Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
1.
J Hosp Infect ; 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38885930

RESUMO

INTRODUCTION: Emergency departments (EDs) are a critical entry gate for infectious agents into hospitals. In this interdisciplinary study, we explore how infection prevention and control (IPC) architectural interventions mitigate the spread of emerging respiratory pathogens using the example of SARS-CoV-2 in a prototypical ED. METHODS: Using an agent-based approach, we integrate data on patients' and healthcare workers' (HCWs) routines and the architectural characteristics of key ED areas. We estimate the number of transmissions in the ED by modelling the interactions between and among patients and HCWs. Architectural interventions are guided towards the gradual separation of pathogen carriers, compliance with a minimum interpersonal distance, and deconcentrating airborne pathogens (higher air exchange rates (AERs)). Interventions are epidemiologically evaluated for their mitigation effects on diverse endpoints. RESULTS: Simulation results indicate that higher AERs in the ED (compared to baseline) may provide a moderate level of infection mitigation (incidence rate ratio (IRR) of 0.95 (95% CI 0.93 - 0.98)) while the overall burden decreases more when separating rooms in examination areas (IRR of 0.78 (95% CI 0.76 - 0.81)) or when increasing the size of the ED base (IRR of 0.79 (95% CI 0.78 - 0.81)). The reduction in SARS-CoV-2-associated nosocomial transmissions is largest when combining architectural interventions (IRR of 0.61 (95% CI 0.59 - 0.63)). CONCLUSIONS: These modelling results highlight the importance of IPC architectural interventions; they can be devised independently of profound knowledge of an emerging pathogen, focusing on technical, constructive, and functional components. These results may inform public health decision-makers and hospital architects on how IPC architectural interventions can be optimally used in healthcare premises.

2.
Front Cardiovasc Med ; 11: 1346475, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38510194

RESUMO

Chronic kidney disease (CKD) significantly increases cardiovascular risk and mortality, and the accumulation of uremic toxins in the circulation upon kidney failure contributes to this increased risk. We thus performed a screening for potential novel mediators of reduced cardiovascular health starting from dialysate obtained after hemodialysis of patients with CKD. The dialysate was gradually fractionated to increased purity using orthogonal chromatography steps, with each fraction screened for a potential negative impact on the metabolic activity of cardiomyocytes using a high-throughput MTT-assay, until ultimately a highly purified fraction with strong effects on cardiomyocyte health was retained. Mass spectrometry and nuclear magnetic resonance identified the metabolite mycophenolic acid-ß-glucuronide (MPA-G) as a responsible substance. MPA-G is the main metabolite from the immunosuppressive agent MPA that is supplied in the form of mycophenolate mofetil (MMF) to patients in preparation for and after transplantation or for treatment of autoimmune and non-transplant kidney diseases. The adverse effect of MPA-G on cardiomyocytes was confirmed in vitro, reducing the overall metabolic activity and cellular respiration while increasing mitochondrial reactive oxygen species production in cardiomyocytes at concentrations detected in MMF-treated patients with failing kidney function. This study draws attention to the potential adverse effects of long-term high MMF dosing, specifically in patients with severely reduced kidney function already displaying a highly increased cardiovascular risk.

3.
Clin Res Cardiol ; 2024 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-38170249

RESUMO

BACKGROUND: Glucagon-like peptide-1 (GLP-1) is a gut-derived peptide secreted in response to nutritional and inflammatory stimuli. Elevated GLP-1 levels predict adverse outcome in patients with acute myocardial infarction or sepsis. GLP-1 holds cardioprotective effects and GLP-1 receptor agonists reduce cardiovascular events in high-risk patients with diabetes. In this study, we aimed to investigate the capacity of GLP-1 to predict outcome in patients with cardiogenic shock (CS) complicating myocardial infarction. METHODS: Circulating GLP-1 levels were serially assessed in 172 individuals during index PCI and day 2 in a prospectively planned biomarker substudy of the IABP-SHOCK II trial. All-cause mortality at short- (30 days), intermediate- (1 year), and long-term (6 years) follow-up was used for outcome assessment. RESULTS: Patients with fatal short-term outcome (n = 70) exhibited higher GLP-1 levels [86 (interquartile range 45-130) pM] at ICU admission in comparison to patients with 30-day survival [48 (interquartile range 33-78) pM; p < 0.001] (n = 102). Repeated measures ANOVA revealed a significant interaction of GLP-1 dynamics from baseline to day 2 between survivors and non-survivors (p = 0.04). GLP-1 levels above vs. below the median proved to be predictive for short- [hazard ratio (HR) 2.43; 95% confidence interval (CI) 1.50-3.94; p < 0.001], intermediate- [HR 2.46; 95% CI 1.62-3.76; p < 0.001] and long-term [HR 2.12; 95% CI 1.44-3.11; p < 0.001] outcome by multivariate Cox-regression analysis. CONCLUSION: Elevated plasma levels of GLP-1 are an independent predictor for impaired prognosis in patients with myocardial infarction complicated by CS. The functional relevance of GLP-1 in this context is currently unknown and needs further investigations. TRIAL REGISTRATION: www. CLINICALTRIALS: gov Identifier: NCT00491036.

4.
Med Klin Intensivmed Notfmed ; 119(1): 27-38, 2024 Feb.
Artigo em Alemão | MEDLINE | ID: mdl-37280415

RESUMO

INTRODUCTION: Intensive care unit (ICU) structural and spatial design may play a role in infection prevention and control. METHODS: Between 09/2021 and 11/2021 we performed an online survey among ICUs in Germany, Austria and Switzerland. RESULTS: A total of 597 (40%) of the invited ICUs answered the survey; 20% of the ICUs were built before 1990. The median number of single rooms with interquartile range is 4 (IQR 2-6). The median total room number is 8 (IQR 6-12). The median room size is 19 (IQR 16-22) m2 for single rooms and 31 (26-37.5) m2 for multiple bed rooms. Furthermore, 80% of ICUs have sinks and 86.4% have heating, ventilation, air conditioning (HVAC) systems in patient rooms. 54.6% of ICUs must store materials outside of storage rooms due to lack of space and only 33.5% have a room dedicated to disinfection and cleaning of used medical devices. Comparing ICUs built before 1990 and after 2011 we could show a slightly increase of single rooms (3 [IQR 2-5] before 1990 vs. 5 [IQR 2-8] after 2011; p < 0.001). DISCUSSION: A large proportion of German ICUs do not meet the requirements of German professional societies regarding the number of single rooms and size of the patient rooms. Many ICUs lack storage space and other functional rooms. CONCLUSION: There is an urgent need to support the construction and renovation of intensive care units in Germany with adequate funding.


Assuntos
Controle de Infecções , Unidades de Terapia Intensiva , Humanos , Inquéritos e Questionários , Quartos de Pacientes , Alemanha
5.
Sci Adv ; 9(47): eadj4846, 2023 11 24.
Artigo em Inglês | MEDLINE | ID: mdl-38000021

RESUMO

Patients with advanced chronic kidney disease (CKD) mostly die from sudden cardiac death and recurrent heart failure. The mechanisms of cardiac remodeling are largely unclear. To dissect molecular and cellular mechanisms of cardiac remodeling in CKD in an unbiased fashion, we performed left ventricular single-nuclear RNA sequencing in two mouse models of CKD. Our data showed a hypertrophic response trajectory of cardiomyocytes with stress signaling and metabolic changes driven by soluble uremia-related factors. We mapped fibroblast to myofibroblast differentiation in this process and identified notable changes in the cardiac vasculature, suggesting inflammation and dysfunction. An integrated analysis of cardiac cellular responses to uremic toxins pointed toward endothelin-1 and methylglyoxal being involved in capillary dysfunction and TNFα driving cardiomyocyte hypertrophy in CKD, which was validated in vitro and in vivo. TNFα inhibition in vivo ameliorated the cardiac phenotype in CKD. Thus, interventional approaches directed against uremic toxins, such as TNFα, hold promise to ameliorate cardiac remodeling in CKD.


Assuntos
Insuficiência Cardíaca , Insuficiência Renal Crônica , Camundongos , Animais , Humanos , Fator de Necrose Tumoral alfa/genética , Toxinas Urêmicas , Remodelação Ventricular , Insuficiência Cardíaca/etiologia
6.
Nat Genet ; 54(11): 1690-1701, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36303074

RESUMO

Adult kidney organoids have been described as strictly tubular epithelia and termed tubuloids. While the cellular origin of tubuloids has remained elusive, here we report that they originate from a distinct CD24+ epithelial subpopulation. Long-term-cultured CD24+ cell-derived tubuloids represent a functional human kidney tubule. We show that kidney tubuloids can be used to model the most common inherited kidney disease, namely autosomal dominant polycystic kidney disease (ADPKD), reconstituting the phenotypic hallmark of this disease with cyst formation. Single-cell RNA sequencing of CRISPR-Cas9 gene-edited PKD1- and PKD2-knockout tubuloids and human ADPKD and control tissue shows similarities in upregulation of disease-driving genes. Furthermore, in a proof of concept, we demonstrate that tolvaptan, the only approved drug for ADPKD, has a significant effect on cyst size in tubuloids but no effect on a pluripotent stem cell-derived model. Thus, tubuloids are derived from a tubular epithelial subpopulation and represent an advanced system for ADPKD disease modeling.


Assuntos
Cistos , Rim Policístico Autossômico Dominante , Adulto , Humanos , Rim Policístico Autossômico Dominante/genética , Canais de Cátion TRPP/genética , Organoides , Rim , Antígeno CD24/genética
7.
Redox Biol ; 56: 102459, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36099852

RESUMO

AIMS: Patients with chronic kidney disease (CKD) have an increased risk of cardiovascular events and exhibit myocardial changes including left ventricular (LV) hypertrophy and fibrosis, overall referred to as 'uremic cardiomyopathy'. Although different CKD animal models have been studied for cardiac effects, lack of consistent reporting on cardiac function and pathology complicates clear comparison of these models. Therefore, this study aimed at a systematic and comprehensive comparison of cardiac function and cardiac pathophysiological characteristics in eight different CKD models and mouse strains, with a main focus on adenine-induced CKD. METHODS AND RESULTS: CKD of different severity and duration was induced by subtotal nephrectomy or adenine-rich diet in various strains (C57BL/6J, C57BL/6 N, hyperlipidemic C57BL/6J ApoE-/-, 129/Sv), followed by the analysis of kidney function and morphology, blood pressure, cardiac function, cardiac hypertrophy, fibrosis, myocardial calcification and inflammation using functional, histological and molecular techniques, including cardiac gene expression profiling supplemented by oxidative stress analysis. Intriguingly, despite uremia of variable degree, neither cardiac dysfunction, hypertrophy nor interstitial fibrosis were observed. However, already moderate CKD altered cardiac oxidative stress responses and enhanced oxidative stress markers in each mouse strain, with cardiac RNA sequencing revealing activation of oxidative stress signaling as well as anti-inflammatory feedback responses. CONCLUSION: This study considerably expands the knowledge on strain- and protocol-specific differences in the field of cardiorenal research and reveals that several weeks of at least moderate experimental CKD increase oxidative stress responses in the heart in a broad spectrum of mouse models. However, this was insufficient to induce relevant systolic or diastolic dysfunction, suggesting that additional "hits" are required to induce uremic cardiomyopathy. TRANSLATIONAL PERSPECTIVE: Patients with chronic kidney disease (CKD) have an increased risk of cardiovascular adverse events and exhibit myocardial changes, overall referred to as 'uremic cardiomyopathy'. We revealed that CKD increases cardiac oxidative stress responses in the heart. Nonetheless, several weeks of at least moderate experimental CKD do not necessarily trigger cardiac dysfunction and remodeling, suggesting that additional "hits" are required to induce uremic cardiomyopathy in the clinical setting. Whether the altered cardiac oxidative stress balance in CKD may increase the risk and extent of cardiovascular damage upon additional cardiovascular risk factors and/or events will be addressed in future studies.


Assuntos
Cardiomiopatias , Insuficiência Renal Crônica , Adenina , Animais , Anti-Inflamatórios , Apolipoproteínas E , Modelos Animais de Doenças , Fibrose , Hipertrofia Ventricular Esquerda , Camundongos , Camundongos Endogâmicos C57BL , Estresse Oxidativo , Insuficiência Renal Crônica/etiologia , Insuficiência Renal Crônica/metabolismo
8.
Diabetes Obes Metab ; 24(11): 2263-2272, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35801343

RESUMO

AIM: To investigate cardiac signalling pathways connecting substrate utilization with left ventricular remodelling in a murine pressure overload model. METHODS: Cardiac hypertrophy was induced by transverse aortic constriction surgery in 20-week-old C57BL/6J mice treated with or without the sodium-glucose co-transporter 2 (SGLT2) inhibitor ertugliflozin (225 mg kg-1 chow diet) for 10 weeks. RESULTS: Ertugliflozin improved left ventricular function and reduced myocardial fibrosis. This occurred simultaneously with a fasting-like response characterized by improved glucose tolerance and increased ketone body concentrations. While cardiac insulin signalling was reduced in response to SGLT2 inhibition, AMP-activated protein kinase (AMPK) signalling was increased with induction of the fatty acid transporter cluster of differentiation 36 and phosphorylation of acetyl-CoA carboxylase (ACC). Further, enzymes responsible for ketone body catabolism (ß-hydroxybutyrate dehydrogenase, succinyl-CoA:3-oxoacid-CoA transferase and acetyl-CoA acetyltransferase 1) were induced by SGLT2 inhibition. Ertugliflozin led to more cardiac abundance of fatty acids, tricarboxylic acid cycle metabolites and ATP. Downstream mechanistic target of rapamycin (mTOR) pathway, relevant for protein synthesis, cardiac hypertrophy and adverse cardiac remodelling, was reduced by SGLT2 inhibition, with alleviation of endoplasmic reticulum (ER) stress and unfolded protein response (UPR) providing a potential mechanism for abundant reduced left ventricular apoptosis and fibrosis. CONCLUSION: SGLT2 inhibition reduced left ventricular fibrosis in a murine model of cardiac hypertrophy. Mechanistically, this was associated with reduced cardiac insulin and increased AMPK signalling as a potential mechanism for less cardiac mTOR activation with alleviation of downstream ER stress, UPR and apoptosis.


Assuntos
Insulinas , Inibidores do Transportador 2 de Sódio-Glicose , Proteínas Quinases Ativadas por AMP/metabolismo , Acetil-CoA C-Acetiltransferase/metabolismo , Acetil-CoA Carboxilase/metabolismo , Trifosfato de Adenosina/metabolismo , Animais , Apoptose , Compostos Bicíclicos Heterocíclicos com Pontes , Cardiomegalia/metabolismo , Cardiomegalia/patologia , Coenzima A-Transferases/metabolismo , Estresse do Retículo Endoplasmático , Ácidos Graxos/metabolismo , Fibrose , Glucose/metabolismo , Hidroxibutirato Desidrogenase/metabolismo , Cetoácidos/metabolismo , Cetonas/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Miócitos Cardíacos/metabolismo , Sirolimo/metabolismo , Sódio/metabolismo , Transportador 2 de Glucose-Sódio/metabolismo , Inibidores do Transportador 2 de Sódio-Glicose/farmacologia , Inibidores do Transportador 2 de Sódio-Glicose/uso terapêutico , Serina-Treonina Quinases TOR/metabolismo
9.
Herz ; 47(5): 434-441, 2022 Oct.
Artigo em Alemão | MEDLINE | ID: mdl-35857081

RESUMO

Patients with diabetes have a high cardiovascular risk, which can be efficiently addressed by the administration of glucagon-like peptide 1 (GLP-1) receptor agonists (GLP-1-RA). Nevertheless, the use of GLP-1-RA has so far been limited in cardiology. This review describes the existing evidence for cardiovascular benefits of GLP-1-RA and presents the available substances with recommendations on administration and titration and taking the side effects into consideration.


Assuntos
Cardiologia , Doenças Cardiovasculares , Diabetes Mellitus Tipo 2 , Doenças Cardiovasculares/tratamento farmacológico , Diabetes Mellitus Tipo 2/tratamento farmacológico , Peptídeo 1 Semelhante ao Glucagon/uso terapêutico , Receptor do Peptídeo Semelhante ao Glucagon 1/agonistas , Receptor do Peptídeo Semelhante ao Glucagon 1/uso terapêutico , Humanos , Hipoglicemiantes/uso terapêutico
10.
Nat Commun ; 13(1): 3027, 2022 05 31.
Artigo em Inglês | MEDLINE | ID: mdl-35641541

RESUMO

The cardiac vascular and perivascular niche are of major importance in homeostasis and during disease, but we lack a complete understanding of its cellular heterogeneity and alteration in response to injury as a major driver of heart failure. Using combined genetic fate tracing with confocal imaging and single-cell RNA sequencing of this niche in homeostasis and during heart failure, we unravel cell type specific transcriptomic changes in fibroblast, endothelial, pericyte and vascular smooth muscle cell subtypes. We characterize a specific fibroblast subpopulation that exists during homeostasis, acquires Thbs4 expression and expands after injury driving cardiac fibrosis, and identify the transcription factor TEAD1 as a regulator of fibroblast activation. Endothelial cells display a proliferative response after injury, which is not sustained in later remodeling, together with transcriptional changes related to hypoxia, angiogenesis, and migration. Collectively, our data provides an extensive resource of transcriptomic changes in the vascular niche in hypertrophic cardiac remodeling.


Assuntos
Células Endoteliais , Insuficiência Cardíaca , Células Endoteliais/metabolismo , Fibroblastos/metabolismo , Insuficiência Cardíaca/genética , Insuficiência Cardíaca/metabolismo , Humanos , Miócitos de Músculo Liso/metabolismo , Pericitos/metabolismo
11.
Mol Aspects Med ; 86: 101084, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35219502

RESUMO

Glucose and its metabolites provide building blocks for cellular structures and modifications occurring on proteins, lipids and nucleotides. The underlying reactions consist of glycosylations controlled by hundreds of enzymes following a specific yet incompletely understood architecture of cell physiology and glycations as random, not controlled modifications occurring in an oxidative environment. In both cases attachments of glucose or its metabolites can modulate the tertiary structure of proteins as required for cellular physiology or cause disturbance with disease driving pathology. In this review we will discuss the relevance of glucose dependent cellular modifications for cardiovascular complications.


Assuntos
Doenças Cardiovasculares , Glucose , Glicosilação , Humanos , Oxirredução , Processamento de Proteína Pós-Traducional , Proteínas
12.
Circ Res ; 130(6): 814-828, 2022 03 18.
Artigo em Inglês | MEDLINE | ID: mdl-35130718

RESUMO

BACKGROUND: In patients with chronic kidney disease (CKD), atrial fibrillation (AF) is highly prevalent and represents a major risk factor for stroke and death. CKD is associated with atrial proarrhythmic remodeling and activation of the sympathetic nervous system. Whether reduction of the sympathetic nerve activity by renal denervation (RDN) inhibits AF vulnerability in CKD is unknown. METHODS: Left atrial (LA) fibrosis was analyzed in samples from patients with AF and concomitant CKD (estimated glomerular filtration rate [eGFR], <60 mL/min per 1.73 m2) using picrosirius red and compared with AF patients without CKD and patients with sinus rhythm with and without CKD. In a translational approach, male Sprague Dawley rats were fed with 0.25% adenine (AD)-containing chow for 16 weeks to induce CKD. At week 5, AD-fed rats underwent RDN or sham operation (AD). Rats on normal chow served as control. After 16 weeks, cardiac function and AF susceptibility were assessed by echocardiography, radiotelemetry, electrophysiological mapping, and burst stimulation, respectively. LA tissue was histologically analyzed for sympathetic innervation using tyrosine hydroxylase staining, and LA fibrosis was determined using picrosirius red. RESULTS: Sirius red staining demonstrated significantly increased LA fibrosis in patients with AF+CKD compared with AF without CKD or sinus rhythm. In rats, AD demonstrated LA structural changes with enhanced sympathetic innervation compared with control. In AD, LA enlargement was associated with prolonged duration of induced AF episodes, impaired LA conduction latency, and increased absolute conduction inhomogeneity. RDN treatment improved LA remodeling and reduced LA diameter compared with sham-operated AD. Furthermore, RDN decreased AF susceptibility and ameliorated LA conduction latency and absolute conduction inhomogeneity, independent of blood pressure reduction and renal function. CONCLUSIONS: In an experimental rat model of CKD, RDN inhibited progression of atrial structural and electrophysiological remodeling. Therefore, RDN represents a potential therapeutic tool to reduce the risk of AF in CKD, independent of changes in renal function and blood pressure.


Assuntos
Fibrilação Atrial , Remodelamento Atrial , Insuficiência Renal Crônica , Animais , Fibrilação Atrial/etiologia , Fibrilação Atrial/prevenção & controle , Denervação , Feminino , Fibrose , Humanos , Rim/patologia , Masculino , Ratos , Ratos Sprague-Dawley , Insuficiência Renal Crônica/complicações
13.
Cardiovasc Diabetol ; 21(1): 18, 2022 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-35123462

RESUMO

BACKGROUND: The gut incretin hormones GLP-1 (glucagon-like peptide-1) and GIP (glucose-dependent insulinotropic peptide) are secreted by enteroendocrine cells following food intake leading to insulin secretion and glucose lowering. Beyond its metabolic function GIP has been found to exhibit direct cardio- and atheroprotective effects in mice and to be associated with cardiovascular prognosis in patients with myocardial infarction. The aim of this study was to characterize endogenous GIP levels in patients with acute myocardial infarction. METHODS AND RESULTS: Serum concentrations of GIP were assessed in 731 patients who presented with clinical indication of coronary angiography. Circulating GIP levels were significantly lower in patients with STEMI (ST-elevation myocardial infarction; n=100) compared to clinically stable patients without myocardial infarction (n=631) (216.82 pg/mL [Q1-Q3: 52.37-443.07] vs. 271.54 pg/mL [Q1-Q3: 70.12-542.41], p = 0.0266). To characterize endogenous GIP levels in patients with acute myocardial injury we enrolled 18 patients scheduled for cardiac surgery with cardiopulmonary bypass and requirement of extracorporeal circulation as a reproducible condition of myocardial injury. Blood samples were drawn directly before surgery (baseline), upon arrival at the intensive care unit (ICU), 6 h post arrival to the ICU and at the morning of the first and second postoperative days. Mean circulating GIP concentrations decreased in response to surgery from 45.3 ± 22.6 pg/mL at baseline to a minimum of 31.9 ± 19.8 pg/mL at the first postoperative day (p = 0.0384) and rose again at the second postoperative day (52.1 ± 28.0 pg/mL). CONCLUSIONS: Circulating GIP levels are downregulated in patients with myocardial infarction and following cardiac surgery. These results might suggest nutrition-independent regulation of GIP secretion following myocardial injury in humans.


Assuntos
Procedimentos Cirúrgicos Cardíacos/efeitos adversos , Polipeptídeo Inibidor Gástrico/sangue , Cardiopatias/sangue , Infarto do Miocárdio com Supradesnível do Segmento ST/sangue , Idoso , Biomarcadores/sangue , Ponte Cardiopulmonar/efeitos adversos , Estudos de Casos e Controles , Angiografia Coronária , Regulação para Baixo , Ensaio de Imunoadsorção Enzimática , Feminino , Cardiopatias/diagnóstico , Cardiopatias/etiologia , Humanos , Masculino , Pessoa de Meia-Idade , Valor Preditivo dos Testes , Infarto do Miocárdio com Supradesnível do Segmento ST/diagnóstico por imagem
14.
Kidney Int ; 101(2): 256-273, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34774555

RESUMO

Chronic kidney disease (CKD) triggers the risk of developing uremic cardiomyopathy as characterized by cardiac hypertrophy, fibrosis and functional impairment. Traditionally, animal studies are used to reveal the underlying pathological mechanism, although variable CKD models, mouse strains and readouts may reveal diverse results. Here, we systematically reviewed 88 studies and performed meta-analyses of 52 to support finding suitable animal models for future experimental studies on pathological kidney-heart crosstalk during uremic cardiomyopathy. We compared different mouse strains and the direct effect of CKD on cardiac hypertrophy, fibrosis and cardiac function in "single hit" strategies as well as cardiac effects of kidney injury combined with additional cardiovascular risk factors in "multifactorial hit" strategies. In C57BL/6 mice, CKD was associated with a mild increase in cardiac hypertrophy and fibrosis and marginal systolic dysfunction. Studies revealed high variability in results, especially regarding hypertrophy and systolic function. Cardiac hypertrophy in CKD was more consistently observed in 129/Sv mice, which express two instead of one renin gene and more consistently develop increased blood pressure upon CKD induction. Overall, "multifactorial hit" models more consistently induced cardiac hypertrophy and fibrosis compared to "single hit" kidney injury models. Thus, genetic factors and additional cardiovascular risk factors can "prime" for susceptibility to organ damage, with increased blood pressure, cardiac hypertrophy and early cardiac fibrosis more consistently observed in 129/Sv compared to C57BL/6 strains.


Assuntos
Cardiomiopatias , Insuficiência Renal Crônica , Animais , Cardiomiopatias/genética , Modelos Animais de Doenças , Fibrose , Camundongos , Camundongos Endogâmicos C57BL , Insuficiência Renal Crônica/complicações
17.
J Am Soc Nephrol ; 32(1): 52-68, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33154175

RESUMO

BACKGROUND: Nephropathologic analyses provide important outcomes-related data in experiments with the animal models that are essential for understanding kidney disease pathophysiology. Precision medicine increases the demand for quantitative, unbiased, reproducible, and efficient histopathologic analyses, which will require novel high-throughput tools. A deep learning technique, the convolutional neural network, is increasingly applied in pathology because of its high performance in tasks like histology segmentation. METHODS: We investigated use of a convolutional neural network architecture for accurate segmentation of periodic acid-Schiff-stained kidney tissue from healthy mice and five murine disease models and from other species used in preclinical research. We trained the convolutional neural network to segment six major renal structures: glomerular tuft, glomerulus including Bowman's capsule, tubules, arteries, arterial lumina, and veins. To achieve high accuracy, we performed a large number of expert-based annotations, 72,722 in total. RESULTS: Multiclass segmentation performance was very high in all disease models. The convolutional neural network allowed high-throughput and large-scale, quantitative and comparative analyses of various models. In disease models, computational feature extraction revealed interstitial expansion, tubular dilation and atrophy, and glomerular size variability. Validation showed a high correlation of findings with current standard morphometric analysis. The convolutional neural network also showed high performance in other species used in research-including rats, pigs, bears, and marmosets-as well as in humans, providing a translational bridge between preclinical and clinical studies. CONCLUSIONS: We developed a deep learning algorithm for accurate multiclass segmentation of digital whole-slide images of periodic acid-Schiff-stained kidneys from various species and renal disease models. This enables reproducible quantitative histopathologic analyses in preclinical models that also might be applicable to clinical studies.


Assuntos
Aprendizado Profundo , Diagnóstico por Computador , Rim/fisiopatologia , Reconhecimento Automatizado de Padrão , Algoritmos , Animais , Modelos Animais de Doenças , Processamento de Imagem Assistida por Computador/métodos , Nefropatias/patologia , Glomérulos Renais/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Redes Neurais de Computação , Ácido Periódico/química , Reprodutibilidade dos Testes , Bases de Schiff , Pesquisa Translacional Biomédica
18.
J Clin Med ; 9(12)2020 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-33291235

RESUMO

AIMS: Recent studies have found circulating concentrations of the gastrointestinal hormone GLP-1 to be an excellent predictor of cardiovascular risk in patients with myocardial infarction. This illustrates a yet not appreciated crosstalk between the gastrointestinal and cardiovascular systems, which requires further investigation. The gut-derived hormone Peptide YY (PYY) is secreted from the same intestinal L-cells as GLP-1. Relevance of PYY in the context of cardiovascular disease has not been explored. In this study, we aimed to investigate PYY serum concentrations in patients with acute myocardial infarction and to evaluate their association with cardiovascular events. MATERIAL AND METHODS: PYY levels were assessed in 834 patients presenting with acute myocardial infarction (553 Non-ST-Elevation Myocardial Infarction (NSTEMI) and 281 ST-Elevation Myocardial Infarction (STEMI)) at the time of hospital admission. The composite outcomes of first occurrence of cardiovascular death, nonfatal myocardial infarction, nonfatal stroke (3-P-MACE), and all-cause mortality were assessed with a median follow-up of 338 days. RESULTS: PYY levels were significantly associated with age and cardiovascular risk factors, including hypertension, diabetes, and kidney function in addition to biomarkers of heart failure (NT-pro BNP) and inflammation (hs-CRP). Further, PYY was significantly associated with 3-P-MACE (HR: 1.7; 95% CI: 1-2.97; p = 0.0495) and all-cause mortality (HR: 2.69; 95% CI: 1.61-4.47; p = 0.0001) by univariable Cox regression analyses, which was however lost after adjusting for multiple confounders. CONCLUSIONS: PYY levels are associated with parameters of cardiovascular risk as well as cardiovascular events and mortality in patients presenting with acute myocardial infarction. However, this significant association is lost after adjustment for further confounders.

19.
Biochim Biophys Acta Mol Basis Dis ; 1866(8): 165807, 2020 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-32353614

RESUMO

OBJECTIVES: Investigation of the effect of SGLT2 inhibition by empagliflozin on left ventricular function in a model of diabetic cardiomyopathy. BACKGROUND: SGLT2 inhibition is a new strategy to treat diabetes. In the EMPA-REG Outcome trial empagliflozin treatment reduced cardiovascular and overall mortality in patients with diabetes presumably due to beneficial cardiac effects, leading to reduced heart failure hospitalization. The relevant mechanisms remain currently elusive but might be mediated by a shift in cardiac substrate utilization leading to improved energetic supply to the heart. METHODS: We used db/db mice on high-fat western diet with or without empagliflozin treatment as a model of severe diabetes. Left ventricular function was assessed by pressure catheter with or without dobutamine stress. RESULTS: Treatment with empagliflozin significantly increased glycosuria, improved glucose metabolism, ameliorated left ventricular diastolic function and reduced mortality of mice. This was associated with reduced cardiac glucose concentrations and decreased calcium/calmodulin-dependent protein kinase (CaMKII) activation with subsequent less phosphorylation of the ryanodine receptor (RyR). No change of cardiac ketone bodies or branched-chain amino acid (BCAA) metabolites in serum was detected nor was cardiac expression of relevant catabolic enzymes for these substrates affected. CONCLUSIONS: In a murine model of severe diabetes empagliflozin-dependent SGLT2 inhibition improved diastolic function and reduced mortality. Improvement of diastolic function was likely mediated by reduced spontaneous diastolic sarcoplasmic reticulum (SR) calcium release but independent of changes in cardiac ketone and BCAA metabolism.


Assuntos
Compostos Benzidrílicos/farmacologia , Diabetes Mellitus Experimental/tratamento farmacológico , Cardiomiopatias Diabéticas/tratamento farmacológico , Glucosídeos/farmacologia , Hipoglicemiantes/farmacologia , Inibidores do Transportador 2 de Sódio-Glicose/farmacologia , Transportador 2 de Glucose-Sódio/genética , Aminoácidos de Cadeia Ramificada/sangue , Animais , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/antagonistas & inibidores , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/genética , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Ensaios Clínicos como Assunto , Diabetes Mellitus Experimental/genética , Diabetes Mellitus Experimental/mortalidade , Diabetes Mellitus Experimental/patologia , Diabetes Mellitus Tipo 2/tratamento farmacológico , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/mortalidade , Diabetes Mellitus Tipo 2/patologia , Cardiomiopatias Diabéticas/genética , Cardiomiopatias Diabéticas/mortalidade , Cardiomiopatias Diabéticas/patologia , Dieta Hiperlipídica/efeitos adversos , Glucose/metabolismo , Humanos , Corpos Cetônicos/sangue , Masculino , Camundongos , Camundongos Transgênicos , Canal de Liberação de Cálcio do Receptor de Rianodina/genética , Canal de Liberação de Cálcio do Receptor de Rianodina/metabolismo , Retículo Sarcoplasmático/efeitos dos fármacos , Retículo Sarcoplasmático/metabolismo , Retículo Sarcoplasmático/patologia , Transportador 2 de Glucose-Sódio/metabolismo , Análise de Sobrevida , Função Ventricular Esquerda/efeitos dos fármacos , Função Ventricular Esquerda/fisiologia
20.
Metabolism ; 104: 154045, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31821814

RESUMO

SGLT-2 inhibitors and most GLP-1 receptor agonists demonstrated cardiovascular superiority and reduction of cardiovascular and overall mortality. These results stand as a turning point in the management of diabetes, shifting the focus from controlling glucose levels to mastering the extra-glycemic effects of these new drugs. This narrative review will discuss recent CVOT with focus on SGLT-2 inhibitors and GLP-1 receptor agonists to distinguish relevant patients' characteristics as potential predictors for therapeutic efficacy. It will also examine their efficacy and safety, the differences in their cardiovascular and renal benefits, aiming to convey clinical suggestions for everyday practice.


Assuntos
Cardiomiopatia Dilatada/tratamento farmacológico , Doença da Artéria Coronariana/tratamento farmacológico , Receptor do Peptídeo Semelhante ao Glucagon 1/agonistas , Inibidores do Transportador 2 de Sódio-Glicose/uso terapêutico , Animais , Cardiomiopatia Dilatada/mortalidade , Doença da Artéria Coronariana/mortalidade , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA