,569 CpG sites differentially methylated by alcohol drinking and 528 by tobacco smoking. We did not find significant associations with marijuana consumption after correcting for multiple comparisons. We found 61 genes overlapping between alcohol and tobacco that were enriched in biological processes involved in the nervous and cardiovascular systems. In the mediation analysis, we found 66 CpG sites that significantly mediated the effect of alcohol consumption on hypertension. The top alcohol-related CpG site (cg06690548, P-value = 5.9·10-83) mapped to SLC7A11 strongly mediated 70.5% of the effect of alcohol consumption on hypertension (P-value = 0.006). Our findings suggest that DNA methylation should be considered for new targets in hypertension prevention and management, particularly concerning alcohol consumption. Our data also encourage further research into the use of methylation in blood to study the neurological and cardiovascular effects of substance consumption.


The consumption of tobacco, alcohol, and marijuana is very high worldwide and is associated with common diseases, like cardiovascular and neurological disorders.This study found that tobacco and alcohol have large effects on genome wide DNA methylation while marijuana consumption has nonsignificant effects.The genes differentially methylated were enriched in pathways related to neurodevelopment, suggesting the mediation between recreational drug consumption and neurological disorders.More remarkably, 66 alcohol related CpG sites significantly mediated the association between heavy drinking and hypertension.Our findings suggest that DNA methylation changes should be considered for new targets in disease prevention for recreational drug consumers.


Assuntos
Cannabis , Hipertensão , Humanos , Metilação de DNA , Cannabis/genética , Epigênese Genética , Estudo de Associação Genômica Ampla , Hipertensão/genética , DNA , Etanol , Ilhas de CpG
7.
BMC Med ; 21(1): 142, 2023 04 12.
Artigo em Inglês | MEDLINE | ID: mdl-37046291

RESUMO

BACKGROUND: Obesity and neurodevelopmental delay are complex traits that often co-occur and differ between boys and girls. Prenatal exposures are believed to influence children's obesity, but it is unknown whether exposures of pregnant mothers can confer a different risk of obesity between sexes, and whether they can affect neurodevelopment. METHODS: We analyzed data from 1044 children from the HELIX project, comprising 93 exposures during pregnancy, and clinical, neuropsychological, and methylation data during childhood (5-11 years). Using exposome-wide interaction analyses, we identified prenatal exposures with the highest sexual dimorphism in obesity risk, which were used to create a multiexposure profile. We applied causal random forest to classify individuals into two environments: E1 and E0. E1 consists of a combination of exposure levels where girls have significantly less risk of obesity than boys, as compared to E0, which consists of the remaining combination of exposure levels. We investigated whether the association between sex and neurodevelopmental delay also differed between E0 and E1. We used methylation data to perform an epigenome-wide association study between the environments to see the effect of belonging to E1 or E0 at the molecular level. RESULTS: We observed that E1 was defined by the combination of low dairy consumption, non-smokers' cotinine levels in blood, low facility richness, and the presence of green spaces during pregnancy (ORinteraction = 0.070, P = 2.59 × 10-5). E1 was also associated with a lower risk of neurodevelopmental delay in girls, based on neuropsychological tests of non-verbal intelligence (ORinteraction = 0.42, P = 0.047) and working memory (ORinteraction = 0.31, P = 0.02). In line with this, several neurodevelopmental functions were enriched in significant differentially methylated probes between E1 and E0. CONCLUSIONS: The risk of obesity can be different for boys and girls in certain prenatal environments. We identified an environment combining four exposure levels that protect girls from obesity and neurodevelopment delay. The combination of single exposures into multiexposure profiles using causal inference can help determine populations at risk.


Assuntos
Obesidade Infantil , Efeitos Tardios da Exposição Pré-Natal , Gravidez , Criança , Humanos , Masculino , Feminino , Caracteres Sexuais , Efeitos Tardios da Exposição Pré-Natal/epidemiologia , Exposição Ambiental/efeitos adversos , Exposição Ambiental/análise , Desenvolvimento Infantil
8.
Front Genet ; 13: 819749, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35719387

RESUMO

The host epigenetic landscape rapidly changes during SARS-CoV-2 infection, and evidence suggest that severe COVID-19 is associated with durable scars to the epigenome. Specifically, aberrant DNA methylation changes in immune cells and alterations to epigenetic clocks in blood relate to severe COVID-19. However, a longitudinal assessment of DNA methylation states and epigenetic clocks in blood from healthy individuals prior to and following test-confirmed non-hospitalized COVID-19 has not been performed. Moreover, the impact of mRNA COVID-19 vaccines upon the host epigenome remains understudied. Here, we first examined DNA methylation states in the blood of 21 participants prior to and following test-confirmed COVID-19 diagnosis at a median time frame of 8.35 weeks; 756 CpGs were identified as differentially methylated following COVID-19 diagnosis in blood at an FDR adjusted p-value < 0.05. These CpGs were enriched in the gene body, and the northern and southern shelf regions of genes involved in metabolic pathways. Integrative analysis revealed overlap among genes identified in transcriptional SARS-CoV-2 infection datasets. Principal component-based epigenetic clock estimates of PhenoAge and GrimAge significantly increased in people over 50 following infection by an average of 2.1 and 0.84 years. In contrast, PCPhenoAge significantly decreased in people fewer than 50 following infection by an average of 2.06 years. This observed divergence in epigenetic clocks following COVID-19 was related to age and immune cell-type compositional changes in CD4+ T cells, B cells, granulocytes, plasmablasts, exhausted T cells, and naïve T cells. Complementary longitudinal epigenetic clock analyses of 36 participants prior to and following Pfizer and Moderna mRNA-based COVID-19 vaccination revealed that vaccination significantly reduced principal component-based Horvath epigenetic clock estimates in people over 50 by an average of 3.91 years for those who received Moderna. This reduction in epigenetic clock estimates was significantly related to chronological age and immune cell-type compositional changes in B cells and plasmablasts pre- and post-vaccination. These findings suggest the potential utility of epigenetic clocks as a biomarker of COVID-19 vaccine responses. Future research will need to unravel the significance and durability of short-term changes in epigenetic age related to COVID-19 exposure and mRNA vaccination.

9.
Mol Biochem Parasitol ; 211: 75-83, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27840079

RESUMO

The stage differentiation from trophozoite to cyst (i.e., encystation) is an essential step for Giardia to survive outside its human host and spread the infection via the fecal-oral route. We have previously shown that Giardia expresses glucosylceramide transferase 1 (GlcT1) enzyme, the activity of which is elevated during encystation. We have also reported that blocking the activity of gGlcT1 interferes with the biogenesis of encystation-specific vesicles (ESVs) and cyst viability in Giardia. To further understand the role of this enzyme and how it regulates encystation, we overexpressed, knocked down, and rescued the giardial GlcT1 (gGlcT1) gene and measured its enzymatic activity in live parasites as well as in isolated membrane fractions using NBD-ceramide and UDP-glucose or UDP-galactose. We observed that gGlcT1 is able to catalyze the synthesis of both glucosylceramide (GlcCer) and galactosylceramide (GalCer), however the synthesis of GalCer is 2-3 fold higher than of GlcCer. Although both activities follow Michaelis-Menten kinetics, the bindings of UDP-glucose and UDP-galactose with the enzyme appear to be non-competitive and independent of each other. The modulation of gGlcT1 synthesis concomitantly influenced the expression cyst-wall protein (CWP) and overall encystation. We propose that gGlcT1 is a unique enzyme and that Giardia uses this enzyme to synthesize both GlcCer and GalCer to facilitate the process of encystation/cyst production.


Assuntos
Giardia/fisiologia , Glucosilceramidas/biossíntese , Proteínas de Protozoários/metabolismo , Transferases/metabolismo , Sequência de Aminoácidos , Ativação Enzimática , Expressão Gênica , Técnicas de Silenciamento de Genes , Giardíase/parasitologia , Glicosilação , Cinética , Domínios Proteicos , Proteínas de Protozoários/química , Proteínas de Protozoários/genética , Especificidade por Substrato , Transferases/química , Transferases/genética
10.
Curr Trop Med Rep ; 2(3): 136-143, 2015 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-26587369

RESUMO

Sphingolipids are sphingosine-based phospholipids, which are present in the plasma and endomembranes of many eukaryotic cells. These lipids are involved in various cellular functions, including cell growth, differentiation, and apoptosis. In addition, sphingolipid and cholesterol-enriched membrane microdomains (also called "lipid rafts") contain a set of proteins and lipids, which take part in the signaling process in response to intra- or extracellular stimuli. Recent findings suggest that sphingolipids, especially glucosylceramide, play a critical role in inducing encystation and maintaining the cyst viability in Giardia. Similarly, the assembly/disassembly of lipid rafts modulates the encystation and cyst production of this ubiquitous enteric parasite. In this review article, we discuss the overall progress in the field and examine whether sphingolipids and lipid rafts can be used as novel targets for designing therapies to control infection by Giardia, which is rampant in developing countries, where children are especially vulnerable.

11.
Infect Immun ; 83(5): 2030-42, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25733521

RESUMO

Although encystation (or cyst formation) is an important step of the life cycle of Giardia, the cellular events that trigger encystation are poorly understood. Because membrane microdomains are involved in inducing growth and differentiation in many eukaryotes, we wondered if these raft-like domains are assembled by this parasite and participate in the encystation process. Since the GM1 ganglioside is a major constituent of mammalian lipid rafts (LRs) and known to react with cholera toxin B (CTXB), we used Alexa Fluor-conjugated CTXB and GM1 antibodies to detect giardial LRs. Raft-like structures in trophozoites are located in the plasma membranes and on the periphery of ventral discs. In cysts, however, they are localized in the membranes beneath the cyst wall. Nystatin and filipin III, two cholesterol-binding agents, and oseltamivir (Tamiflu), a viral neuraminidase inhibitor, disassembled the microdomains, as evidenced by reduced staining of trophozoites with CTXB and GM1 antibodies. GM1- and cholesterol-enriched LRs were isolated from Giardia by density gradient centrifugation and found to be sensitive to nystatin and oseltamivir. The involvement of LRs in encystation could be supported by the observation that raft inhibitors interrupted the biogenesis of encystation-specific vesicles and cyst production. Furthermore, culturing of trophozoites in dialyzed medium containing fetal bovine serum (which is low in cholesterol) reduced raft assembly and encystation, which could be rescued by adding cholesterol from the outside. Our results suggest that Giardia is able to form GM1- and cholesterol-enriched lipid rafts and these raft domains are important for encystation.


Assuntos
Colesterol/metabolismo , Gangliosídeo G(M1)/metabolismo , Giardia/crescimento & desenvolvimento , Giardia/metabolismo , Microdomínios da Membrana/metabolismo , Esporos de Protozoários/crescimento & desenvolvimento , Esporos de Protozoários/metabolismo
12.
J Bioenerg Biomembr ; 45(5): 477-90, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23832544

RESUMO

The fungal and plant plasma membrane H⁺-ATPases play critical roles in the physiology of yeast, plant and protozoa cells. We identified two genes encoding two plasma membrane H⁺-ATPases in the basidiomycete Ustilago maydis, one protein with higher identity to fungal (um02581) and the other to plant (um01205) H⁺-ATPases. Proton pumping activity was 5-fold higher when cells were grown in minimal medium with ethanol compared to cells cultured in rich YPD medium, but total vanadate-sensitive ATPase activity was the same in both conditions. In contrast, the activity in cells cultured in minimal medium with glucose was 2-fold higher than in YPD or ethanol, implicating mechanisms for the regulation of the plasma membrane ATPase activity in U. maydis. Analysis of gene expression of the H⁺-ATPases from cells grown under different conditions, showed that the transcript expression of um01205 (plant-type) was higher than that of um02581 (fungal-type). The translation of the two proteins was confirmed by mass spectrometry analysis. Unlike baker's yeast and plant H⁺-ATPases, where the activity is increased by a short incubation with glucose or sucrose, respectively, U. maydis H⁺-ATPase activity did not change in response to these sugars. Sequence analysis of the two U. maydis H⁺-ATPases revealed the lack of canonical threonine and serine residues which are targets of protein kinases in Saccharomyces cerevisiae and Arabidopsis thaliana plasma membrane H⁺-ATPases, suggesting that phosphorylation of the U. maydis enzymes occurs at different amino acid residues.


Assuntos
Adenosina Trifosfatases/metabolismo , Ustilago/enzimologia , Espectrometria de Massas , Fosforilação
13.
J Biol Chem ; 288(23): 16747-16760, 2013 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-23589290

RESUMO

The production of viable cysts by Giardia is essential for its survival in the environment and for spreading the infection via contaminated food and water. The hallmark of cyst production (also known as encystation) is the biogenesis of encystation-specific vesicles (ESVs) that transport cyst wall proteins to the plasma membrane of the trophozoite before laying down the protective cyst wall. However, the molecules that regulate ESV biogenesis and maintain cyst viability have never before been identified. Here, we report that giardial glucosylceramide transferase-1 (gGlcT1), an enzyme of sphingolipid biosynthesis, plays a key role in ESV biogenesis and maintaining cyst viability. We find that overexpression of this enzyme induced the formation of aggregated/enlarged ESVs and generated clustered cysts with reduced viability. The silencing of gGlcT1 synthesis by antisense morpholino oligonucleotide abolished ESV production and generated mostly nonviable cysts. Interestingly, when gGlcT1-overexpressed Giardia was transfected with anti-gGlcT1 morpholino, the enzyme activity, vesicle biogenesis, and cyst viability returned to normal, suggesting that the regulated expression of gGlcT1 is important for encystation and viable cyst production. Furthermore, the overexpression of gGlcT1 increased the influx of membrane lipids and fatty acids without altering the fluidity of plasma membranes, indicating that the expression of gGlcT1 activity is linked to lipid internalization and maintaining the overall lipid balance in this parasite. Taken together, our results suggest that gGlcT1 is a key player of ESV biogenesis and cyst viability and therefore could be targeted for developing new anti-giardial therapies.


Assuntos
Giardia lamblia/enzimologia , Glicosiltransferases/metabolismo , Proteínas de Protozoários/metabolismo , Esfingolipídeos/biossíntese , Giardia lamblia/genética , Giardia lamblia/crescimento & desenvolvimento , Glicosiltransferases/genética , Humanos , Proteínas de Protozoários/genética , Esfingolipídeos/genética
14.
Infect Immun ; 76(7): 2939-49, 2008 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-18426892

RESUMO

Although encystation (cyst formation) is important for the survival of Giardia lamblia outside its human host, the molecular events that prompt encystation have not been fully elucidated. Here, we demonstrate that sphingolipids (SLs), which are important for the growth and differentiation of many eukaryotes, play key roles in giardial encystation. Transcriptional analyses showed that only three genes in the SL biosynthesis pathways are expressed and transcribed differentially in nonencysting and encysting Giardia trophozoites. While the putative homologues of giardial serine palmitoyltransferase (gSPT) subunit genes (gspt-1 and -2) are differentially expressed in nonencysting and encysting trophozoites, the giardial ceramide glucosyltransferase 1 gene (gglct-1) is transcribed only in encysting cells. l-Cycloserine, an inhibitor of gSPT, inhibited the endocytosis and endoplasmic reticulum/perinuclear targeting of bodipy-ceramide in trophozoites, and this could be reversed by 3-ketosphinganine. On the other hand, D-threo-1-phenyl-2-palmitoylamino-3-morpholino-1-propanol (PPMP), an inhibitor of glucosylceramide synthesis, blocked karyokinesis and reduced cyst production in culture. PPMP also altered the expression of cyst wall protein transcripts in encysting cells. Phylogenetic analyses revealed that the gspt genes are paralogs derived from an ancestral spt sequence that underwent gene duplication early in eukaryotic history. This ancestral sequence, in turn, was probably derived from prokaryotic aminoacyl transferases. In contrast, gglct-1 is found in both prokaryotes and eukaryotes without any evidence of gene duplication. These studies indicate that SL synthesis genes are involved in key events in giardial biology and could serve as potential targets for developing new therapies against giardiasis.


Assuntos
Regulação da Expressão Gênica , Giardia lamblia/fisiologia , Proteínas de Protozoários/metabolismo , Esfingolipídeos/biossíntese , Animais , Ceramidas/metabolismo , DNA de Protozoário/análise , Genes de Protozoários , Giardia lamblia/genética , Giardia lamblia/metabolismo , Glucosiltransferases/genética , Glucosiltransferases/metabolismo , Dados de Sequência Molecular , Filogenia , Proteínas de Protozoários/genética , Análise de Sequência de DNA , Trofozoítos/crescimento & desenvolvimento , Trofozoítos/metabolismo
15.
Vascul Pharmacol ; 44(4): 238-46, 2006 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-16488667

RESUMO

We investigated the relationship between urocortin and the activity of angiotensin-converting enzyme (ACE), which plays a key role in producing the potent vasoconstrictor angiotensin II (Ang II). Urocortin was acutely and subchronically administered to Sprague-Dawley (SD) rats and then the serum and tissue (lung and aorta) ACE levels were evaluated. The tissue ACE mRNA was determined by using reverse transcription and polymerase chain reaction (RT-PCR) analysis. Immunofluorescence studies were also preformed to evaluate the effect of urocortin on ACE in cultured rat aortic endothelial cells (RAECs). Urocortin decreased the serum ACE level 1h after administration, whereas tissue ACE immunoreactivity and mRNA did not change. The prolonged administration of urocortin enhanced tissue ACE activity but the serum ACE level remained low. RT-PCR analysis showed that tissue ACE mRNA was elevated. Immunofluorescence studies also demonstrated an increase of ACE intensity in RAECs exposed to urocortin for 72 h. Corticotropin-releasing factor (CRF) receptor blocker, astressin, abolished the effects of urocortin. Extracellular signal-regulated kinase 1/2 (ERK1/2) pathway blocker, PD98059, also markedly inhibited these effects, suggesting urocortin affects the activity of ACE through the ERK1/2 pathway in rats. These findings support the changes in mean arterial pressure (MAP) following acute and subchronic injections of urocortin in previous studies. Thus, the changes of the ACE activity and its production of Ang II may play a role in the vasodilatory property of urocortin.


Assuntos
Aorta/efeitos dos fármacos , Hormônio Liberador da Corticotropina/farmacologia , Regulação Enzimológica da Expressão Gênica , Pulmão/efeitos dos fármacos , Peptidil Dipeptidase A/metabolismo , Vasodilatadores/farmacologia , Inibidores da Enzima Conversora de Angiotensina/administração & dosagem , Inibidores da Enzima Conversora de Angiotensina/farmacologia , Animais , Aorta/citologia , Aorta/enzimologia , Captopril/administração & dosagem , Captopril/farmacologia , Células Cultivadas , Hormônio Liberador da Corticotropina/administração & dosagem , Relação Dose-Resposta a Droga , Células Endoteliais/efeitos dos fármacos , Células Endoteliais/enzimologia , Flavonoides/farmacologia , Injeções Intravenosas , Pulmão/enzimologia , Sistema de Sinalização das MAP Quinases , Proteína Quinase 1 Ativada por Mitógeno/antagonistas & inibidores , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Proteína Quinase 3 Ativada por Mitógeno/antagonistas & inibidores , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Fragmentos de Peptídeos/farmacologia , Peptidil Dipeptidase A/sangue , Peptidil Dipeptidase A/genética , Inibidores de Proteínas Quinases/farmacologia , RNA Mensageiro/metabolismo , Ratos , Ratos Sprague-Dawley , Fatores de Tempo , Urocortinas , Vasodilatadores/administração & dosagem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA