RESUMO
It is difficult to differentiate between coronavirus disease 2019 (COVID-19) and influenza based on the symptoms. In the present study, a newly developed antigen rapid diagnostic test (Ag-RDT) called Panbio™ COVID-19/Flu A&B that can simultaneously detect severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and influenza A/B virus was evaluated. Its accuracy was evaluated using 235 pairs of nasopharyngeal samples collected from patients with respiratory symptoms and fever (>37.5°C). Reverse transcription polymerase chain reaction was used as a reference method to evaluate the accuracy of the SARS-CoV-2 detection. We confirmed the accuracy of the developed Ag-RDT against the Omicron variant where the sensitivity and specificity were 94.8% and 100%, respectively. In addition, to identify the influenza A virus, a noninferiority test was conducted using a commercial Ag-RDT, which has a sensitivity and specificity in comparison with viral culture of 94.8% and 98.4%, respectively. The positive and negative predictive values for influenza A virus were 98.5% and 98.1%, respectively, for the Panbio COVID-19/Flu A&B test. The evaluation of this newly developed Ag-RDT using clinical samples suggests that it has a high efficacy in clinical settings.
Assuntos
Antígenos Virais , COVID-19 , Vírus da Influenza A , Vírus da Influenza B , Influenza Humana , Testes de Diagnóstico Rápido , SARS-CoV-2 , Adolescente , Adulto , Criança , Pré-Escolar , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Adulto Jovem , Antígenos Virais/imunologia , COVID-19/diagnóstico , COVID-19/imunologia , COVID-19/virologia , Teste Sorológico para COVID-19/métodos , Vírus da Influenza A/imunologia , Vírus da Influenza A/isolamento & purificação , Vírus da Influenza B/imunologia , Vírus da Influenza B/isolamento & purificação , Influenza Humana/diagnóstico , Influenza Humana/virologia , Influenza Humana/imunologia , Nasofaringe/virologia , Testes de Diagnóstico Rápido/instrumentação , SARS-CoV-2/imunologia , SARS-CoV-2/genética , Sensibilidade e Especificidade , Recém-Nascido , LactenteRESUMO
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) emerged in 2019 in China and rapidly spread worldwide, leading to a pandemic. The threat of SARS-CoV-2 is subsiding as most people have acquired sufficient antibodies through vaccination and/or infection to prevent severe COVID-19. After the emergence of the omicron variants, the seroprevalence of antibodies against the N protein elicited by SARS-CoV-2 infection ranged from 44.4% to 80.2% in countries other than Japan. Here, we assessed the seroprevalence in Japan before and after the appearance of omicron variants. Serosurveillance of antibodies against N was conducted between December 2021 and March 2023 in Japan. In total, 7604 and 3354 residual serum or plasma samples were collected in the Tokyo metropolitan area and Sapporo, respectively. We found that the seroprevalence in representative regions of Japan increased approximately 3% to 23% after the emergence of the omicron variants. We also found higher seroprevalence among the young compared with the elderly. Our findings indicate that unlike other countries, most of the Japanese population has not been infected, raising the possibility of future SARS-CoV-2 epidemics in Japan.
Assuntos
COVID-19 , SARS-CoV-2 , Idoso , Humanos , Japão/epidemiologia , Estudos Soroepidemiológicos , COVID-19/epidemiologia , Anticorpos Antivirais , PandemiasRESUMO
In our facility, anti-SARS-CoV-2 mRNA vaccines were given to 21 patients, including 8 with aplastic anemia (AA), 3 with pure red cell aplasia (PRCA), and 10 with immune thrombocytopenic purpura (ITP), and IgG antibody titers were assessed one month after vaccinations. After receiving both a second vaccine and a booster shot, all patients with AA/PRCA treated with cyclosporine A aside from one, had IgG titers that were lower than the median levels of healthy controls. Even if prednisolone (PSL) doses did not go over 10 mg/day, ITP patients receiving PSL therapy were unable to achieve adequate levels of IgG after booster immunizations.
Assuntos
Anemia Aplástica , COVID-19 , Doenças Hematológicas , Púrpura Trombocitopênica Idiopática , Aplasia Pura de Série Vermelha , Humanos , COVID-19/prevenção & controle , Anemia Aplástica/terapia , Anticorpos Antivirais , Imunoglobulina G , Prednisolona , Púrpura Trombocitopênica Idiopática/tratamento farmacológico , RNA Mensageiro , VacinaçãoRESUMO
The detailed mechanisms of COVID-19 infection pathology remain poorly understood. To improve our understanding of SARS-CoV-2 pathology, we performed a multi-omics and correlative analysis of an immunologically naïve SARS-CoV-2 clinical cohort from blood plasma of uninfected controls, mild, and severe infections. Consistent with previous observations, severe patient populations showed an elevation of pulmonary surfactant levels. Intriguingly, mild patients showed a statistically significant elevation in the carnosine dipeptidase modifying enzyme (CNDP1). Mild and severe patient populations showed a strong elevation in the metabolite L-cystine (oxidized form of the amino acid cysteine) and enzymes with roles in glutathione metabolism. Neutrophil extracellular traps (NETs) were observed in both mild and severe populations, and NET formation was higher in severe vs. mild samples. Our correlative analysis suggests a potential protective role for CNDP1 in suppressing PSPB release from the pulmonary space whereas NET formation correlates with increased PSPB levels and disease severity. In our discussion we put forward a possible model where NET formation drives pulmonary occlusions and CNDP1 promotes antioxidation, pleiotropic immune responses, and vasodilation by accelerating histamine synthesis.
RESUMO
Japan has reported a relatively small number of COVID-19 cases. Because not all infected persons receive diagnostic tests for COVID-19, the reported number must be lower than the actual number of infections. We assessed SARS-CoV-2 seroprevalence by analyzing >60,000 samples collected in Japan (Tokyo Metropolitan Area and Hokkaido Prefecture) during February 2020-March 2022. The results showed that ≈3.8% of the population had become seropositive by January 2021. The seroprevalence increased with the administration of vaccinations; however, among the elderly, seroprevalence was not as high as the vaccination rate. Among children, who were not eligible for vaccination, infection was spread during the epidemic waves caused by the SARS-CoV-2 Delta and Omicron variants. Nevertheless, seroprevalence for unvaccinated children <5 years of age was as low as 10% as of March 2022. Our study underscores the low incidence of SARS-CoV-2 infection in Japan and the effects of vaccination on immunity at the population level.
Assuntos
COVID-19 , SARS-CoV-2 , Criança , Humanos , Idoso , COVID-19/epidemiologia , COVID-19/prevenção & controle , Japão/epidemiologia , Estudos Soroepidemiológicos , Anticorpos Antivirais , VacinaçãoRESUMO
A 52-year-old man with mantle cell lymphoma treated with bendamustine and rituximab developed prolonged severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. Despite elevated titers of anti-spike IgG antibody, protracted pancytopenia persisted for more than six months. Finally, the anti-SARS CoV-2 vaccine, BNT162b2, was administered, which improved his blood cell count and eliminated the virus. The increased anti-spike IgG titer and lymphocyte count after vaccination suggested that both humoral and cellular immunity acted in coordination to eliminate the virus.
Assuntos
COVID-19 , Linfoma , Vacinas Virais , Adulto , Anticorpos Antivirais , Vacina BNT162 , Humanos , Masculino , Pessoa de Meia-Idade , SARS-CoV-2 , VacinaçãoRESUMO
The recent emergence of SARS-CoV-2 Omicron (B.1.1.529 lineage) variants possessing numerous mutations has raised concerns of decreased effectiveness of current vaccines, therapeutic monoclonal antibodies and antiviral drugs for COVID-19 against these variants1,2. The original Omicron lineage, BA.1, prevailed in many countries, but more recently, BA.2 has become dominant in at least 68 countries3. Here we evaluated the replicative ability and pathogenicity of authentic infectious BA.2 isolates in immunocompetent and human ACE2-expressing mice and hamsters. In contrast to recent data with chimeric, recombinant SARS-CoV-2 strains expressing the spike proteins of BA.1 and BA.2 on an ancestral WK-521 backbone4, we observed similar infectivity and pathogenicity in mice and hamsters for BA.2 and BA.1, and less pathogenicity compared with early SARS-CoV-2 strains. We also observed a marked and significant reduction in the neutralizing activity of plasma from individuals who had recovered from COVID-19 and vaccine recipients against BA.2 compared to ancestral and Delta variant strains. In addition, we found that some therapeutic monoclonal antibodies (REGN10987 plus REGN10933, COV2-2196 plus COV2-2130, and S309) and antiviral drugs (molnupiravir, nirmatrelvir and S-217622) can restrict viral infection in the respiratory organs of BA.2-infected hamsters. These findings suggest that the replication and pathogenicity of BA.2 is similar to that of BA.1 in rodents and that several therapeutic monoclonal antibodies and antiviral compounds are effective against Omicron BA.2 variants.
Assuntos
Antivirais , Tratamento Farmacológico da COVID-19 , SARS-CoV-2 , Animais , Anticorpos Monoclonais/farmacologia , Anticorpos Monoclonais/uso terapêutico , Anticorpos Monoclonais Humanizados , Anticorpos Neutralizantes/farmacologia , Anticorpos Neutralizantes/uso terapêutico , Anticorpos Antivirais/farmacologia , Anticorpos Antivirais/uso terapêutico , Antivirais/farmacologia , Antivirais/uso terapêutico , COVID-19/genética , COVID-19/imunologia , COVID-19/virologia , Cricetinae , Citidina/análogos & derivados , Combinação de Medicamentos , Hidroxilaminas , Indazóis , Lactamas , Leucina , Camundongos , Nitrilas , Prolina , SARS-CoV-2/efeitos dos fármacos , SARS-CoV-2/genética , SARS-CoV-2/patogenicidade , Glicoproteína da Espícula de Coronavírus/genética , Triazinas , TriazóisRESUMO
The SARS-CoV-2 B.1.621 (Mu) variant emerged in January 2021 and was categorized as a variant of interest by the World Health Organization in August 2021. This designation prompted us to study the sensitivity of this variant to antibody neutralization. In a live virus neutralization assay with serum samples from individuals vaccinated with the Pfizer/BioNTech or Moderna mRNA vaccines, we measured neutralization antibody titers against B.1.621, an early isolate (spike 614D), and a variant of concern (B.1.351, Beta variant). We observed reduced neutralizing antibody titers against the B.1.621 variant (3.4- to 7-fold reduction, depending on the serum sample and time after the second vaccination) compared to the early isolate and a similar reduction when compared to B.1.351. Likewise, convalescent serum from hamsters previously infected with an early isolate neutralized B.1.621 to a lower degree. Despite this antibody titer reduction, hamsters could not be efficiently rechallenged with the B.1.621 variant, suggesting that the immune response to the first infection is adequate to provide protection against a subsequent infection with the B.1.621 variant.
Assuntos
COVID-19 , Proteínas do Envelope Viral , Anticorpos Neutralizantes , Anticorpos Antivirais , COVID-19/terapia , Humanos , Imunização Passiva , Glicoproteínas de Membrana/genética , Testes de Neutralização , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus/genética , Vacinação , Proteínas do Envelope Viral/genética , Soroterapia para COVID-19RESUMO
This is a prospective study conducted to determine the level of anti-spike IgG to SARS-CoV-2 2-6 weeks following the BNT162b2 vaccination in 125 patients with hematological disorders. Compared with healthy controls, patients with malignant lymphoma had lower rates of seropositivity and lower levels of antibody titer. Furthermore, patients who received rituximab (R)-containing chemotherapy had lower antibody titers than those who were not treated with R or who had completed R-containing chemotherapy more than 9 months earlier. Despite having 71% IgG-seropositivity, patients with multiple myeloma had lower antibody titers than the control group. Furthermore, patients receiving daratumumab-containing chemotherapy had lower antibody titers than those not receiving treatment. Moreover, patients with acute myeloid leukemia or myelodysplastic syndrome had lower antibody titers than the control group. Overall, the number of peripheral blood lymphocytes was significantly correlated with IgG titers, with seropositive patients having more peripheral blood lymphocytes than seronegative patients. Patients with severe immunosuppression, such as those with hematological disorders, often have impaired seroconversion with COVID-19 vaccination that should be taken into consideration by clinicians.
Assuntos
Vacina BNT162 , COVID-19 , Anticorpos Antivirais , COVID-19/prevenção & controle , Vacinas contra COVID-19 , Humanos , Imunoglobulina G , Estudos Prospectivos , RNA Mensageiro , RNA Viral , SARS-CoV-2 , VacinaçãoRESUMO
PURPOSE: Using CT findings from a prospective, randomized, open-label multicenter trial of favipiravir treatment of COVID-19 patients, the purpose of this study was to compare the utility of machine learning (ML)-based algorithm with that of CT-determined disease severity score and time from disease onset to CT (i.e., time until CT) in this setting. MATERIALS AND METHODS: From March to May 2020, 32 COVID-19 patients underwent initial chest CT before enrollment were evaluated in this study. Eighteen patients were randomized to start favipiravir on day 1 (early treatment group), and 14 patients on day 6 of study participation (late treatment group). In this study, percentages of ground-glass opacity (GGO), reticulation, consolidation, emphysema, honeycomb, and nodular lesion volumes were calculated as quantitative indexes by means of the software, while CT-determined disease severity was also visually scored. Next, univariate and stepwise regression analyses were performed to determine relationships between quantitative indexes and time until CT. Moreover, patient outcomes determined as viral clearance in the first 6 days and duration of fever were compared for those who started therapy within 4, 5, or 6 days as time until CT and those who started later by means of the Kaplan-Meier method followed by Wilcoxon's signed-rank test. RESULTS: % GGO and % consolidation showed significant correlations with time until CT (p < 0.05), and stepwise regression analyses identified both indexes as significant descriptors for time until CT (p < 0.05). When divided all patients between time until CT of 4 days and that of more than 4 days, accuracy of the combined quantitative method (87.5%) was significantly higher than that of the CT disease severity score (62.5%, p = 0.008). CONCLUSION: ML-based CT texture analysis is equally or more useful for predicting time until CT for favipiravir treatment on COVID-19 patients than CT disease severity score.
Assuntos
COVID-19 , Algoritmos , Amidas , Inteligência Artificial , COVID-19/diagnóstico por imagem , Humanos , Pulmão/patologia , Estudos Prospectivos , Pirazinas , SARS-CoV-2 , Tomografia Computadorizada por Raios X/métodosRESUMO
BACKGROUND: We have reported the vaccine effectiveness of inactivated influenza vaccine in children aged 6 months to 15 years between the 2013/14 and 2018/19 seasons. Younger (6-11 months) and older (6-15 years old) children tended to have lower vaccine effectiveness. The purpose of this study is to investigate whether the recent vaccine can be recommended to all age groups. METHODS: The overall adjusted vaccine effectiveness was assessed from the 2013/14 until the 2020/21 season using a test-negative case-control design based on rapid influenza diagnostic test results. Vaccine effectiveness was calculated by influenza type and by age group (6-11 months, 1-2, 3-5, 6-12, and 13-15 years old) with adjustments including influenza seasons. RESULTS: A total of 29,400 children (9347, 4435, and 15,618 for influenza A and B, and test-negatives, respectively) were enrolled. The overall vaccine effectiveness against influenza A, A(H1N1)pdm09, and B was significant (44% [95% confidence interval (CI), 41-47], 63% [95 %CI, 51-72], and 37% [95 %CI, 32-42], respectively). The vaccine was significantly effective against influenza A and B, except among children 6 to 11 months against influenza B. The age group with the highest vaccine effectiveness was 1 to 2 years old with both influenza A and B (60% [95 %CI, 55-65] and 52% [95 %CI, 41-61], respectively). Analysis for the 2020/21 season was not performed because no cases were reported. CONCLUSIONS: This is the first report showing influenza vaccine effectiveness by age group in children for several seasons, including immediately before the coronavirus disease (COVID-19) era. The fact that significant vaccine effectiveness was observed in nearly every age group and every season shows that the recent vaccine can still be recommended to children for the upcoming influenza seasons, during and after the COVID-19 era.
Assuntos
COVID-19 , Vírus da Influenza A Subtipo H1N1 , Vacinas contra Influenza , Influenza Humana , Adolescente , COVID-19/epidemiologia , COVID-19/prevenção & controle , Estudos de Casos e Controles , Criança , Pré-Escolar , Humanos , Lactente , Vírus da Influenza A Subtipo H3N2 , Vírus da Influenza B , Influenza Humana/epidemiologia , Influenza Humana/prevenção & controle , Estações do Ano , Vacinação , Vacinas de Produtos InativadosRESUMO
Objective Coronavirus disease (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has spread globally. Although the relationship between anti-SARS-CoV-2 immunoglobulin G (IgG) antibodies and COVID-19 severity has been reported, information is lacking regarding the seropositivity of patients with particular types of diseases, including hematological diseases. Methods In this single-center, retrospective study, we compared SARS-CoV-2 IgG positivity between patients with hematological diseases and those with non-hematological diseases. Results In total, 77 adult COVID-19 patients were enrolled. Of these, 30 had hematological disorders, and 47 had non-hematological disorders. The IgG antibody against the receptor-binding domain of the spike protein was detected less frequently in patients with hematological diseases (60.0%) than in those with non-hematological diseases (91.5%; p=0.029). Rituximab use was significantly associated with seronegativity (p=0.010). Conclusion Patients with hematological diseases are less likely to develop anti-SARS-CoV-2 antibodies than those with non-hematological diseases, which may explain the poor outcomes of COVID-19 patients in this high-risk group.
Assuntos
COVID-19 , Doenças Hematológicas , Adulto , Anticorpos Antivirais , Doenças Hematológicas/complicações , Doenças Hematológicas/epidemiologia , Humanos , Imunoglobulina G , Imunoglobulina M , Japão/epidemiologia , Estudos Retrospectivos , SARS-CoV-2RESUMO
Assays using ELISA measurements on serially diluted serum samples have been heavily used to measure serum reactivity to SARS-CoV-2 antigens and are widely used in virology and elsewhere in biology. We test a method using Bayesian hierarchical modelling to reduce the workload of these assays and measure reactivity of SARS-CoV-2 and HCoV antigens to human serum samples collected before and during the COVID-19 pandemic. Inflection titers for SARS-CoV-2 full-length spike protein (S1S2), spike protein receptor-binding domain (RBD), and nucleoprotein (N) inferred from 3 spread-out dilutions correlated with those inferred from 8 consecutive dilutions with an R2 value of 0.97 or higher. We confirm existing findings showing a small proportion of pre-pandemic human serum samples contain cross-reactive antibodies to SARS-CoV-2 S1S2 and N, and that SARS-CoV-2 infection increases serum reactivity to the beta-HCoVs OC43 and HKU1 S1S2. In serial dilution assays, large savings in resources and/or increases in throughput can be achieved by reducing the number of dilutions measured and using Bayesian hierarchical modelling to infer inflection or endpoint titers. We have released software for conducting these types of analysis.
Assuntos
COVID-19 , SARS-CoV-2 , Anticorpos Antivirais , Teorema de Bayes , COVID-19/diagnóstico , Ensaio de Imunoadsorção Enzimática , Humanos , Pandemias , Estações do Ano , Carga de TrabalhoRESUMO
The recent emergence of SARS-CoV-2 Omicron variants possessing large numbers of mutations has raised concerns of decreased effectiveness of current vaccines, therapeutic monoclonal antibodies, and antiviral drugs for COVID-19 against these variants1,2. While the original Omicron lineage, BA.1, has become dominant in many countries, BA.2 has been detected in at least 67 countries and has become dominant in the Philippines, India, and Denmark. Here, we evaluated the replicative ability and pathogenicity of an authentic infectious BA.2 isolate in immunocompetent and human ACE2 (hACE2)-expressing mice and hamsters. In contrast to recent data with chimeric, recombinant SARS-CoV-2 strains expressing the spike proteins of BA.1 and BA.2 on an ancestral WK-521 backbone3, we observed similar infectivity and pathogenicity in mice and hamsters between BA.2 and BA.1, and less pathogenicity compared to early SARS-CoV-2 strains. We also observed a marked and significant reduction in the neutralizing activity of plasma from COVID-19 convalescent individuals and vaccine recipients against BA.2 compared to ancestral and Delta variant strains. In addition, we found that some therapeutic monoclonal antibodies (REGN10987/REGN10933, COV2-2196/COV2-2130, and S309) and antiviral drugs (molnupiravir, nirmatrelvir, and S-217622) can restrict viral infection in the respiratory organs of hamsters infected with BA.2. These findings suggest that the replication and pathogenicity of BA.2 is comparable to that of BA.1 in rodents and that several therapeutic monoclonal antibodies and antiviral compounds are effective against Omicron/BA.2 variants.
RESUMO
The spike (S) protein of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) plays a key role in viral infectivity. It is also the major antigen stimulating the host's protective immune response, specifically, the production of neutralizing antibodies. Recently, a new variant of SARS-CoV-2 possessing multiple mutations in the S protein, designated P.1, emerged in Brazil. Here, we characterized a P.1 variant isolated in Japan by using Syrian hamsters, a well-established small animal model for the study of SARS-CoV-2 disease (COVID-19). In hamsters, the variant showed replicative abilities and pathogenicity similar to those of early and contemporary strains (i.e., SARS-CoV-2 bearing aspartic acid [D] or glycine [G] at position 614 of the S protein). Sera and/or plasma from convalescent patients and BNT162b2 messenger RNA vaccinees showed comparable neutralization titers across the P.1 variant, S-614D, and S-614G strains. In contrast, the S-614D and S-614G strains were less well recognized than the P.1 variant by serum from a P.1-infected patient. Prior infection with S-614D or S-614G strains efficiently prevented the replication of the P.1 variant in the lower respiratory tract of hamsters upon reinfection. In addition, passive transfer of neutralizing antibodies to hamsters infected with the P.1 variant or the S-614G strain led to reduced virus replication in the lower respiratory tract. However, the effect was less pronounced against the P.1 variant than the S-614G strain. These findings suggest that the P.1 variant may be somewhat antigenically different from the early and contemporary strains of SARS-CoV-2.
Assuntos
COVID-19/virologia , SARS-CoV-2/fisiologia , SARS-CoV-2/patogenicidade , Replicação Viral , Animais , Anticorpos Neutralizantes , COVID-19/diagnóstico por imagem , COVID-19/patologia , Cricetinae , Humanos , Imunogenicidade da Vacina , Pulmão/patologia , Mesocricetus , Camundongos , Glicoproteína da Espícula de Coronavírus/genética , Microtomografia por Raio-XRESUMO
During influenza epidemics, Japanese clinicians routinely conduct rapid influenza diagnostic tests (RIDTs) in patients with influenza-like illness, and patients with positive test results are treated with anti-influenza drugs within 48 h after the onset of illness. We assessed the vaccine effectiveness (VE) of inactivated influenza vaccine (IIV) in children (6 months-15 years old, N = 4243), using a test-negative case-control design based on the results of RIDTs in the 2018/19 season. The VE against influenza A(H1N1)pdm and A(H3N2) was analyzed separately using an RIDT kit specifically for detecting A(H1N1)pdm09. The adjusted VE against combined influenza A (H1N1pdm and H3N2) and against A(H1N1)pdm09 was 39% (95% confidence interval [CI], 30%-46%) and 74% (95% CI, 39%-89%), respectively. By contrast, the VE against non-A(H1N1)pdm09 influenza A (presumed to be H3N2) was very low at 7%. The adjusted VE for preventing hospitalization was 56% (95% CI, 16%-77%) against influenza A. The VE against A(H1N1)pdm09 was consistently high in our studies. By contrast, the VE against A(H3N2) was low not only in adults but also in children in the 2018/19 season.
Assuntos
Testes Diagnósticos de Rotina , Vírus da Influenza A Subtipo H1N1/imunologia , Vírus da Influenza A Subtipo H3N2/imunologia , Vacinas contra Influenza/imunologia , Influenza Humana/diagnóstico , Influenza Humana/imunologia , Estações do Ano , Adolescente , Criança , Pré-Escolar , Relação Dose-Resposta Imunológica , Feminino , Hospitalização , Humanos , Lactente , Influenza Humana/prevenção & controle , Masculino , Resultado do TratamentoRESUMO
BACKGROUND: To develop an effective vaccine against a novel viral pathogen, it is important to understand the longitudinal antibody responses against its first infection. Here we performed a longitudinal study of antibody responses against SARS-CoV-2 in symptomatic patients. METHODS: Sequential blood samples were collected from 39 individuals at various timepoints between 0 and 154 days after onset. IgG or IgM titers to the receptor binding domain (RBD) of the S protein, the ectodomain of the S protein, and the N protein were determined by using an ELISA. Neutralizing antibody titers were measured by using a plaque reduction assay. FINDINGS: The IgG titers to the RBD of the S protein, the ectodomain of the S protein, and the N protein peaked at about 20 days after onset, gradually decreased thereafter, and were maintained for several months after onset. Extrapolation modeling analysis suggested that the IgG antibodies were maintained for this amount of time because the rate of reduction slowed after 30 days post-onset. IgM titers to the RBD decreased rapidly and disappeared in some individuals after 90 days post-onset. All patients, except one, possessed neutralizing antibodies against authentic SARS-CoV-2, which they retained at 90 days after onset. The highest antibody titers in patients with severe infections were higher than those in patients with mild or moderate infections, but the decrease in antibody titer in the severe infection cohort was more remarkable than that in the mild or moderate infection cohort. INTERPRETATION: Although the number of patients is limited, our results show that the antibody response against the first SARS-CoV-2 infection in symptomatic patients is typical of that observed in an acute viral infection. FUNDING: The Japan Agency for Medical Research and Development and the National Institutes of Allergy and Infectious Diseases.
RESUMO
INTRODUCTION: Mycoplasma pneumoniae (M. pneumoniae) is the major pathogen involved in community-acquired pneumonia in all age groups. Resistance to macrolides, the first-line treatment for M. pneumoniae infection, is a major global public health concern. However, studies evaluating macrolide-resistant M. pneumoniae infection simultaneously in all ages are limited. This study aimed to determine the prevalence and clinical characteristics of macrolide-resistant M. pneumoniae infection in terms of age distribution. METHODS: We enrolled 292 patients in Tokyo, Japan, who visited Eiju General Hospital or Zama Children's Clinic in 2015-2016. Patients were tested using real-time PCR for M. pneumoniae DNA. PCR-positive patients (n = 151) were further selected and sequentially divided into preschool-aged children (≤5 years, n = 31), school-aged children (6-15 years, n = 101), adolescents (16-19 years, n = 5), and adults (≥20 years, n = 14). We then analyzed the M. pneumoniae infection clinical characteristics, prevalence of macrolide-resistant infection, and 23S rRNA domain V resistance-associated mutation status. RESULTS: We found insignificant differences in the prevalence of macrolide-resistant M. pneumoniae infection among all groups, clinical characteristics, and resistance-associated mutation status in patients with macrolide-resistant M. pneumoniae infection. We also found statistically higher prevalence of mutation-positive (n = 85) M. pneumoniae in patients previously treated with macrolide compared to the mutation-negative group (n = 66); 63.8% vs 11.1% (p < 0.001), respectively. CONCLUSIONS: We found no significant differences in both clinical characteristics and prevalence of macrolide-resistant M. pneumoniae infection among all ages. Also, previous macrolide treatment contributes to drug-resistance.
Assuntos
Mycoplasma pneumoniae , Pneumonia por Mycoplasma , Adolescente , Adulto , Distribuição por Idade , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Criança , Pré-Escolar , Farmacorresistência Bacteriana , Humanos , Japão/epidemiologia , Macrolídeos/farmacologia , Macrolídeos/uso terapêutico , Mycoplasma pneumoniae/genética , Pneumonia por Mycoplasma/tratamento farmacológico , Pneumonia por Mycoplasma/epidemiologia , RNA Ribossômico 23S/genética , TóquioRESUMO
INTRODUCTION: ID NOW™ Influenza A & B 2 (ID NOW 2) is a rapid molecular assay that combines two characteristics, namely the rapidness of rapid antigen detection test (RADT) and the high sensitivity of molecular assay. METHODS: The clinical performance of ID NOW 2 compared with real-time RT-PCR was evaluated in adults. RESULTS: The sensitivity of ID NOW 2 over multiple seasons from 2016/2017 to 2019/2020 was 97.3% (95% CI: 90.7-99.7) for Type A, 100% (95% CI: 81.9-100) for Type B, and 97.8% (95% CI: 92.2-99.7) for influenza (Type A + Type B), and it was significantly higher than the sensitivity of RADT, which was 80.0% (95% CI: 69.2-88.4) for Type A, 73.3% (95% CI: 44.9-92.2) for Type B, and 78.9% (95% CI: 69.0-86.8) for influenza. The sensitivity of RADT tended to be lower in patients in the particularly early period, within 12 h from disease onset; however, the sensitivity of ID NOW 2 remained high, increasing the difference between the sensitivity of RADT and ID NOW 2. The viral loads were low within 12 h from onset, and it was considered this affected the sensitivity of RADT due to its low analytical sensitivity. The specificity of ID NOW 2 was 98% or greater in all groups. CONCLUSIONS: Since ID NOW 2 has a high sensitivity and specificity in adults, it is anticipated to be used in clinical practice, particularly in patients who require early and accurate diagnosis.