Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 77
Filtrar
1.
J Nat Prod ; 86(12): 2685-2690, 2023 12 22.
Artigo em Inglês | MEDLINE | ID: mdl-37991924

RESUMO

To investigate the role of the secondary 5-hydroxy group in the activity of the anticancer drug tigilanol tiglate (2b) (Stelfonta), oxidation of this epoxytigliane diterpenoid from the Australian rainforest plant Fontainea picrosperma was attempted. Eventually, 5-dehydrotigilanol tiglate (3a) proved too unstable to be characterized in terms of biological activity and, therefore, was not a suitable tool compound for bioactivity studies. On the other hand, a series of remarkable skeletal rearrangements associated with the presence of a 5-keto group were discovered during its synthesis, including a dismutative ring expansion of ring A and a mechanistically unprecedented dyotropic substituent swap around the C-4/C-10 bond. Taken together, these observations highlight the propensity of the α-hydroxy-ß-diketone system to trigger complex skeletal rearrangements and pave the way to new areas of the natural products chemical space.


Assuntos
Antineoplásicos , Produtos Biológicos , Diterpenos , Forbóis , Austrália , Diterpenos/química , Antineoplásicos/química , Produtos Biológicos/química
2.
Carbohydr Res ; 533: 108944, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37729855

RESUMO

The discovery of new glycosylation reactions is still a major challenge in carbohydrate chemistry. Traditional glycosylation reactions require the preparation of sugar donors with anomeric active or latent leaving groups. Dehydrative glycosylation is a fascinating alternative that enables the direct formation of the glycosidic bond from the hemiacetal, eliminating the need for (sometimes unstable) leaving groups, and allowing to reduce reaction, work-up, and purification times. Although some interesting methods of dehydrative glycosylation have been reported, in order to compete with conventional chemical glycosylation, a greater number of efficient and stereoselective methods need to be developed. Herein, a dehydrative procedure that uses a combination of iodine, triphenylphosphine, and a base (DMAP or imidazole) is described. This methodology allows for the preparation of sugar derivatives from commercially available 1-hydroxy glycosyl donors. The reaction takes place under mild conditions through the in situ-formation of an anomeric iodide intermediate, which, upon reaction with an alcohol, gives the corresponding glycosides up to quantitative yields and with high α-stereoselectivity.


Assuntos
Iodo , Glicosilação , Compostos Organofosforados , Química Orgânica , Glicosídeos
3.
J Nat Prod ; 86(4): 1025-1032, 2023 04 28.
Artigo em Inglês | MEDLINE | ID: mdl-37036806

RESUMO

The discovery of new bioactivities is closely related to the generation of novel scaffolds, and in the past few years different strategies have been proposed to obtain unknown architectures from the manipulation of known compounds. In the present study, we exploited a vintage photochemical approach for the discovery of an unexpected pathway of reactivity related to Δ1-3-oxo-pentacyclic triterpenic acids gaining access to a new class of natural-unnatural 5(10→1)abeo-pentacyclic triterpenic acids.


Assuntos
Triterpenos , Triterpenos Pentacíclicos/farmacologia , Triterpenos/farmacologia , Triterpenos/análise , Cromatografia Líquida de Alta Pressão
4.
Cancers (Basel) ; 14(23)2022 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-36497257

RESUMO

T-cell acute lymphoblastic leukemia (T-ALL) is an aggressive hematological malignancy considered curable by modern clinical management. Nevertheless, the prognosis for T-ALL high-risk cases or patients with relapsed and refractory disease is still dismal. Therefore, there is a keen interest in developing more efficient and less toxic therapeutic approaches. T-ALL pathogenesis is associated with Notch signaling alterations, making this pathway a highly promising target in the fight against T-ALL. Here, by exploring the anti-leukemic capacity of the natural polyphenol curcumin and its derivatives, we found that curcumin exposure impacts T-ALL cell line viability and decreases Notch signaling in a dose- and time-dependent fashion. However, our findings indicated that curcumin-mediated cell outcomes did not depend exclusively on Notch signaling inhibition, but might be mainly related to compound-induced DNA-damage-associated cell death. Furthermore, we identified a novel curcumin-based compound named CD2066, endowed with potentiated anti-proliferative activity in T-ALL compared to the parent molecule curcumin. At nanomolar concentrations, CD2066 antagonized Notch signaling, favored DNA damage, and acted synergistically with the CDK1 inhibitor Ro3306 in T-ALL cells, thus representing a promising novel candidate for developing therapeutic agents against Notch-dependent T-ALL.

5.
Plants (Basel) ; 11(21)2022 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-36365350

RESUMO

Cannabis (Cannabis sativa L.) is an outstanding source of bioactive natural products, with more than 150 different phytocannabinoids isolated throughout the decades; however, studies of their bioactivity have historically concentrated on the so-called "big four" [∆9-THC (1a), CBD (2a), CBG (3a) and CBC (4a)]. Among the remaining products, which have traditionally been referred to as "minor cannabinoids", cannabinol (CBN, 5a) stands out for its important repercussions and implications on the global scientific landscape. Throughout this review, we will describe why CBN (5a) deserves a prominent place within the so-called "cannabinome", providing an overview on its history, the syntheses developed, and its bioactivity, highlighting its promising pharmacological potential and the significant impact that the study of its chemistry had on the development of new synthetic methodologies.

6.
Comput Struct Biotechnol J ; 20: 5275-5286, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36212535

RESUMO

Self-labelling protein tags (SLPs) are resourceful tools that revolutionized sensor imaging, having the versatile ability of being genetically fused with any protein of interest and undergoing activation with alternative probes specifically designed for each variant (namely, SNAP-tag, CLIP-tag and Halo-tag). Commercially available SLPs are highly useful in studying molecular aspects of mesophilic organisms, while they fail in characterizing model organisms that thrive in harsh conditions. By applying an integrated computational and structural approach, we designed a engineered variant of the alkylguanine-DNA-alkyl-transferase (OGT) from the hyper-thermophilic archaeon Saccharolobus solfataricus (SsOGT), with no DNA-binding activity, able to covalently react with O6 -benzyl-cytosine (BC-) derivatives, obtaining the first thermostable CLIP-tag, named SsOGT-MC8 . The presented construct is able to recognize and to covalently bind BC- substrates with a marked specificity, displaying a very low activity on orthogonal benzyl-guanine (BG-) substrate and showing a remarkable thermal stability that broadens the applicability of SLPs. The rational mutagenesis that, starting from SsOGT, led to the production of SsOGT-MC8 was first evaluated by structural predictions to precisely design the chimeric construct, by mutating specific residues involved in protein stability and substrate recognition. The final construct was further validated by biochemical characterization and X-ray crystallography, allowing us to present here the first structural model of a CLIP-tag establishing the molecular determinants of its activity, as well as proposing a general approach for the rational engineering of any O6 -alkylguanine-DNA-alkyl-transferase turning it into a SNAP- and a CLIP-tag variant.

7.
Commun Biol ; 5(1): 895, 2022 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-36050388

RESUMO

Glioblastoma (GBM) is the most aggressive primary brain tumour for which both effective treatments and efficient tools for an early-stage diagnosis are lacking. Herein, we present curcumin-based fluorescent probes that are able to bind to aldehyde dehydrogenase 1A3 (ALDH1A3), an enzyme overexpressed in glioma stem cells (GSCs) and associated with stemness and invasiveness of GBM. Two compounds are selective versus ALDH1A3, without showing any appreciable interaction with other ALDH1A isoenzymes. Indeed, their fluorescent signal is detectable only in our positive controls in vitro and absent in cells that lack ALDH1A3. Remarkably, in vivo, our Probe selectively accumulate in glioblastoma cells, allowing the identification of the growing tumour mass. The significant specificity of our compounds is the necessary premise for their further development into glioblastoma cells detecting probes to be possibly used during neurosurgical operations.


Assuntos
Aldeído Oxirredutases , Neoplasias Encefálicas , Curcumina , Glioblastoma , Aldeído Desidrogenase/química , Aldeído Desidrogenase/metabolismo , Aldeído Oxirredutases/química , Aldeído Oxirredutases/metabolismo , Neoplasias Encefálicas/diagnóstico , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/cirurgia , Curcumina/metabolismo , Curcumina/farmacologia , Diagnóstico Precoce , Corantes Fluorescentes/metabolismo , Glioblastoma/diagnóstico , Glioblastoma/metabolismo , Glioblastoma/cirurgia , Humanos , Células-Tronco Neoplásicas/metabolismo
8.
Front Mol Biosci ; 9: 964295, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36090055

RESUMO

Artemetin is a valuable 5-hydroxy-3,6,7,3',4'-pentamethoxyflavone present in many different medicinal plants with very good oral bioavailability and drug-likeness values, owing to numerous bioactivities, such as anti-inflammatory and anti-cancer ones. Here, a multi-disciplinary plan has been settled and applied for identifying the artemetin target(s) to inspect its mechanism of action, based on drug affinity-responsive target stability and targeted limited proteolysis. Both approaches point to the disclosure of filamins A and B as direct artemetin targets in HeLa cell lysates, also giving detailed insights into the ligand/protein-binding sites. Interestingly, also 8-prenyl-artemetin, which is an artemetin more permeable semisynthetic analog, directly interacts with filamins A and B. Both compounds alter filamin conformation in living HeLa cells with an effect on cytoskeleton disassembly and on the disorganization of the F-actin filaments. Both the natural compound and its derivative are able to block cell migration, expectantly acting on tumor metastasis occurrence and development.

9.
Biochem Pharmacol ; 203: 115202, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35932797

RESUMO

Polypharmacological targeting of lipid mediator networks offers potential for efficient and safe anti-inflammatory therapy. Because of the diversity of its biological targets, curcumin (1a) has been viewed as a privileged structure for bioactivity or, alternatively, as a pan-assay interference (PAIN) compound. Curcumin has actually few high-affinity targets, the most remarkable ones being 5-lipoxygenase (5-LOX) and microsomal prostaglandin E2 synthase (mPGES)-1. These enzymes are critical for the production of pro-inflammatory leukotrienes and prostaglandin (PG)E2, and previous structure-activity-relationship studies in this area have focused on the enolized 1,3-diketone motif, the alkyl-linker and the aryl-moieties, neglecting the rotational state of curcumin, which can adopt twisted conformations in solution and at target sites. To explore how the conformation of curcuminoids impacts 5-LOX and mPGES-1 inhibition, we have synthesized rotationally constrained analogues of the natural product and its pyrazole analogue by alkylation of the linker and/or of the ortho aromatic position(s). These modifications strongly impacted 5-LOX and mPGES-1 inhibition and their systematic analysis led to the identification of potent and selective 5-LOX (3b, IC50 = 0.038 µM, 44.7-fold selectivity over mPGES-1) and mPGES-1 inhibitors (2f, IC50 = 0.11 µM, 4.6-fold selectivity over 5-LOX). Molecular docking experiments suggest that the C2-methylated pyrazolocurcuminoid 3b targets an allosteric binding site at the interface between catalytic and regulatory 5-LOX domain, while the o, o'-dimethylated desmethoxycurcumin 2f likely binds between two monomers of the trimeric mPGES-1 structure. Both compounds trigger a lipid mediator class switch from pro-inflammatory leukotrienes to PG and specialized pro-resolving lipid mediators in activated human macrophages.


Assuntos
Araquidonato 5-Lipoxigenase , Curcumina , Prostaglandina-E Sintases/antagonistas & inibidores , Araquidonato 5-Lipoxigenase/metabolismo , Constrição , Curcumina/metabolismo , Diarileptanoides/metabolismo , Eicosanoides/metabolismo , Humanos , Leucotrienos , Inibidores de Lipoxigenase/farmacologia , Macrófagos/metabolismo , Simulação de Acoplamento Molecular , Prostaglandina-E Sintases/metabolismo , Prostaglandinas/metabolismo
10.
Pharmaceutics ; 14(6)2022 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-35745840

RESUMO

The intrinsic histone acetyltransferase (HAT), p300, has an important role in the development and progression of heart failure. Curcumin (CUR), a natural p300-specific HAT inhibitor, suppresses hypertrophic responses and prevents deterioration of left-ventricular systolic function in heart-failure models. However, few structure-activity relationship studies on cardiomyocyte hypertrophy using CUR have been conducted. To evaluate if prenylated pyrazolo curcumin (PPC) and curcumin pyrazole (PyrC) can suppress cardiomyocyte hypertrophy, cultured cardiomyocytes were treated with CUR, PPC, or PyrC and then stimulated with phenylephrine (PE). PE-induced cardiomyocyte hypertrophy was inhibited by PyrC but not PPC at a lower concentration than CUR. Western blotting showed that PyrC suppressed PE-induced histone acetylation. However, an in vitro HAT assay showed that PyrC did not directly inhibit p300-HAT activity. As Cdk9 phosphorylates both RNA polymerase II and p300 and increases p300-HAT activity, the effects of CUR and PyrC on the kinase activity of Cdk9 were examined. Phosphorylation of p300 by Cdk9 was suppressed by PyrC. Immunoprecipitation-WB showed that PyrC inhibits Cdk9 binding to CyclinT1 in cultured cardiomyocytes. PyrC may prevent cardiomyocyte hypertrophic responses by indirectly suppressing both p300-HAT activity and RNA polymerase II transcription elongation activity via inhibition of Cdk9 kinase activity.

11.
Redox Biol ; 51: 102291, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35313207

RESUMO

The transcription factor BACH1 is a potential therapeutic target for a variety of chronic conditions linked to oxidative stress and inflammation, as well as cancer metastasis. However, only a few BACH1 degraders/inhibitors have been described. BACH1 is a transcriptional repressor of heme oxygenase 1 (HMOX1), which is positively regulated by transcription factor NRF2 and is highly inducible by derivatives of the synthetic oleanane triterpenoid 2-cyano-3,12-dioxooleana-1,9(11)-dien-28-oic acid (CDDO). Most of the therapeutic activities of these compounds are due to their anti-inflammatory and antioxidant properties, which are widely attributed to their ability to activate NRF2. However, with such a broad range of action, these compounds have other molecular targets that have not been fully identified and could also be of importance for their therapeutic profile. Herein we identified BACH1 as a target of two CDDO-derivatives (CDDO-Me and CDDO-TFEA), but not of CDDO. While both CDDO and CDDO-derivatives activate NRF2 similarly, only CDDO-Me and CDDO-TFEA inhibit BACH1, which explains the much higher potency of these CDDO-derivatives as HMOX1 inducers compared with unmodified CDDO. Notably, we demonstrate that CDDO-Me and CDDO-TFEA inhibit BACH1 via a novel mechanism that reduces BACH1 nuclear levels while accumulating its cytoplasmic form. In an in vitro model, both CDDO-derivatives impaired lung cancer cell invasion in a BACH1-dependent and NRF2-independent manner, while CDDO was inactive. Altogether, our study identifies CDDO-Me and CDDO-TFEA as dual KEAP1/BACH1 inhibitors, providing a rationale for further therapeutic uses of these drugs.


Assuntos
Ácido Oleanólico , Triterpenos , Proteína 1 Associada a ECH Semelhante a Kelch , Fator 2 Relacionado a NF-E2/genética , Fator 2 Relacionado a NF-E2/metabolismo , Ácido Oleanólico/análogos & derivados , Ácido Oleanólico/farmacologia , Estresse Oxidativo , Triterpenos/farmacologia
12.
Plants (Basel) ; 10(11)2021 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-34834731

RESUMO

Historically, plants have represented an invaluable source of compounds with complex structures and interesting pharmacological profiles [...].

13.
Neurotherapeutics ; 18(3): 1849-1861, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34339019

RESUMO

Huntington's disease (HD) is a neurodegenerative disorder characterized by unwanted choreatic movements, behavioral and psychiatric disturbances, and dementia. The activation of the hypoxic response pathway through the pharmacological inhibition of hypoxia-inducing factor (HIF) prolyl-hydroxylases (PHDs) is a promising approach for neurodegenerative diseases, including HD. Herein, we have studied the mechanism of action of the compound Betulinic acid hydroxamate (BAH), a hypoximimetic derivative of betulinic acid, and its efficacy against striatal neurodegeneration using complementary approaches. Firstly, we showed the molecular mechanisms through which BAH modifies the activity of the PHD2 prolyl hydroxylase, thus directly affecting HIF-1α stability. BAH treatment reduces PHD2 phosphorylation on Ser-125 residue, responsible for the control of its hydrolase activity. HIF activation by BAH is inhibited by okadaic acid and LB-100 indicating that a protein phosphatase 2A (PP2A) is implicated in the mechanism of action of BAH. Furthermore, in striatal cells bearing a mutated form of the huntingtin protein, BAH stabilized HIF-1α protein, induced Vegf and Bnip3 gene expression and protected against mitochondrial toxin-induced cytotoxicity. Pharmacokinetic analyses showed that BAH has a good brain penetrability and experiments performed in a mouse model of striatal neurodegeneration induced by 3-nitropropionic acid showed that BAH improved the clinical symptoms. In addition, BAH also prevented neuronal loss, decreased reactive astrogliosis and microglial activation, inhibited the upregulation of proinflammatory markers, and improved antioxidant defenses in the brain. Taken together, our results show BAH's ability to activate the PP2A/PHD2/HIF pathway, which may have important implications in the treatment of HD and perhaps other neurodegenerative diseases.


Assuntos
Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Prolina Dioxigenases do Fator Induzível por Hipóxia/metabolismo , Fármacos Neuroprotetores/farmacologia , Triterpenos Pentacíclicos/farmacologia , Proteína Fosfatase 2/metabolismo , Animais , Corpo Estriado/efeitos dos fármacos , Corpo Estriado/metabolismo , Corpo Estriado/patologia , Células HEK293 , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Células NIH 3T3 , Nitrocompostos/toxicidade , Fosforilação/efeitos dos fármacos , Fosforilação/fisiologia , Propionatos/toxicidade , Ácido Betulínico
14.
Beilstein J Org Chem ; 17: 1335-1351, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34136013

RESUMO

Organic chemistry honors Icilio Guareschi (1847-1918) with three eponymic reactions, the best known ones being the Guareschi synthesis of pyridones and the Guareschi-Lustgarten reaction. A third Guareschi reaction, the so-called "Guareschi 1897 reaction", is one of the most unusual reactions in organic chemistry, involving the radical-mediated paradoxical aerobic generation of hydrocarbons in near-neutral water solution. A discussion of the mechanism of this amazing reaction, the only metal-free process that generates hydrocarbons, and the implications of the approach in biology and geosciences mirrors the multifaceted scientific personality of the discoverer. Thus, Guareschi's eclectic range of activities spans a surprising variety of topics, overcoming the boundaries of the traditional partition of chemistry into organic, inorganic, and analytical branches and systematically crosses the divide between pure and applied science as well as between the history of chemistry and the personal contributions to its development.

15.
Plants (Basel) ; 10(4)2021 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-33916090

RESUMO

Natural disesquiterpenoids represent a small group of secondary metabolites characterized by complex molecular scaffolds and interesting pharmacological profiles. In the last decade, more than 400 new disesquiterpenoids have been discovered and fully characterized, pointing out once more the "magic touch" of nature in the design of new compounds. The perfect blend of complex and unique architectures and biological activity has made sesquiterpene dimers an attractive and challenging synthetic target, inspiring organic chemists to find new and biomimetic approaches to replicate the efficiency and the selectivity of natural processes under laboratory conditions. In this work, we present a review covering the literature from 2010 to 2020 reporting all the efforts made in the total synthesis of complex natural disesquiterpenoids.

16.
J Enzyme Inhib Med Chem ; 36(1): 85-97, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33121288

RESUMO

SNAP-tag ® is a powerful technology for the labelling of protein/enzymes by using benzyl-guanine (BG) derivatives as substrates. Although commercially available or ad hoc produced, their synthesis and purification are necessary, increasing time and costs. To address this limitation, here we suggest a revision of this methodology, by performing a chemo-enzymatic approach, by using a BG-substrate containing an azide group appropriately distanced by a spacer from the benzyl ring. The SNAP-tag ® and its relative thermostable version (SsOGT-H5 ) proved to be very active on this substrate. The stability of these tags upon enzymatic reaction makes possible the exposition to the solvent of the azide-moiety linked to the catalytic cysteine, compatible for the subsequent conjugation with DBCO-derivatives by azide-alkyne Huisgen cycloaddition. Our studies propose a strengthening and an improvement in terms of biotechnological applications for this self-labelling protein-tag.


Assuntos
Azidas/química , Metilases de Modificação do DNA/metabolismo , Corantes Fluorescentes/química , Azidas/síntese química , Metilases de Modificação do DNA/química , Corantes Fluorescentes/síntese química , Células HEK293 , Humanos , Modelos Moleculares , Estrutura Molecular , Relação Estrutura-Atividade , Especificidade por Substrato
17.
Acta Pharmacol Sin ; 42(7): 1124-1138, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32811965

RESUMO

Intestinal fibrosis is a common complication of inflammatory bowel disease (IBD) and is defined as an excessive accumulation of scar tissue in the intestinal wall. Intestinal fibrosis occurs in both forms of IBD: ulcerative colitis and Crohn's disease. Small-molecule inhibitors targeting hypoxia-inducing factor (HIF) prolyl-hydroxylases are promising for the development of novel antifibrotic therapies in IBD. Herein, we evaluated the therapeutic efficacy of hydroxamate of betulinic acid (BHA), a hypoxia mimetic derivative of betulinic acid, against IBD in vitro and in vivo. We showed that BAH (5-20 µM) dose-dependently enhanced collagen gel contraction and activated the HIF pathway in NIH-3T3 fibroblasts; BAH treatment also prevented the loss of trans-epithelial electrical resistance induced by proinflammatory cytokines in Caco-2 cells. In two different murine models (TNBS- and DSS-induced IBD) that cause colon fibrosis, oral administration of BAH (20, 50 mg/kg·d, for 17 days) prevented colon inflammation and fibrosis, as detected using immunohistochemistry and qPCR assays. BAH-treated animals showed a significant reduction of fibrotic markers (Tnc, Col1a2, Col3a1, Timp-1, α-SMA) and inflammatory markers (F4/80+, CD3+, Il-1ß, Ccl3) in colon tissue, as well as an improvement in epithelial barrier integrity and wound healing. BHA displayed promising oral bioavailability, no significant activity against a panel of 68 potential pharmacological targets and was devoid of genotoxicity and cardiotoxicity. Taken together, our results provide evidence that oral administration of BAH can alleviate colon inflammation and colitis-associated fibrosis, identifying the enhancement of colon barrier integrity as a possible mechanism of action, and providing a solid rationale for additional clinical studies.


Assuntos
Anti-Inflamatórios/uso terapêutico , Fibrose/prevenção & controle , Ácidos Hidroxâmicos/uso terapêutico , Inflamação/prevenção & controle , Doenças Inflamatórias Intestinais/complicações , Triterpenos Pentacíclicos/uso terapêutico , Animais , Anti-Inflamatórios/farmacocinética , Células CACO-2 , Colo/efeitos dos fármacos , Colo/patologia , Sulfato de Dextrana , Fibrose/etiologia , Fibrose/patologia , Fármacos Gastrointestinais/farmacocinética , Fármacos Gastrointestinais/uso terapêutico , Expressão Gênica/efeitos dos fármacos , Humanos , Ácidos Hidroxâmicos/farmacocinética , Inflamação/etiologia , Inflamação/patologia , Doenças Inflamatórias Intestinais/induzido quimicamente , Doenças Inflamatórias Intestinais/patologia , Mucosa Intestinal/efeitos dos fármacos , Mucosa Intestinal/patologia , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Células NIH 3T3 , Triterpenos Pentacíclicos/farmacocinética , Ácido Trinitrobenzenossulfônico , Ácido Betulínico
18.
J Nat Prod ; 83(5): 1711-1715, 2020 05 22.
Artigo em Inglês | MEDLINE | ID: mdl-32315173

RESUMO

Spurred by a growing interest in cannabidiolquinone (CBDQ, HU-313, 2) as a degradation marker and alledged hepatotoxic metabolite of cannabidiol (CBD, 1), we performed a systematic study on the oxidation of CBD (1) to CBDQ (2) under a variety of experimental conditions (base-catalyzed aerobic oxidation, oxidation with metals, oxidation with hypervalent iodine reagents). The best results in terms of reproducibility and scalability were obtained with λ5-periodinanes (Dess-Martin periodinane, 1-hydroxy-1λ5,2-benziodoxole-1,3-dione (IBX), and SIBX, a stabilized, nonexplosive version of IBX). With these reagents, the oxidative dimerization that plagues the reaction under basic aerobic conditions was completely suppressed. A different reaction course was observed with the copper(II) chloride-hydroxylamine complex (Takehira reagent), which afforded a mixture of the hydroxyiminodienone 11 and the halogenated resorcinol 12. The λ5-periodinane oxidation was general for phytocannabinoids, turning cannabigerol (CBG, 18), cannabichromene (CBC, 10), and cannabinol (CBN, 19) into their corresponding hydroxyquinones (20, 21, and 22, respectively). All cannabinoquinoids modulated to a various extent peroxisome proliferator-activated receptor gamma (PPAR-γ) activity, outperforming their parent resorcinols in terms of potency, but the iminoquinone 11, the quinone dimers 3 and 23, and the haloresorcinol 12 were inactive, suggesting a specific role for the monomeric hydroxyquinone moiety in the interaction with PPAR-γ.


Assuntos
Canabidiol/química , Canabinoides/química , Canabinoides/síntese química , PPAR gama/química , Quinonas/química , Oxirredução , Reprodutibilidade dos Testes , Resorcinóis/química
19.
Biochem Biophys Res Commun ; 524(4): 996-1002, 2020 04 16.
Artigo em Inglês | MEDLINE | ID: mdl-32059844

RESUMO

3-isopropylmalate dehydrogenases (LeuB) belong to the leucine biosynthetic pathway and catalyze the irreversible oxidative decarboxylation of 3IPM to 2-ketoisocaproate that is finally converted into leucine by a branched-chain aminotransferase. Since leucine is an essential amino acid for humans, and it is also vital for the growth of many pathogenic bacteria, the enzymes belonging to this pathway can be considered as potential target sites for designing of a new class of antibacterial agents. We have determined the crystal structure of the Haemophilus influenzae LeuB in complex with the cofactor NAD+ and the inhibitor O-IbOHA, at 2.1 Å resolution; moreover, we have investigated the inhibitor mechanism of action by analyzing the enzyme kinetics. The structure of H. influenzae LeuB in complex with the intermediate analog inhibitor displays a fully closed conformation, resembling the previously observed, closed form of the equivalent enzyme of Thiobacillus ferrooxidans in complex with the 3IPM substrate. O-IbOHA was found to bind the active site by adopting the same conformation of 3IPM, and to induce an unreported repositioning of the side chain of the amino acids that participate in the coordination of the ligand. Indeed, the experimentally observed binding mode of O-IbOHA to the H. influenzae LeuB enzyme, reveals aspects of novelty compared to the computational binding prediction performed on M. tuberculosis LeuB. Overall, our data provide new insights for the structure-based rational design of a new class of antibiotics targeting the biosynthesis of leucine in pathogenic bacteria.


Assuntos
3-Isopropilmalato Desidrogenase/antagonistas & inibidores , 3-Isopropilmalato Desidrogenase/química , Inibidores Enzimáticos/farmacologia , Haemophilus influenzae/enzimologia , Ácidos Hidroxâmicos/farmacologia , 3-Isopropilmalato Desidrogenase/metabolismo , Cristalografia por Raios X , Inibidores Enzimáticos/química , Infecções por Haemophilus/tratamento farmacológico , Infecções por Haemophilus/microbiologia , Haemophilus influenzae/efeitos dos fármacos , Humanos , Ácidos Hidroxâmicos/química , Simulação de Acoplamento Molecular , Conformação Proteica/efeitos dos fármacos
20.
Acta Pharm Sin B ; 9(5): 1078-1083, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31649855

RESUMO

The renewed interest in dimeric salicylates as broad-spectrum anti-inflammatory and anti-diabetic agents provided a rationale to investigate the dimerization of the substituted salicylate Δ 9-tetrahydrocannabinolic acid (THCA-A, 3a) as a strategy to solve its instability to decarboxylation and to generate analogues and/or pro-drugs of this native pre-cannabinoid. Activation of the carboxylic group with the DCC-HOBt-DMAP protocol afforded a high yield of the OBt ester 4, that was next converted into the highly crystalline di-depsidic dimer 5 upon treatment with DMAP. The mono-depsidic dimer 6 was also formed when the reaction was carried out with partially decarboxylated THCA-A samples. The structure of the depsidic dimers was established by spectroscopic methods and by aminolysis of 5 into the pre-cannabinoid amide 7. Both dimers showed excellent shelf stability and did not generate significant amounts of Δ 9-THC upon heating. However, only the didepsidic dimer 5 activated PPAR-γ, the major target of pre-cannabinoids, but strong binding to serum proteins abolished this activity, also shielding it from the action of esterases.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA