Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Chemosphere ; 353: 141643, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38447901

RESUMO

There is global concern that microplastics may harm aquatic life. Here, we examined the effects of fine polystyrene microplastics (PS-MPs, 2-µm diameter, 0.1 mg/L, 2.5 × 107 particles/L) on the behavior and the microbiome (linked to brain-gut interaction) of a fish model using medaka, Oryzias latipes. We found that shoaling behavior was reduced in PS-MP-exposed medaka compared with control fish during the exposure period, but it recovered during a depuration period. There was no difference in swimming speed between the PS-MP-exposed and control groups during the exposure period. Analysis of the dominant bacterial population (those comprising ≥1% of the total bacterial population) in the gut of fish showed that exposure to PS-MPs tended to increase the relative abundance of the phylum Fusobacteria and the genus Vibrio. Furthermore, structural-equation modeling of gut bacteria on the basis of machine-learning data estimated strong relationship involved in the reduction of the functional bacterial species of minority (<1% of the total bacterial population) such as the genera Muribaculum (an undefined role), Aquaspirillum (a candidate for nitrate metabolism and magnetotactics), and Clostridium and Phascolarctobacterium (potential producers of short-chain fatty acids, influencing behavior by affecting levels of neurotransmitters) as a group of gut bacteria in association with PS-MP exposure. Our results suggest that fish exposure to fine microplastics may cause dysbiosis and ultimately cause social behavior disorders linked to brain-gut interactions. This effect could be connected to reduction of fish fitness in the ecosystem and reduced fish survival.


Assuntos
Oryzias , Poluentes Químicos da Água , Animais , Poliestirenos/toxicidade , Poliestirenos/análise , Microplásticos/toxicidade , Microplásticos/análise , Plásticos , Disbiose , Ecossistema , Poluentes Químicos da Água/toxicidade , Poluentes Químicos da Água/análise
2.
MethodsX ; 12: 102528, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38274701

RESUMO

The development of data science has been needed in environmental fields such as marine, weather, and soil data. In general, the datasets are large in some cases, but they are often small because they contain observation data that the analyses themselves are limited. In such a case, the data are statistically evaluated by increasing or decreasing the levels of factors using differential analysis, resulting in the essential factors are estimated. However, there is no consistent approach to the means of assessing strong associations as a group between factors. Causal inference method has the possibility to output effective results for small data, and the results are expected to provide important information for understanding the potential highly association between factors, not necessarily the inference with big data. Here, we describe essential checkpoints and settings for the calculation by a direct method for learning a linear non-Gaussian structural equation model (DirectLiNGAM) and validation methods for the calculation results by using DirectLiNGAM with small-scale model data as an additional discussion of DirectLiNGAM portion of the related research article. Thus, this study provides the statistical validation methods for the association networks, treatments, and interventions for structural inference as a group of essential factors.•Causal inference with DirectLiNGAM•Validation of correlation coefficient and feature importance•Validation using causal effect object and propensity scores.

3.
Insects ; 14(12)2023 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-38132584

RESUMO

The Hercules beetle larvae grow by feeding on humus, and adding a thermophile-fermented compost to the humus can upregulate the growth of female larvae. In this study, the effects of compost on the intestinal environment, including pH, cation concentrations, and organic acid concentrations of intestinal fluids, were investigated, and the RNA profile of the fat body was determined. Although the total intestinal potassium ions were similar between the larvae grown without compost (control larvae) and those with compost (compost larvae), the proportion of potassium ions in the midgut of the compost larvae drastically increased. In the midgut, an unidentified organic acid was the most abundant, and its concentration increased in the compost larvae. Transcriptome analysis showed that a gene encoding hemolymph juvenile-binding protein (JHBP) was expressed in the compost female larvae and not in the control female larvae. Expression of many genes involved in the defensive system was decreased in the compost female larvae. These results suggest that the female-specific enhancement of larval growth by compost was associated with the increased JHBP expression under conditions in which the availability of nutrition from the humus was improved by an increase in potassium ions in the midgut.

4.
J Biosci Bioeng ; 136(5): 391-399, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37735063

RESUMO

We investigated the effect of dilution rates (D) (0.05, 0.15, and 0.4 h-1) and its transition mode strategies (constant, up, and down modes) on organic acid productivity and bacterial community structure on continuous meta-fermentation using complex microorganisms. The number of bacterial species decreased with increasing D in the constant mode while up and down modes maintained high and low values, respectively, regardless of the changing D values. Caldibacillus hisashii was the predominant species in all modes at all D values, while other bacterial species, including Anaerosalibacter bizertensis and Clostridium cochlearium were predominant in only certain modes and D values. The highest total organic acid productivity of 3.16 g L-1 h-1 was obtained with 82.2% lactic acid selectivity at D = 0.4 h⁻1 in constant mode. Heterofermentation occurred in the up mode, while the down mode exhibited the maximum butyric acid productivity of 0.348 g L-1 h-1 with 43.8% selectivity at D = 0.05 h-1. The constant, up, and down modes showed the distinct main products of lactic, acetic and formic, and butyric acids, respectively. In this study, we proposed a new parameter of species-specific productivity (SSP) to estimate which species and how much a bacterium quantitatively contributes to the targeted organic acid productivity in continuous meta-fermentation. SSP was determined based on the abundance of functional genes encoding key enzymes from the results of 16S amplicon analysis. In conclusion, D values and their transition modes affect productivity by changing the bacterial community structure, and are a significant factor in establishing a highly productive process in continuous meta-fermentation.

5.
Sci Rep ; 13(1): 6359, 2023 04 19.
Artigo em Inglês | MEDLINE | ID: mdl-37076584

RESUMO

Reducing antibiotic usage among livestock animals to prevent antimicrobial resistance has become an urgent issue worldwide. This study evaluated the effects of administering chlortetracycline (CTC), a versatile antibacterial agent, on the performance, blood components, fecal microbiota, and organic acid concentrations of calves. Japanese Black calves were fed with milk replacers containing CTC at 10 g/kg (CON group) or 0 g/kg (EXP group). Growth performance was not affected by CTC administration. However, CTC administration altered the correlation between fecal organic acids and bacterial genera. Machine learning (ML) methods such as association analysis, linear discriminant analysis, and energy landscape analysis revealed that CTC administration affected populations of various types of fecal bacteria. Interestingly, the abundance of several methane-producing bacteria at 60 days of age was high in the CON group, and the abundance of Lachnospiraceae, a butyrate-producing bacterium, was high in the EXP group. Furthermore, statistical causal inference based on ML data estimated that CTC treatment affected the entire intestinal environment, potentially suppressing butyrate production, which may be attributed to methanogens in feces. Thus, these observations highlight the multiple harmful impacts of antibiotics on the intestinal health of calves and the potential production of greenhouse gases by calves.


Assuntos
Antibacterianos , Clortetraciclina , Animais , Bovinos , Antibacterianos/farmacologia , Disbiose , Clortetraciclina/farmacologia , Fezes/microbiologia , Bactérias , Butiratos , Ração Animal/análise , Dieta/veterinária
6.
ISME Commun ; 3(1): 28, 2023 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-37002405

RESUMO

Compost is used worldwide as a soil conditioner for crops, but its functions have still been explored. Here, the omics profiles of carrots were investigated, as a root vegetable plant model, in a field amended with compost fermented with thermophilic Bacillaceae for growth and quality indices. Exposure to compost significantly increased the productivity, antioxidant activity, color, and taste of the carrot root and altered the soil bacterial composition with the levels of characteristic metabolites of the leaf, root, and soil. Based on the data, structural equation modeling (SEM) estimated that amino acids, antioxidant activity, flavonoids and/or carotenoids in plants were optimally linked by exposure to compost. The SEM of the soil estimated that the genus Paenibacillus and nitrogen compounds were optimally involved during exposure. These estimates did not show a contradiction between the whole genomic analysis of compost-derived Paenibacillus isolates and the bioactivity data, inferring the presence of a complex cascade of plant growth-promoting effects and modulation of the nitrogen cycle by the compost itself. These observations have provided information on the qualitative indicators of compost in complex soil-plant interactions and offer a new perspective for chemically independent sustainable agriculture through the efficient use of natural nitrogen.

7.
J Appl Microbiol ; 134(1)2023 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-36626791

RESUMO

AIMS: Hercules beetle is a popular pet and large adult individuals are considered valuable. Incorporating compost prepared from marine animals and fermented by thermophilic bacteria into the humus benefits the gut microflora of several livestock. Here, we evaluated whether this compost improves the growth of the Hercules beetle (Dynastes hercules hercules) larvae. METHODS AND RESULTS: We mixed the compost grains with the humus at a final concentration of 1% (w/w) and transferred ∼90 days old Hercules beetle larvae to fresh humus with or without the compost. After 72 days rearing period, only the female larvae reared in the humus with compost exhibited superior growth, compared with those grown in compost-free humus. The gut bacterial composition was determined at 0 and 46 day after transferring the larvae to humus with or without compost. Improved growth of the female larvae was associated with increased abundance of Mollicutes and decreased abundance of Gammaproteobacteria. CONCLUSION: The thermophile-fermented compost has a probiotic effect on the female Hercules beetle larvae that is mediated by altered gut microflora.


Assuntos
Besouros , Animais , Feminino , Larva , Solo
8.
Comput Struct Biotechnol J ; 21: 869-878, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36698969

RESUMO

The natural world is constantly changing, and planetary boundaries are issuing severe warnings about biodiversity and cycles of carbon, nitrogen, and phosphorus. In other views, social problems such as global warming and food shortages are spreading to various fields. These seemingly unrelated issues are closely related, but it can be said that understanding them in an integrated manner is still a step away. However, progress in analytical technologies has been recognized in various fields and, from a microscopic perspective, with the development of instruments including next-generation sequencers (NGS), nuclear magnetic resonance (NMR), gas chromatography-mass spectrometry (GC/MS), and liquid chromatography-mass spectrometry (LC/MS), various forms of molecular information such as genome data, microflora structure, metabolome, proteome, and lipidome can be obtained. The development of new technology has made it possible to obtain molecular information in a variety of forms. From a macroscopic perspective, the development of environmental analytical instruments and environmental measurement facilities such as satellites, drones, observation ships, and semiconductor censors has increased the data availability for various environmental factors. Based on these background, the role of computational science is to provide a mechanism for integrating and understanding these seemingly disparate data sets. This review describes machine learning and the need for structural equations and statistical causal inference of these data to solve these problems. In addition to introducing actual examples of how these technologies can be utilized, we will discuss how to use these technologies to implement environmentally friendly technologies in society.

9.
Environ Res ; 219: 115130, 2023 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-36563976

RESUMO

Coastal seagrass meadows are essential in blue carbon and aquatic ecosystem services. However, this ecosystem has suffered severe eutrophication and destruction due to the expansion of aquaculture. Therefore, methods for the flourishing of seagrass are still being explored. Here, data from 49 public coastal surveys on the distribution of seagrass and seaweed around the onshore aquaculture facilities are revalidated, and an exceptional area where the seagrass Zostera marina thrives was found near the shore downstream of the onshore aquaculture facility. To evaluate the characteristics of the sediment for growing seagrass, physicochemical properties and bacterial ecological evaluations of the sediment were conducted. Evaluation of chemical properties in seagrass sediments confirmed a significant increase in total carbon and a decrease in zinc content. Association analysis and linear discriminant analysis refined bacterial candidates specified in seagrass overgrown- and nonovergrown-sediment. Energy landscape analysis indicated that the symbiotic bacterial groups of seagrass sediment were strongly affected by the distance close to the seagrass-growing aquaculture facility despite their bacterial population appearing to fluctuate seasonally. The bacterial population there showed an apparent decrease in the pathogen candidates belonging to the order Flavobacteriales. Moreover, structure equation modeling and a linear non-Gaussian acyclic model based on the machine learning data estimated an optimal sediment symbiotic bacterial group candidate for seagrass growth as follows: the Lachnospiraceae and Ruminococcaceae families as gut-inhabitant bacteria, Rhodobacteraceae as photosynthetic bacteria, and Desulfobulbaceae as cable bacteria modulating oxygen or nitrate reduction and oxidation of sulfide. These observations confer a novel perspective on the sediment symbiotic bacterial structures critical for blue carbon and low-pathogenic marine ecosystems in aquaculture.


Assuntos
Ecossistema , Zosteraceae , Humanos , Sedimentos Geológicos/análise , Aquicultura , Carbono/análise , Bactérias
10.
J Biosci Bioeng ; 134(2): 105-115, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35718655

RESUMO

Weizmannia coagulans SANK70258 is a spore-forming thermostable lactic acid bacterium and an effective probiotic for the growth of livestock animals, but its growth-promoting mechanism remains unclear. Here, the composition of fecal metabolites in broilers continuously administered with W. coagulans SANK70258 was assessed under a regular program with antibiotics, which was transiently given for 6 days after birth. Oral administration of W. coagulans to broiler chicks tended to increase the average daily gain of body weights thereafter. The composition of fecal metabolites in the early chick stage (day 10 after birth) was dramatically altered by the continuous exposure. The levels of short-chain fatty acids (SCFAs) propionate and butyrate markedly increased, while those of acetate, one of the SCFAs, and lactate were reduced. Simultaneously, arabitol, fructose, mannitol, and erythritol, which are carbohydrates as substrates for gut microbes to produce SCFAs, also increased along with altered correlation. Correlation network analyses classified the modularity clusters (|r| > 0.7) among carbohydrates, SCFAs, lactate, amino acids, and the other metabolites under the two conditions. The characteristic diversities by the exposure were visualized beyond the perspective associated with differences in metabolite concentrations. Further, enrichment pathway analyses showed that metabolic composition related to biosynthesis and/or metabolism for SCFAs, amino acids, and energy were activated. Thus, these observations suggest that W. coagulans SANK70258 dramatically modulates the gut metabolism of the broiler chicks, and the metabolomics profiles during the early chick stages may be associated with growth promotion.


Assuntos
Lactobacillales , Probióticos , Aminoácidos , Animais , Carboidratos , Galinhas/metabolismo , Ácidos Graxos Voláteis/metabolismo , Lactatos , Lactobacillales/metabolismo
11.
Sci Total Environ ; 836: 155520, 2022 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-35508250

RESUMO

Effective biological utilization of wood biomass is necessary worldwide. Since several insect larvae can use wood biomass as a nutrient source, studies on their digestive microbial structures are expected to reveal a novel rule underlying wood biomass processing. Here, structural inferences for inhabitant bacteria involved in carbon and nitrogen metabolism for beetle larvae, an insect model, were performed to explore the potential rules. Bacterial analysis of larval feces showed enrichment of the phyla Chroloflexi, Gemmatimonadetes, and Planctomycetes, and the genera Bradyrhizobium, Chonella, Corallococcus, Gemmata, Hyphomicrobium, Lutibacterium, Paenibacillus, and Rhodoplanes, as bacteria potential involved in plant growth promotion, nitrogen cycle modulation, and/or environmental protection. The fecal abundances of these bacteria were not necessarily positively correlated with their abundances in the habitat, indicating that they were selectively enriched in the feces of the larvae. Correlation and association analyses predicted that common fecal bacteria might affect carbon and nitrogen metabolism. Based on these hypotheses, structural equation modeling (SEM) statistically estimated that inhabitant bacterial groups involved in carbon and nitrogen metabolism were composed of the phylum Gemmatimonadetes and Planctomycetes, and the genera Bradyrhizobium, Corallococcus, Gemmata, and Paenibacillus, which were among the fecal-enriched bacteria. Nevertheless, the selected common bacteria, i.e., the phyla Acidobacteria, Armatimonadetes, and Bacteroidetes and the genera Candidatus Solibacter, Devosia, Fimbriimonas, Gemmatimonas Opitutus, Sphingobium, and Methanobacterium, were necessary to obtain good fit indices in the SEM. In addition, the composition of the bacterial groups differed depending upon metabolic targets, carbon and nitrogen, and their stable isotopes, δ13C and δ15N, respectively. Thus, the statistically derived causal structural models highlighted that the larval fecal-enriched bacteria and common symbiotic bacteria might selectively play a role in wood biomass carbon and nitrogen metabolism. This information could confer a new perspective that helps us use wood biomass more efficiently and might stimulate innovation in environmental industries in the future.


Assuntos
Carbono , Besouros , Acidobacteria/metabolismo , Animais , Bactérias/metabolismo , Carbono/metabolismo , Besouros/metabolismo , Larva/metabolismo , Nitrogênio/metabolismo , Madeira/metabolismo
12.
J Appl Microbiol ; 132(5): 3870-3882, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35261112

RESUMO

AIMS: Probiotic effects of compost containing thermophiles on productivity have been reported in domestic animals, although not cattle. We evaluated the effects of administering Caldibacillus hisashii, a thermophile contained in compost, on growth, blood components, faecal organic acid concentrations and microbiota population in Japanese black calves. METHODS AND RESULTS: Calves were administered C. hisashii from 3 to 5 months of age. Administering C. hisashii decreased feed intake without affecting body weight, indicating that feed efficiency is improved by administration. Administering C. hisashii decreased plasma insulin concentration without affecting glucose and non-esterified fatty acid concentrations. Chao1 was decreased by exposure at 5 months of age. Similarly, weighted and unweighted UniFrac distances were affected by treatment at 5 months of age. Faecal abundance of the phylum Bacteroidetes tended to be increased by exposure. Faecal propionic acid concentration was correlated positively with faecal abundance of phylum Bacteroidetes but negatively with that of Firmicutes. Interestingly, the population of the genus Methanobrevibacter, representing the majority of methanogens, was lowered by exposure and was negatively correlated with faecal propionic acid concentration. CONCLUSION: Administration of C. hisashii has the potential to improve growth performance of Japanese black calves and to contribute to reducing environmental load, which may be associated with altered endocrine kinetics and gut microbial populations. SIGNIFICANCE AND IMPACT OF THE STUDY: This study revealed that isolated thermophiles included in compost may exert probiotic effects on calves.


Assuntos
Microbiota , Probióticos , Ração Animal/análise , Animais , Bacteroidetes , Bovinos , Dieta/veterinária , Fezes , Métodos de Alimentação , Desmame
13.
Artigo em Inglês | MEDLINE | ID: mdl-35162258

RESUMO

Network-based assessments are important for disentangling complex microbial and microbial-host interactions and can provide the basis for microbial engineering. There is a growing recognition that chemical-mediated interactions are important for the coexistence of microbial species. However, so far, the methods used to infer microbial interactions have been validated with models assuming direct species-species interactions, such as generalized Lotka-Volterra models. Therefore, it is unclear how effective existing approaches are in detecting chemical-mediated interactions. In this paper, we used time series of simulated microbial dynamics to benchmark five major/state-of-the-art methods. We found that only two methods (CCM and LIMITS) were capable of detecting interactions. While LIMITS performed better than CCM, it was less robust to the presence of chemical-mediated interactions, and the presence of trophic competition was essential for the interactions to be detectable. We show that the existence of chemical-mediated interactions among microbial species poses a new challenge to overcome for the development of a network-based understanding of microbiomes and their interactions with hosts and the environment.


Assuntos
Interações Microbianas , Microbiota , Especificidade da Espécie , Fatores de Tempo
14.
Biotechnol J ; 16(11): e2100277, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34472222

RESUMO

Meta-l-lactic acid fermentation from non-treated kitchen refuse was reconstructed using a combination of isolated bacterial strains under several pH control strategies. The meta-fermentation system was successfully reconstructed using a combination of Weizmannia coagulans MN-07, Caldibacillus thermoamylovorans OM55-6, and Caldibacillus hisashii N-11 strains. Additionally, a simplified constant pH control strategy was employed, which decreased fermentation time and increased production. The optimum pH (6.5) for the reconstructed meta-fermentation was favorable for the respective pure cultures of the three selected strains. The l-lactic acid production performance of the reconstructed meta-fermentation system was as follows: concentration, 24.5 g L-1 ; optical purity, 100%; productivity, 0.341 g L-1 h-1 ; yield, 1.06 g g-1 . These results indicated that constant pH control was effective in the reconstructed meta-fermentation with the best performance of l-lactic acid production at pH optimal for the selected bacterial growth, while the switching from swing pH control would suppress the activities of unfavorable bacterial species in un-isolated meta-fermentation.


Assuntos
Ácido Láctico , Fermentação , Concentração de Íons de Hidrogênio
15.
Anim Sci J ; 92(1): e13505, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33438791

RESUMO

We evaluated the effects of feeding high volumes of milk replacer on growth and reproductive performances in Japanese black heifers. Fifty-one heifers were fed milk replacer at 9 L/day for 60 days (9 L × 60 days; n = 18) or 41 days (9 L × 41 days; n = 15), or at 7 L/day for 40 days (7 L × 40 days; n = 18). Artificial insemination (AI) was performed on heifers with ≥270 kg body weight and ≥116 cm body height at 300 days of age. The age at the first AI was 0.35 month later for 7 L × 40 days than the other groups (p < .01). However, age at calving did not differ among treatments (22.1 months). The interval from the first AI to pregnancy tended to be ~2 months longer for the 9 L × 60 days than the other groups (p = .07). Our results showed that feeding high volumes of milk replacer may reduce the age at calving via an improved rate of growth. In addition, we propose that feeding a maximum of 7 L milk replacer for 40 days may be the most appropriate rearing regime because the success of pregnancy per AI may be reduced in calves fed a maximum of 9 L for 41 and 60 days.


Assuntos
Ração Animal , Bovinos/sangue , Bovinos/fisiologia , Leite , Reprodução , Fatores Etários , Animais , Glicemia/metabolismo , Bovinos/crescimento & desenvolvimento , Dieta/veterinária , Ácidos Graxos não Esterificados/sangue , Feminino , Transportador de Glucose Tipo 1/sangue , Inseminação Artificial/veterinária , Insulina/sangue , Fator de Crescimento Insulin-Like I/metabolismo , Hormônio Luteinizante/sangue , Gravidez , Fatores de Tempo
16.
Exp Gerontol ; 130: 110795, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31805337

RESUMO

Redox imbalance induces oxidative damage and causes age-related pathologies. Mice lacking the antioxidant enzyme SOD1 (Sod1-/-) exhibit various aging-like phenotypes throughout the body and are used as aging model mice. Recent reports suggested that age-related changes in the intestinal environment are involved in various diseases. We investigated cecal microbiota profiles and gastrointestinal metabolites in wild-type (Sod1+/+) and Sod1-/- mice. Firmicutes and Bacteroidetes were dominant in Sod1+/+ mice, and most of the detected bacterial species belong to these two phyla. Meanwhile, the Sod1-/- mice had an altered Firmicutes and Bacteroidetes ratio compared to Sod1+/+ mice. Among the identified genera, Paraprevotella, Prevotella, Ruminococcus, and Bacteroides were significantly increased, but Lactobacillus was significantly decreased in Sod1-/- mice compared to Sod1+/+ mice. The correlation analyses between cecal microbiota and liver metabolites showed that Bacteroides and Prevotella spp. were grouped into the same cluster, and Paraprevotella and Ruminococcus spp. were also grouped as another cluster. These four genera showed a positive and a negative correlation with increased and decreased liver metabolites in Sod1-/- mice, respectively. In contrast, Lactobacillus spp. showed a negative correlation with increased liver metabolites and a positive correlation with decreased liver metabolites in Sod1-/- mice. These results suggest that the redox imbalance induced by Sod1 loss alters gastrointestinal microflora and metabolites.


Assuntos
Microbioma Gastrointestinal/fisiologia , Superóxido Dismutase-1/deficiência , Envelhecimento , Animais , Firmicutes , Camundongos , Microbiota , Oxirredução
17.
J Biosci Bioeng ; 125(5): 519-524, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-29331526

RESUMO

Megasphaera elsdenii is able to produce several short-chain fatty acids (SCFAs), such as acetate, propionate, butyrate, and valerate. These SCFAs serve as an energy source for host animals and play an important role in gut health. In this study, M. elsdenii was isolated from pig feces that had been collected from two farms located in distinct areas of Japan. These M. elsdenii isolates were genotyped, and 7 representative strains were selected. When these 7 strains and M. elsdenii JCM 1772T were cultured with lactate for 24 h, all 7 strains produced valerate as a predominant SCFA. Therefore, the valerate-producing M. elsdenii inhabits a wide area of Japan. In contrast, M. elsdenii JCM 1772T produced acetate, propionate, butyrate, and valerate at similar levels. When the Y2 strain, one of the 7 representative strains, was cultured without lactate, low levels of valerate accumulated. In contrast, in a time course of lactate fermentation by the Y2 strain, lactate was rapidly consumed, and acetate and propionate were produced after 6 h of incubation. Thereafter, acetate and propionate were consumed from 6 to 12 h after the start of the incubation, and valerate and butyrate were produced. In most of the previously described M. elsdenii strains, valerate was not a predominant SCFA. Therefore, the M. elsdenii Y2 strain showed an unique metabolism in which valerate was produced as a primary end product of lactate fermentation.


Assuntos
Fezes/microbiologia , Megasphaera elsdenii/isolamento & purificação , Megasphaera elsdenii/metabolismo , Ácidos Pentanoicos/metabolismo , Suínos/microbiologia , Animais , Butiratos/metabolismo , Ácidos Graxos Voláteis/metabolismo , Fermentação , Ácido Láctico/metabolismo , Megasphaera elsdenii/classificação , Megasphaera elsdenii/genética , Filogenia , Propionatos/metabolismo , Rúmen/metabolismo , Rúmen/microbiologia , Valeratos/metabolismo
18.
Anaerobe ; 48: 160-164, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28842275

RESUMO

Lactic acid produced by intestinal bacteria is fermented by lactate-utilizing bacteria. In this study, we developed a selective culture medium (KMI medium) for Megasphaera elsdenii, a lactate-utilizing bacterium that is abundant in pig intestines. Supplementation of the medium with lactate and beef extract powder was necessary for the preferential growth of M. elsdenii. In addition, we designed a species-specific primer set to detect M. elsdenii. When pig fecal samples were plated on KMI agar medium, approximately 60-100% of the resulting colonies tested positive using the M. elsdenii-specific PCR primers. In fact, nearly all of the large, yellow-white colonies that grew on the KMI agar medium tested positive by PCR with this primer set. The 16S rRNA gene sequences of three representative PCR-positive strains showed strong similarities to that of M. elsdenii ATCC 25940T (98.9-99.2% identity). These three strains were approximately 1.5 µm sized cocci that were primarily arranged in pairs, as was observed for M. elsdenii JCM 1772T. The selective KMI medium and species-specific primer set developed in this study are useful for the isolation and detection of M. elsdenii and will be useful in research aimed at increasing our understanding of intestinal short-chain fatty acid metabolism in pigs.


Assuntos
Fezes/microbiologia , Megasphaera elsdenii/isolamento & purificação , Animais , Megasphaera elsdenii/classificação , Megasphaera elsdenii/genética , Megasphaera elsdenii/ultraestrutura , Filogenia , Reação em Cadeia da Polimerase , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Suínos
19.
J Biosci Bioeng ; 123(1): 63-70, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-27570222

RESUMO

Elucidation of functions of bacteria in a mixed culture system (MCS) such as composting, activated sludge system is difficult, since the system is complicating with many unisolated bacteria. Here, we developed a systematic feedback isolation strategy for the isolation and rapid screening of multiple targeted strains from MCS. Six major strains (Corynebacterium sphenisci, Bacillus thermocloacae, Bacillus thermoamylovorans, Bacillus smithii, Bacillus humi, and Bacillus coagulans), which are detected by denaturing gradient gel electrophoresis (DGGE) analysis in our previous study on MCS for l-lactic acid production, were targeted for isolation. Based on information of suitable cultivation conditions (e.g., media, pH, temperature) from the literature, feedback isolation was performed to form 136 colonies. The following direct colony matrix assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) was optimised as the second screening to narrow down 20 candidate colonies from similar spectra patterns with six closest type strains. This step could distinguish bacteria at the species level with distance similarity scores ≥0.55 corresponding to 16S rRNA gene sequence similarity ≥98.2%, suggesting that this is an effective technique to minimize isolates close to targeted type strains. Analysis of 16S rRNA gene sequences indicated that two targeted strains and one strain related to the target had successfully been isolated, showing high similarities (99.5-100%) with the sequences from the DGGE bands, and that the other candidates were affiliated with three strains that were closely related to the target species. This study proposes a new method for systematic feedback isolation that may be useful for isolating targeted strains from MCS for further investigation.


Assuntos
Bacillus/crescimento & desenvolvimento , Bacillus/isolamento & purificação , Corynebacterium/crescimento & desenvolvimento , Corynebacterium/isolamento & purificação , Técnicas de Cultura/métodos , Retroalimentação , Bacillus/genética , Bacillus/metabolismo , Corynebacterium/genética , Corynebacterium/metabolismo , Ácido Láctico/biossíntese , RNA Ribossômico 16S/genética
20.
Bioresour Technol ; 216: 52-9, 2016 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-27233097

RESUMO

Uninvestigated control factors of meta-fermentation, the fermentative production of pure chemicals and fuels in a mixed culture system, were examined for production of optically pure l-lactic acid (LA) from food waste. In meta-fermentations by pH swing control, l-LA production with 100% optical purity (OPl-LA) was achieved even using unsterilized model kitchen refuse medium with preferential proliferation of l-LA-producing Bacillus coagulans, a minor member in the seed, whereas agitation decreased OPl-LA drastically. pH constant control shortened the fermentation time but decreased OPl-LA and LA selectivity (SLA) by stimulating growth of heterofermentative Bacillus thermoamylovorans. Deliberately switching from pH swing control to constant control exhibited the best performance for l-LA production: maximum accumulation, 39.2gL(-1); OPl-LA, 100%; SLA, 96.6%; productivity, 1.09gL(-1)h(-1). These results present a novel pH control strategy for efficient l-LA production in meta-fermentation based on a concept different from that of pure culture systems.


Assuntos
Reatores Biológicos/microbiologia , Resíduos de Alimentos , Ácido Láctico/biossíntese , Eliminação de Resíduos/métodos , Bacillus , Fermentação , Concentração de Íons de Hidrogênio
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA