Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
1.
Opt Express ; 32(6): 10461-10478, 2024 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-38571257

RESUMO

We propose a multimode interference-based optical fiber NHTSN sensor with a helical taper for simultaneous measurement of micro torsion and temperature. The sensor consists of single mode fiber (SMF), no-core fiber (NCF), and seven-core fiber (SCF). A helical taper is fabricated in the SCF using a flame heater, forming the SMF-NCF-Helical Taper SCF-NCF-SMF (NHTSN) structure. Theoretical analysis and experimental results demonstrate that the introduction of helical taper not only imparts directionality to the torsion measurement, but also results in a significant improvement in torsion sensitivity due to the increased inter-mode optical path difference (OPD) and enhanced inter-mode coupling. In the experiment, the torsion sensitivity of the NHTSN sensor reaches -1.255 nm/(rad/m) in the twist rate (TR) range of -3.931 rad/m to 3.931 rad/m, which is a 9-fold improvement over the original structure. Further reduction of the helical taper diameter increases the sensitivity to -1.690 nm/(rad/m). In addition, the sensor has a temperature sensitivity of up to 97 pm/°C from 20 °C to 90 °C, and simultaneous measurement of torsion and temperature is attainable through a dual-parameter measurement matrix. The NHTSN sensor possesses advantages of compact size, high sensitivity, good linearity, and strain-independence, endowing it with potential applications in structural health monitoring (SHM) and engineering machinery.

2.
J Fluoresc ; 2024 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-38193953

RESUMO

A fluorescent Fe3+ probe ((C10H7NO2)2B18H20, M1) by introducing two isoquinoline-1-carboxylic acid group into the 6,9-position of anti-B18H22 was designed and synthesized. The structure of M1 was investigated by 1H NMR, MS, FT-IR and theoretical calculation, and its optical properties were characterized with UV-Vis and PL. M1 showed aggregation induced emission enhancement (AIEE) properties in THF/H2O solution, and exhibited an excellent selectivity toward Fe3+ in THF/H2O (v/v, ƒw = 95%) solution with a detection limit of 1.93 × 10-5 M. The interaction mechanism of probe for detecting Fe3+ is attributed to the involvement of intramolecular charge transfer (ICT) process. Furthermore, a optical fiber fluorescent Fe3+ sensor based on M1 sensing film was developed, the detection limit of the optical fiber Fe3+ fluorescent sensor could be improved to13.8 pM, the ultra-low detection limit is superior to most reported fluorescent probes (or sensors) towards Fe3+. This method has the advantages of high sensitivity, anti-interference and easy to operate, and has great potential in the field of the analysis of environmental and biological samples.

3.
Opt Express ; 30(26): 47216-47234, 2022 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-36558655

RESUMO

In this paper, an asymmetric structure optical fiber sensor is proposed to measure relative humidity (RH). The sensing structure is composed of splicing dispersion compensation fiber (DCF) and coreless fiber (NCF), and two sections of single-mode fiber (SMF) at both ends. Peanut shaped structure is used as a beam splitter at the input side, and the NCF is used as a beam combiner at the output side to form interference fringes. The partial cladding of DCF was etched, and polyvinyl alcohol (PVA) was coated on the etched area to form a hygroscopic film. When the ambient humidity changes, the refractive index and thickness of the hygroscopic film will change, which will lead to the wavelength shift of the resonant dip. The experimental results show that the sensitivity of the sensor is 0.1304 nm/RH% and 0.4452 nm/RH% in the RH range of 55%-75% and 75%-95%, respectively. In order to improve the sensitivity further, the original spectrum data is filtered by fast Fourier transform (FFT) and inverse fast Fourier transform (IFFT), and the high-frequency interference components of high-order mode (LP09) and fundamental mode are obtained, which is superimposed with a simulated signal to form Vernier effect. With the method of virtual Vernier effect, the sensitivity in the RH range of 55%-75% is improved to 2.869 nm/RH%, which is 22 times larger than the original sensitivity, and the sensitivity in the RH range of 75%-95% is improved to 2.64 nm/RH%, which is 6 times larger than the original sensitivity.

4.
Opt Express ; 30(26): 47338-47349, 2022 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-36558664

RESUMO

The resonant optical tunneling effect (ROTE) originates from the frustrated total reflection effect because unique transmission characteristics are used to study high-sensitivity sensors. In this study, we theoretically demonstrated that choosing a suitable transmission gap made it possible for the ROTE structure based on hexagonal boron nitride and graphene to obtain a large Goos-Hänchen shift as high as tens of thousands of times the incident wavelength at a specific incident angle. The amplitude of the Goos-Hänchen shift was found to be sensitive to the central layer thickness but was also modulated by the tunneling gap on both sides. In addition, adjusting the chemical potential and relaxation time of the graphene sheets could alter the Goos-Hänchen shift. Our work provides a new way to explore the Goos-Hänchen effect and opens the possibility for the application of high-precision measurement technology based on the ROTE.

5.
Opt Express ; 30(17): 30936-30948, 2022 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-36242188

RESUMO

Metasurface based on independent and simultaneous control of near field and far field has significant potential for use in multichannel optics platform devices. However, the previous studies cannot satisfy independent and simultaneous control of near field and far field under a single line source, which made a significant challenge to multichannel optical platforms working in a compact environment. To manipulate effectively and freely the amplitude and phase of transmission under line source, Marius' law and Propagation phase was introduced on all-dielectric encoding metasurfaces meta-atoms. The Marius' law and Propagation phase can control the size and rotation angle of meta-atoms to encode grayscale amplitude images and holographic phase images. Finite-difference time-domain simulation results reveal that dual channel metasurface under a single line source achieves the same display effect as the dual channel metasurface under multiple light sources, which proves the feasibility of our studies. Moreover, under different angles of the line source, we encode the near-field binary image by using the degeneracy rotation angle of meta-atoms. Finally, a three-channel metasurface was obtained without affecting the display of the previous two-channel metasurface. As a result, the independent control amplitude, phase, and polarization of the incident light wave were achieved. The proposed metasurface could be applied in creating a multi-channel metasurface optical platform in a compact environment, which has application potential in image displays, optical storage, optical anti-counterfeiting, and information encryption technology.

6.
Opt Express ; 30(21): 37888-37898, 2022 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-36258368

RESUMO

In this study, a one-dimensional (1D) two-material period ring optical waveguide network (TMPROWN) was designed, and its optical properties were investigated. The key characteristics observed in the 1D TMPROWN include the following: (1) Bound states in continuum (BICs) can be generated in the optical waveguide network. (2) In contrast to the BICs previously reported in optical structures, the range of the BICs generated by the 1D TMPROWN is not only larger, but also continuous. This feature makes it possible for us to further study the electromagnetic wave characteristics in the range of the BICs. In addition, we analyzed the physical mechanisms of the BICs generated in the 1D TMPROWN. The 1D TMPROWN is simple in structure, demonstrates flexibility with respect to adjusting the frequency band of the BICs, and offers easy measurement of the amplitude and phase of electromagnetic waves. Hence, further research on high-power super luminescent diodes, optical switches, efficient photonic energy storage, and other optical devices based on the 1D TMPROWN designed in this study is likely to have implications in a broad range of applications.

7.
Opt Express ; 30(10): 17541-17553, 2022 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-36221574

RESUMO

Achromatic metalens have the potential to significantly reduce the size and complexity of broadband imaging systems. A large variety of achromatic metalens has been proposed and most of them have the fixed achromatic band that cannot be actively modified. However, band-tunable is an important function in practical applications such as fluorescence microscopic imaging and optical detection. Here, we propose a bilayer metalens that can switch achromatic bands by taking the advantage of the high refractive index contrast of Sb2S3 between amorphous and crystalline state. By switching the state of Sb2S3, the achromatic band can be reversibly switched between the red region of visible spectrum (650-830 nm) and the near-infrared spectrum (830-1100 nm). This band-tunable design indicates a novel (to our knowledge) method to solve the problem of achromatic focusing in an ultrabroad band. The metalens have an average focusing efficiency of over 35% and 55% in two bands while maintaining diffraction-limited performance. Moreover, through proper design, we can combine different functionalities in two bands such as combining achromatic focusing and diffractive focusing. The proposed metalens have numerous potential applications in tunable displaying, detecting devices and multifunctional devices.

8.
Opt Express ; 30(11): 18434-18446, 2022 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-36221644

RESUMO

The operation of near-field and far-field can be employed to display holographic and nanoprinting images, which significantly improves the information density. Previous studies have proposed some approaches to display the images independently or simultaneously, but cannot satisfy these two characteristics in a single structure under the same incident light. Here, a single layer multifunctional metasurface is proposed to display a nanoprinting image and a holographic image independently and simultaneously. By tailoring the dimensions of each nanobricks and adopting different orientation angle, the amplitude and phase can be artificially designed. Moreover, enabled by the simulated annealing algorithm, we take the impact of both amplitude and phase of each nanobrick into consideration, which eliminates the unnecessary influence of amplitude on holographic image. Compared with previous work, our metasurfaces markedly improve the quality of holographic image with simple structures while not affecting the nanoprinting image. To be exact, it breaks the coupling between the near-field and far-field, achieving independent and simultaneous control of both fields. Our proposed metasurfaces carry characteristics of simple manufacture, little crosstalk, and great compactness, which provides novel applications for image displays, optical storage and information technology.

9.
Methods Appl Fluoresc ; 10(3)2022 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-35483353

RESUMO

A novel fluorescence sensor for successive detection of Cu2+and Fe3+based on anti-B18H22derivative which possesses 5-hydroxyisoquinoline as an ionophore was synthesized via a one-pot and its structure and photophysical properties were characterized by NMR, HRMS, FTIR, UV-vis, PL and theoretical calculation. The fluorophore displays two emission peaks at 460 nm and 670 nm in THF solution coming from the emission of the locally excited state and intramolecular charge transfer fluorescence, respectively. The complex exhibited obvious aggregation-induced emission enhancement (AIEE) characteristics in THF/H2O solution by increasing the aqueous concentration from 70% to 95%. The AIEE molecules showed a high selectivity towards Cu2+over other metal ions by forming a 2:1 metal-to-ligand complex in THF/H2O (fw = 20%) solution, the fluorescence intensity increased as a linear function of the Cu2+concentration at 460 nm due to the inhibition of PET effect. The fluorescent emission was quenched linearly by the addition of Fe3+, which provides a method for successive determination of Cu2+and Fe3+based on 'off-on-off' fluorescence of the fluorescent. The detection limit of Cu2+and Fe3+was 5.7 × 10-6M and 7.2 × 10-5M respectively. Morever, a rapid identification of Cu2+in the aqueous solution by naked eyes can be realized. In addition, the molecules were pH-sensitive, the fluorescence quenching can be observed in strongly alkaline environment. The method has been applied to the determination of copper ions in water samples with satisfactory results.


Assuntos
Cobre , Corantes Fluorescentes , Corantes Fluorescentes/química , Íons , Espectrometria de Fluorescência , Água
10.
Nanomaterials (Basel) ; 12(7)2022 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-35407345

RESUMO

A depolarizer, a kind of optical element that converts polarized light to unpolarized light, has been found massive applications in classical optics. However, depolarizers based on metasurface which can be applied in integrated optics have rarely been proposed. In this paper, an electronically controlled metasurface depolarizer is demonstrated based on the time-domain integral average method and nano-material barium titanate. It obtains emergent light with a degree of polarization reduced to 2.5% when hit by linearly polarized light at 633 nm, and has a transmission efficiency greater than 72%. This depolarizing metasurface can be designed on-demand, immunizing the degree of the emergent light from its size, and has the simple electronic control with high-speed response.

11.
Opt Express ; 30(2): 1152-1166, 2022 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-35209281

RESUMO

We have manufactured an intensity modulated optical fiber SMDMS sensor with hydroxyethyl cellulose (HEC) hydrogel coating for simultaneous measurement of RH and temperature. The SMDMS sensor was manufactured by splicing single-mode fiber (SMF), multi-mode fiber (MMF), dispersion compensation fiber (DCF), MMF, and SMF in sequence to form a structure of SMF + MMF + DCF + MMF + SMF (SMDMS). The cladding of MMFs and DCF were corroded by hydrofluoric acid (HF) and coated with HEC hydrogel to excite a strong evanescent field and increase the sensitivity of the SMDMS sensor. The adsorption of water molecules by HEC will cause a change in the effective refractive index of cladding mode, which will eventually change the intensity of the transmission spectrum. The experimental results indicate that the sensitivities are 0.507 dB/%RH and 0.345 dB/°C in the RH range of 30%-80% and temperature range of 10°C-50°C, respectively. At last, a dual-parameter measurement matrix is constructed based on the experimental results to achieve the simultaneous measurement of RH and temperature. The SMDMS sensor has the advantages of high sensitivity and good robustness, and has potential application prospects in daily life and other fields.

12.
Opt Express ; 29(15): 24102-24117, 2021 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-34614661

RESUMO

A single core-offset Mach-Zehnder interferometer (MZI) coated with polyvinyl alcohol (PVA) for simultaneous measurement of relative humidity (RH) and temperature is proposed in this paper. The sensing structure is fabricated by splicing dispersion compensating fiber (DCF) and no-core fiber (NCF) and splicing two single-mode fibers (SMF) at both ends, where the core-offset is located at the splicing of SMF and DCF. A part of the cladding of DCF is etched to excite the high-order cladding mode (LP10), and PVA is coated on the etched area. The refractive index of PVA varies due to the adsorption of water molecules. Therefore, when the ambient relative humidity and temperature change, the change of MZI phase difference causes the wavelength of the resonant dip to shift. The experimental results indicate that the proposed sensor has a sensitivity of 0.256 nm/RH% for RH range of 30%-95%, and a sensitivity of 0.153 nm/℃ for temperature range of 20℃-80℃, respectively. The simultaneous measurement of RH and temperature can be achieved by demodulating the sensitivity coefficient matrix. The proposed sensor has the characteristics of good repeatability, high sensitivity, and good stability, which make it potentially applications for the detection of RH and temperature measurement.

13.
Nanomaterials (Basel) ; 11(9)2021 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-34578673

RESUMO

Quasi-bound states in the continuum provide an effective and observable way to improve metasurface performance, usually with an ultra-high-quality factor. Dielectric metasurfaces dependent on Mie resonances have the characteristic of significantly low loss, and the polarization can be affected by the parameter tuning of the structure. Based on the theory of quasi-bound states in the continuum, we propose and simulate a bifunctional resonant metasurface, whose periodic unit structure consists of four antiparallel and symmetrical amorphous silicon columns embedded in a poly(methyl methacrylate) layer. The metasurface can exhibit an extreme Huygens' regime in the case of an incident plane wave with linear polarization, while exhibiting chirality in the case of incident circular polarized light. Our structure provides ideas for promoting the multifunctional development of flat optical devices, as well as presenting potential in polarization-dependent fields.

14.
Nanomaterials (Basel) ; 11(8)2021 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-34443854

RESUMO

The multifocal metalens with an adjustable intensity has great potential in many applications such as the multi-imaging system, but it is less studied. In this paper, by combining the electro-optic material barium titanate (BTO) with the Pancharatnam-Berry phase, an electrically modulated bifocal metalens in a visible light band is innovatively proposed. Due to the electro-optic effect, we can control the refractive index of the BTO nanofins to vary between 2.4 and 3.07 by applying different voltages (0-60 V). Thus, the method of modulating the intensity ratio of the two focal points is applying an electric field. It is different from using phase change materials or changing the ellipticity of incident light, the strategies proposed in previous studies. Moreover, when the applied voltage is 0 V or 60 V, the bifocal metalens becomes a single focal metalens with different focal lengths, and the full width at half maximum of each focal point is close to the diffraction limit. It has great potential in applications of optical storage, communication and imaging systems.

15.
Nanomaterials (Basel) ; 11(6)2021 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-34204646

RESUMO

With the presence of a driving field applied to double quantum dots and a control field applied on the cavity, the transmission performance and group delay effect of a probe field have been theoretically studied in a hybrid optomechanical system (HOMS). Due to the interaction between the mechanical mode and the double quantum dots system, double optomechanically induced transparency (OMIT) arises in the HOMS. With the assistance of a driving field, the system can be tuned to switch on any one of the two OMIT windows, switch on both of the two OMIT windows or switch off both of the two OMIT windows by dynamically adjusting control of the optical field and the driving field. Furthermore, the transmitted probe fields of the two OMIT windows can be tuned to be absorbed or amplified with proper parameters of the driving field and control field. Moreover, the transmission properties of the two OMIT windows are asymmetrical. One can obtain the maximum group delay time of the probe field by optimizing the amplitude and phase of the driving field. These results provide a new way for constructing optically controlled nanostructured photonic switch and storage devices.

16.
Sensors (Basel) ; 21(11)2021 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-34199927

RESUMO

A graphene oxide-coated in-fiber Mach-Zehnder interferometer (MZI) formed with a multimode fiber-thin core fiber-multimode fiber (MMF-TCF-MMF) is proposed and experimentally demonstrated for ammonia gas (NH3) sensing. The MZI structure is composed of two segments of MMF of length 2 mm, with a flame-tapered TCF between them as the sensing arm. The MMFs act as mode couplers to split and recombine light owing to the core diameter mismatch with the other fibers. A tapered TCF is formed by the flame melting taper method, resulting in evanescent wave leakage. A layer of graphene oxide (GO) is applied to the tapered region of the TCF to achieve gas adsorption. The sensor operates on the principle of changing the effective refractive index of the cladding mode of a fiber through changing the conductivity of the GO coating by adsorbed NH3 molecules, which gives rise to a phase shift and shows as the resonant dip shifts in the transmission spectrum. So the concentration of the ammonia gas can be obtained by measuring the dip shift. A wavelength-shift sensitivity of 4.97 pm/ppm with a linear fit coefficient of 98.9% is achieved for ammonia gas concentrations in the range of 0 to 151 ppm. In addition, we performed a repetitive dynamic response test on the sensor by charging/releasing NH3 at concentration of 200 ppm and a relative humidity test in a relative humidity range of 35% to 70%, which demonstrates the reusability and stability of the sensor.

17.
Nanomaterials (Basel) ; 11(3)2021 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-33799398

RESUMO

The zoom metalens has been a research hotspot for metasurfaces in recent years. There are currently a variety of zoom methods, including dual metalenses, micro-electromechanical system metalenses, polydimethylsiloxane metalenses and Alvarez metalenses. However, for most metalenses, zooming is achieved by manipulating the relative displacement of two or more metasurfaces. Therefore, these methods seem inadequate when faced with more precise zooming requirements, and the precise control of the phase distribution cannot be achieved. In this paper, we innovatively propose an electrically-driven zoom metalens (EZM) of one-dimensional based on dynamically controlling barium titanate (BaTiO3, BTO) antennas. Using the electro-optic effect of BTO crystals, we can apply a voltage to change the refractive index of BTO nanopillars (n = 2.4-3.6), thereby accurately controlling the phase distribution of column antennas. The proposed EZM can achieve 5× zoom (f = 10-50 µm), with advantages, such as high-speed optical amplitude modulation, ultra-compactness, flexibility and replicability. It can be applied in fields that require ultra-compact beam focusing, zoom imaging, and microscopic measuring.

18.
Opt Express ; 29(5): 7925-7934, 2021 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-33726284

RESUMO

Focus-tunable metalenses play an indispensable role in the development of integrated optical systems. In this paper, the phase change material Sb2S3 is used in a thermally modulated varifocal metalens based on PB-phase for the first time. Sb2S3 not only has a real part of refractive index shift between the amorphous and crystalline state but also has low losses in both amorphous and crystalline states in the near-infrared region. By switching Sb2S3 between the two states, a metalens doublet with a variable focal length is proposed. Moreover, the full width at half maximum of each focal point is close to the diffraction limit. And the focusing efficiency can be over 50% for the two focal points. Together with the advantage of precise thermal control, the proposed metalens has great potential in the application of multi-functional devices, biomedical science, communication and imaging.

19.
Nanomaterials (Basel) ; 10(7)2020 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-32664539

RESUMO

A novel multifunctional device based on a hybrid metal-graphene Electromagnetically induced transparency (EIT) metamaterial at the terahertz band is proposed. It is composed of a parallel cut wire pair (PCWP) that serves as a dark mode resonator, a vertical cut wire pair (VCWP) that serves as a bright mode resonator and a graphene ribbon that serves as a modulator. An ultra-broadband transmission window with 1.23 THz bandwidth can be obtained. The spectral extinction ratio can be tuned from 26% to 98% by changing the Fermi level of the graphene. Compared with previous work, our work has superior performance in the adjustable bandwidth of the transmission window without changing the structure of the dark and bright mode resonators, and has a high extinction ratio and dynamic adjustability. Besides, we present the specific application of the device in filters and optical modules. Therefore, we believe that such a metamaterial structure provides a new way to actively control EIT-like, which has promising applications in broadband optical filters and photoelectric intensity modulators in terahertz communications.

20.
Nanomaterials (Basel) ; 10(7)2020 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-32707727

RESUMO

A broadband terahertz (THz) absorber, based on a graphene metasurface, which consists of a layer of ring-porous patterned structure array and a metallic mirror separated by an ultrathin SiO2 dielectric layer, is proposed and studied by numerical simulation. The simulated results show that the absorptivity of the absorber reaches 90% in the range of 0.91-1.86 THz, and the normalized bandwidth of the absorptivity is 68.6% under normal incidence. In the simulation, the effects of the geometric parameters of the structure on the absorption band have been investigated. The results show that the absorber is insensitive to the incident polarization angle for both transverse electric (TE) and transverse magnetic (TM) under normal incidence. In addition, the absorber is not sensitive to oblique incidence of the light source under TE polarization conditions, and has an approximately stable absorption bandwidth at the incident angle from 0° to 50°. The absorption band can be adjusted by changing the bias voltage of the graphene Fermi level without varying the nanostructure. Furthermore, we propose that a two-layer graphene structure with the same geometric parameters is separated by a dielectric layer of appropriate thickness. The simulated results show that the absorptivity of the two-layer absorber reaches 90% in the range of 0.83-2.04 THz and the normalized bandwidth of the absorptivity is 84.3% under normal incidence. Because of its excellent characteristics based on graphene metamaterial absorbers, it has an important application value in the field of subwavelength photonic devices.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA