Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
AAPS J ; 25(4): 60, 2023 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-37322223

RESUMO

Current regulatory guidelines on drug-food interactions recommend an early assessment of food effect to inform clinical dosing instructions, as well as a pivotal food effect study on the to-be-marketed formulation if different from that used in earlier trials. Study waivers are currently only granted for BCS class 1 drugs. Thus, repeated food effect studies are prevalent in clinical development, with the initial evaluation conducted as early as the first-in-human studies. Information on repeated food effect studies is not common in the public domain. The goal of the work presented in this manuscript from the Food Effect PBPK IQ Working Group was to compile a dataset on these studies across pharmaceutical companies and provide recommendations on their conduct. Based on 54 studies collected, we report that most of the repeat food effect studies do not result in meaningful differences in the assessment of the food effect. Seldom changes observed were more than twofold. There was no clear relationship between the change in food effect and the formulation change, indicating that in most cases, once a compound is formulated appropriately within a specific formulation technology, the food effect is primarily driven by inherent compound properties. Representative examples of PBPK models demonstrate that following appropriate validation of the model with the initial food effect study, the models can be applied to future formulations. We recommend that repeat food effect studies should be approached on a case-by-case basis taking into account the totality of the evidence including the use of PBPK modeling.


Assuntos
Interações Alimento-Droga , Modelos Biológicos , Humanos , Solubilidade , Simulação por Computador , Alimentos
2.
Mol Pharm ; 20(4): 2181-2193, 2023 04 03.
Artigo em Inglês | MEDLINE | ID: mdl-36859819

RESUMO

Acalabrutinib maleate tablets correspond to an improved formulation compared to acalabrutinib capsules as they can be dosed with and without acid reducing agents and therefore benefit more cancer patients. The dissolution specification for the drug product was determined using all the information available on the drug safety, efficacy, and in vitro performance. In addition, a physiologically based biopharmaceutics model was developed for acalabrutinib maleate tablets on the back of a previously published model for acalabrutinib capsules to establish that the proposed drug product dissolution specification would ensure safe and effective products for all patients including those under acid reducing agent treatment. The model was built, validated, and used to predict the exposure of virtual batches where the dissolution was slower than that of the clinical target. A combination of exposure prediction and the use of a PK-PD model allowed it to be demonstrated that the proposed drug product dissolution specification was acceptable. This combination of models enabled a larger safe space than would have been granted by consideration of bioequivalence only.


Assuntos
Biofarmácia , Modelos Biológicos , Humanos , Solubilidade , Cápsulas , Equivalência Terapêutica , Comprimidos , Maleatos
3.
Pharm Res ; 40(2): 387-403, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36002614

RESUMO

OBJECTIVE: A physiologically based biopharmaceutics model (PBBM) was developed to mechanistically investigate the effect of formulation and food on selumetinib pharmacokinetics. METHODS: Selumetinib is presented as a hydrogen sulfate salt, and in vitro and in vivo data were used to verify the precipitation rate to apply to simulations. Dissolution profiles observed for capsules and granules were used to derive product-particle size distributions for model input. The PBBM incorporated gut efflux and first-pass gut metabolism, based on intravenous and oral pharmacokinetic data, alongside in vitro data for the main enzyme isoform and P-glycoprotein efflux. The PBBM was validated across eight clinical scenarios. RESULTS: The quality-control dissolution method for selumetinib capsules was found to be clinically relevant through PBBM validation. A safe space for capsule dissolution was established using a virtual batch. The effect of food (low fat vs high fat) on capsules and granules was elucidated by the PBBM. For capsules, a lower amount was dissolved in the fed state due to a pH increase in the stomach followed by higher precipitation in the small intestine. First-pass gut extraction is higher for capsules in the fed state due to drug dilution in the stomach chyme and reduced concentration in the lumen. The enteric-coated granules dissolve more slowly than capsules after stomach emptying, attenuating the difference in first-pass gut extraction between prandial states. CONCLUSIONS: The PBBM was instrumental in understanding and explaining the different behaviors of the selumetinib formulations. The model can be used to predict the impact of food in humans.


Assuntos
Biofarmácia , Modelos Biológicos , Adulto , Humanos , Biofarmácia/métodos , Solubilidade , Disponibilidade Biológica , Cápsulas , Administração Oral
4.
AAPS J ; 25(1): 11, 2022 12 13.
Artigo em Inglês | MEDLINE | ID: mdl-36513860

RESUMO

This manuscript represents the view of the Dissolution Working Group of the IQ Consortium on the challenges of and recommendations on solubility measurements and development of dissolution methods for immediate release (IR) solid oral dosage forms formulated with amorphous solid dispersions. Nowadays, numerous compounds populate the industrial pipeline as promising drug candidates yet suffer from low aqueous solubility. In the oral drug product development process, solubility along with permeability is a key determinant to assure sufficient drug absorption along the intestinal tract. Formulating the drug candidate as an amorphous solid dispersion (ASD) is one potential option to address this issue. These formulations demonstrate the rapid onset of drug dissolution and can achieve supersaturated concentrations, which poses significant challenges to appropriately characterize solubility and develop quality control dissolution methods. This review strives to categorize the different dissolution and solubility challenges for ASD associated with 3 different topics: (i) definition of solubility and sink conditions for ASD dissolution, (ii) applications and development of non-sink dissolution (according to conventional definition) for ASD formulation screening and QC method development, and (iii) the advantages and disadvantages of using dissolution in detecting crystallinity in ASD formulations. Related to these challenges, successful examples of dissolution experiments in the context of control strategies are shared and may lead as an example for scientific consensus concerning dissolution testing of ASD.


Assuntos
Solubilidade , Cristalização , Liberação Controlada de Fármacos
5.
Pharmaceutics ; 14(5)2022 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-35631595

RESUMO

A webinar series that was organised by the Academy of Pharmaceutical Sciences Biopharmaceutics focus group in 2021 focused on the challenges of developing clinically relevant dissolution specifications (CRDSs) for oral drug products. Industrial scientists, together with regulatory and academic scientists, came together through a series of six webinars, to discuss progress in the field, emerging trends, and areas for continued collaboration and harmonisation. Each webinar also hosted a Q&A session where participants could discuss the shared topic and information. Although it was clear from the presentations and Q&A sessions that we continue to make progress in the field of CRDSs and the utility/success of PBBM, there is also a need to continue the momentum and dialogue between the industry and regulators. Five key areas were identified which require further discussion and harmonisation.

6.
J Pharm Sci ; 111(2): 517-528, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34597624

RESUMO

BACKGROUND: Early assessment of pH-dependent drug-drug-interactions (DDIs) for salts of poorly soluble weakly acidic compounds offers various advantages for patient safety, the pharmaceutical industry, and regulatory bodies. Biorelevant media and tests reflecting physiological changes during acid-reducing agent (ARA) co-administration can be used to explore and predict the extent of the pH effect during therapy with ARAs. METHODS: Solubility, one-stage and two-stage dissolution of tablets containing potassium raltegravir, the marketed salt form of this poorly soluble, weakly acidic drug, was investigated using biorelevant media specially designed to reflect administration without and during ARA co-therapy. The dissolution data were then converted into parameters suitable for input into an in silico model (Simcyp™) and the simulated plasma profiles were compared with available pharmacokinetic (PK) data from the literature. RESULTS: Dissolution of the potassium raltegravir formulation in media reflecting ARA co-administration, and thus elevated gastric pH, was faster and more complete than in experiments reflecting the low gastric pH observed in the absence of ARA co-administration. Simulations using data from dissolution experiments with ARA media appropriately bracketed the in vivo data for ARA co-administration in healthy volunteers. CONCLUSION: Dissolution data from in vitro experiments in biorelevant media reflecting physiological changes due to ARA co-administration provide valuable information about potassium raltegravir's behavior during concomitant ARA therapy. The approach may also be suitable for salts forms of other poorly soluble, weakly acidic drugs.


Assuntos
Potássio , Sais , Simulação por Computador , Interações Medicamentosas , Humanos , Concentração de Íons de Hidrogênio , Modelos Biológicos , Raltegravir Potássico
7.
Eur J Pharm Sci ; 160: 105750, 2021 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-33581261

RESUMO

BACKGROUND: In vitro and in silico methods have become an essential tool in assessing metabolic drug-drug interactions (DDI) and avoiding reduced efficacy and increased side-effects. Another important type of DDI is the impact of acid-reducing agent (ARA) co-therapy on drug pharmacokinetics due to changes in gastric pH, especially for poorly soluble weakly basic drugs. METHODS: One-stage, two-stage and transfer dissolution experiments with dipyridamole tablets using novel biorelevant media representing the ARA effect were conducted and the results were coupled with a PBPK model. Clinical pharmacokinetic data were compared with the simulations from the PBPK model and with output from TIM-1 experiments, an evolved in vitro system which aims to simulate the physiology in the upper GI tract. RESULTS: Two-stage and transfer experiments confirmed that these in vitro set-ups tend to overestimate the extent of dipyridamole precipitation occurring in the intestines in vivo. Consequently, data from one-stage dissolution testing under elevated gastric pH conditions were used as an input for PBPK modeling of the ARA/dipyridamole interaction. Using media representing the ARA effect in conjunction with the PBPK model, the ARA effect observed in vivo was successfully bracketed. As an alternative, the TIM-1 system with gastric pH values adjusted to simulate ARA pre-treatment can be used to forecast the ARA effect on dipyridamole pharmacokinetics. CONCLUSION: Drug-drug interactions of dipyridamole with ARA were simulated well with a combination of dissolution experiments using biorelevant media representing the gastric environment after an ARA treatment together with the PBPK model. Adjustment of the TIM-1 model to reflect ARA-related changes in gastric pH was also successful in forecasting the interaction. Further testing of both approaches for predicting ARA-related DDIs using a wider range of drugs should be conducted to verify their utility for this purpose.


Assuntos
Preparações Farmacêuticas , Substâncias Redutoras , Administração Oral , Simulação por Computador , Dipiridamol , Absorção Intestinal , Modelos Biológicos , Solubilidade
8.
Eur J Pharm Sci ; 158: 105656, 2021 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-33253885

RESUMO

BACKGROUND: Oral medicines must release the drug appropriately in the GI tract in order to assure adequate and reproducible absorption. Disease states and co-administration of drugs may alter GI physiology and therefore the release profile of the drug. Acid-reducing agents (ARAs), especially proton pump inhibitors (PPIs), are frequently co-administered during various therapies. As orally administered drugs are frequently poorly soluble weak bases, PPI co-administration raises the risk of pH-induced drug-drug interactions (DDIs) and the potential for changes in the therapeutic outcome. METHODS: This research compared the dissolution data of a poorly soluble weakly basic drug ("PSWB 001") from capsules in standard fasted state biorelevant media (FaSSGF, FaSSIF V1 and FaSSIF V2), water and recently devised media representing gastric conditions under various levels of PPI co-administration. An in silico simulation model, based on Simcyp software, was developed to compare simulated plasma profiles with clinical data. RESULTS: PSWB 001 capsules showed rapid and complete dissolution in acidic conditions representing gastric fluids, whereas limited dissolution was observed in deionized water, media representing PPI co-administration and in two biorelevant media representing fluids in the upper small intestine. Buffer capacity and the presence of native surfactants were shown to be important factors in the in vitro dissolution of PSWB 001. The data from in vitro experiments were used in conjunction with the in silico simulation model, which correctly predicted the plasma profiles of PSWB 001 when administered without PPIs, as well as bracketing the PPI effect observed in vivo. CONCLUSIONS: Recently developed biorelevant media representing gastric conditions under PPI therapy, combined with PBPK modeling, were able to bracket the observed plasma profiles of PSWB 001. These media may also be useful for predicting PPI effects for other poorly soluble, weakly basic drugs.


Assuntos
Preparações Farmacêuticas , Administração Oral , Simulação por Computador , Absorção Intestinal , Modelos Biológicos , Omeprazol , Solubilidade
9.
Eur J Pharm Biopharm ; 156: 50-63, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32805361

RESUMO

Oral drug absorption is a complex process depending on many factors, including the physicochemical properties of the drug, formulation characteristics and their interplay with gastrointestinal physiology and biology. Physiological-based pharmacokinetic (PBPK) models integrate all available information on gastro-intestinal system with drug and formulation data to predict oral drug absorption. The latter together with in vitro-in vivo extrapolation and other preclinical data on drug disposition can be used to predict plasma concentration-time profiles in silico. Despite recent successes of PBPK in many areas of drug development, an improvement in their utility for evaluating oral absorption is much needed. Current status of predictive performance, within the confinement of commonly available in vitro data on drugs and formulations alongside systems information, were tested using 3 PBPK software packages (GI-Sim (ver.4.1), Simcyp® Simulator (ver.15.0.86.0), and GastroPlus™ (ver.9.0.00xx)). This was part of the Innovative Medicines Initiative (IMI) Oral Biopharmaceutics Tools (OrBiTo) project. Fifty eight active pharmaceutical ingredients (APIs) were qualified from the OrBiTo database to be part of the investigation based on a priori set criteria on availability of minimum necessary information to allow modelling exercise. The set entailed over 200 human clinical studies with over 700 study arms. These were simulated using input parameters which had been harmonised by a panel of experts across different software packages prior to conduct of any simulation. Overall prediction performance and software packages comparison were evaluated based on performance indicators (Fold error (FE), Average fold error (AFE) and absolute average fold error (AAFE)) of pharmacokinetic (PK) parameters. On average, PK parameters (Area Under the Concentration-time curve (AUC0-tlast), Maximal concentration (Cmax), half-life (t1/2)) were predicted with AFE values between 1.11 and 1.97. Variability in FEs of these PK parameters was relatively high with AAFE values ranging from 2.08 to 2.74. Around half of the simulations were within the 2-fold error for AUC0-tlast and around 90% of the simulations were within 10-fold error for AUC0-tlast. Oral bioavailability (Foral) predictions, which were limited to 19 APIs having intravenous (i.v.) human data, showed AFE and AAFE of values 1.37 and 1.75 respectively. Across different APIs, AFE of AUC0-tlast predictions were between 0.22 and 22.76 with 70% of the APIs showing an AFE > 1. When compared across different formulations and routes of administration, AUC0-tlast for oral controlled release and i.v. administration were better predicted than that for oral immediate release formulations. Average predictive performance did not clearly differ between software packages but some APIs showed a high level of variability in predictive performance across different software packages. This variability could be related to several factors such as compound specific properties, the quality and availability of information, and errors in scaling from in vitro and preclinical in vivo data to human in vivo behaviour which will be explored further. Results were compared with previous similar exercise when the input data selection was carried by the modeller rather than a panel of experts on each in vitro test. Overall, average predictive performance was increased as reflected in smaller AAFE value of 2.8 as compared to AAFE value of 3.8 in case of previous exercise.


Assuntos
Biofarmácia/normas , Análise de Dados , Absorção Intestinal/efeitos dos fármacos , Modelos Biológicos , Preparações Farmacêuticas/metabolismo , Software/normas , Administração Oral , Biofarmácia/métodos , Ensaios Clínicos como Assunto/métodos , Ensaios Clínicos como Assunto/normas , Bases de Dados Factuais/normas , Previsões , Humanos , Absorção Intestinal/fisiologia , Preparações Farmacêuticas/administração & dosagem
10.
Eur J Pharm Biopharm ; 142: 435-448, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31306750

RESUMO

Acalabrutinib (Calquence®) 100 mg (bid) has received accelerated approval by FDA for the treatment of adult patients with mantle cell lymphoma (MCL) who have received at least one prior therapy. Acalabrutinib is a substrate of PgP and CYP3A4, with a significant fraction of drug metabolized by first pass gut extraction and 25% absolute bioavailability. The absorption of acalabrutinib is affected by stomach pH, with lower pharmacokinetic exposure observed following co-administration with proton pump inhibitors. During dissolution at pH values below its highest basic pKa, the two basic moieties of acalabrutinib react with protons from the aqueous solution, leading to a higher pH at the drug surface than in the bulk solution. A batch-specific product particle size distribution (P-PSD), was derived from dissolution data using a mechanistic model that was based on the understanding of surface pH and the contribution of micelles to the dissolution rate. P-PSD values obtained for various batches of acalabrutinib products in simple buffers, or in complex fluids such as fruit juices, were successfully integrated into a physiologically based pharmacokinetic (PBPK) model developed using GastroPlus v9.0™. The integrated model allowed the prediction of clinical pharmacokinetics under normal physiological stomach pH conditions as well as following treatment with proton pump inhibitors. The model also accounted for lower pharmacokinetic exposure that was observed when acalabrutinib was co-administered with the acidic beverages, grapefruit juice, (which contains CYP3A inhibitors), and orange drink (which does not contain CYP3A inhibitors), relative to administration with water. The integration of dissolution data in the PBPK model enables mechanistic understanding and the establishment of more robust in vitro-in vivo correlations (IVIVC) under a variety of conditions. The model can then distinguish the interplay between dissolution and first pass extraction and how in vivo stomach pH, saturation of gut PgP, and saturation or inhibition of gut CYP3A4, will impact the pharmacokinetics of acalabrutinib.


Assuntos
Benzamidas/química , Benzamidas/farmacocinética , Interações Medicamentosas/fisiologia , Sucos de Frutas e Vegetais/efeitos adversos , Inibidores da Bomba de Prótons/química , Inibidores da Bomba de Prótons/farmacocinética , Pirazinas/química , Pirazinas/farmacocinética , Solubilidade/efeitos dos fármacos , Disponibilidade Biológica , Química Farmacêutica/métodos , Humanos , Modelos Biológicos
11.
J Pharm Sci ; 108(11): 3461-3477, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31265846

RESUMO

BACKGROUND: Of the various drug therapies that influence gastrointestinal (GI) physiology, one of the most important are the acid-reducing agents (ARAs). Because changes in GI physiology often influence the pharmacokinetics of drugs given orally, there is a need to identify in vitro methods with which such effects can be elucidated. OBJECTIVE: Literature concerning the effects of ARAs (antacids, H2-receptor antagonists, and proton pump inhibitors [PPIs]) on GI physiology are reviewed with the aim of identifying conditions under which drugs are released after oral administration in the fasted state. In vitro dissolution tests to mimic the effects in the stomach were designed for H2-receptor antagonists and PPIs. CONCLUSIONS: The impact of ARAs on GI physiology depends on the type, duration, and amount of ARA administered as well as the location in the GI tract, with greatest impact on gastric physiology. While ARAs have a high impact on the gastric fluid pH and composition, changes in volume, viscosity, surface tension, and gastric emptying appear to be less profound. The proposed dissolution tests enable a ready comparison between dosage form performance in healthy adults and those receiving PPIs or H2-receptor antagonists.


Assuntos
Antiácidos/farmacologia , Antiácidos/uso terapêutico , Trato Gastrointestinal/efeitos dos fármacos , Trato Gastrointestinal/fisiologia , Administração Oral , Animais , Esvaziamento Gástrico/efeitos dos fármacos , Esvaziamento Gástrico/fisiologia , Humanos , Solubilidade/efeitos dos fármacos
12.
Dev Neuropsychol ; 42(3): 160-171, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28498008

RESUMO

As a focal injury in an otherwise healthy child, perinatal stroke provides a clinical model of developmental brain plasticity. In this study, we report evidence that children with perinatal periventricular venous infarcts perform as well as control children on a video game that tests navigation abilities. In addition, children with a history of perinatal arterial strokes overcame initial deficits in navigation performance after additional practice. These findings lend support to the hypothesis that a complex cognitive skill dependent on a distributed neural network with prolonged maturation, such as navigation, may demonstrate resilience after early brain injury.


Assuntos
Orientação Espacial/fisiologia , Acidente Vascular Cerebral/fisiopatologia , Adolescente , Criança , Feminino , Humanos , Masculino , Inquéritos e Questionários
13.
Brain Dev ; 39(8): 644-655, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28457518

RESUMO

AIM: To summarize the reported rates of magnetic resonance imaging (MRI) abnormalities in children with isolated global developmental delay (GDD) or intellectual disability (ID). METHOD: A literature search was conducted using electronic databases for studies reporting the rate of MRI abnormalities in children with clinically diagnosed ID or GDD and no other neurological signs, symptoms, or previously determined aetiology. All investigations with participants from birth to 18years were considered. Study quality was evaluated using the Joanna Briggs Institute Meta-Analysis of Statistics Assessment and Review Instrument (MAStARI) critical appraisal checklist items. RESULTS: Eighteen cross sectional, and 11 case-controlled studies adhered to inclusion criteria. Reported rates of abnormalities ranged from 0% to 98%. When all subjects with developmental delay from all papers were considered (n=2299) the total percentage found to have abnormalities was 38%. Abnormalities led to an etiological diagnosis for delay in 7.9% of cases. INTERPRETATION: Definitions of abnormalities varied widely between studies, and drastically different rates of abnormalities are reported. Currently available evidence is not of sufficient quality to make firm recommendations on the use of neuroimaging in ID or GDD but MRI should be considered for children that do not have a diagnosis after thorough clinical evaluation.


Assuntos
Encéfalo/diagnóstico por imagem , Disfunção Cognitiva/diagnóstico por imagem , Deficiências do Desenvolvimento/diagnóstico por imagem , Imageamento por Ressonância Magnética , Adolescente , Criança , Pré-Escolar , Humanos , Lactente , Recém-Nascido
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA