Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
1.
Microb Pathog ; 185: 106427, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37890679

RESUMO

Chlamydia trachomatis, the main cause of bacterial sexually transmitted diseases, is responsible for severe reproductive sequelae. Amongst all the cytokines involved in host immunity towards this pathogen, IFN-ε has recently acquired importance for its potential contribution to the female reproductive tract innate defenses. Herein, our study aimed to explore, for the first time, the activity of IFN-ε toward C. trachomatis in an in vitro infection model, by testing its effects on the different phases of chlamydial developmental cycle, as well as on the ultrastructural characteristics of chlamydial inclusions, via transmission electron microscopy. Main result is the capability of IFN-ε to alter C. trachomatis growth, as suggested by reduced infectious progenies, as well as a patchy distribution of bacteria and altered morphology of reticulate bodies within inclusions. In conclusion, our results suggest that IFN-ε could play a role in the innate and adaptive immune defenses against C. trachomatis; in the future, it will be needed to investigate its activity on an infection model more closely resembling the physiological environment of the female genital tract.


Assuntos
Infecções por Chlamydia , Chlamydia trachomatis , Feminino , Humanos , Citocinas , Reprodução , Interferons
2.
Int J Mol Sci ; 24(16)2023 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-37628881

RESUMO

In recent decades, antibiotic misuse has emerged as an important risk factor for the appearance of multi-drug-resistant bacteria, and, recently, antimicrobial resistance has also been described in Chlamydia trachomatis as the leading cause of bacterial sexually transmitted diseases worldwide. Herein, we investigated, for the first time, the antibacterial activity against C. trachomatis of a polyphenolic extract of extra virgin olive oil (EVOO), alongside purified oleocanthal and oleacein, two of its main components, in natural deep eutectic solvent (NaDES), a biocompatible solvent. The anti-chlamydial activity of olive-oil polyphenols (OOPs) was tested in the different phases of chlamydial developmental cycle by using an in vitro infection model. Transmission and scanning electron microscopy analysis were performed for investigating potential alterations of adhesion and invasion, as well as morphology, of chlamydial elementary bodies (EBs) to host cells. The main result of our study is the anti-bacterial activity of OOPs towards C. trachomatis EBs down to a total polyphenol concentration of 1.7 µg/mL, as shown by a statistically significant decrease (93.53%) of the total number of chlamydial-inclusion-forming units (p < 0.0001). Transmission and scanning electron microscopy analysis supported its anti-chlamydial effect, suggesting that OOP might damage the chlamydial outer layers, impairing their structural integrity and hindering EB capability to infect the host cell. In conclusion, OOPs may represent an interesting alternative therapeutic option toward C. trachomatis, although further studies are necessary for exploring its clinical applications.


Assuntos
Chlamydia trachomatis , Polifenóis , Azeite de Oliva , Antibacterianos/farmacologia , Carbono
3.
Biomedicines ; 11(6)2023 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-37371639

RESUMO

Cancer cell extravasation is a crucial step in cancer metastasis. However, many of the mechanisms involved in this process are only now being elucidated. Thus, in the present study we analysed the trans-endothelial invasion of melanoma cells by a high throughput label-free cell impedance assay applied to transwell chamber invasion assay. This technique monitors and quantifies in real-time the invasion of endothelial cells by malignant tumour cells, for a long time, avoiding artefacts due to preparation of the end point measurements. Results obtained by impedance analysis were compared with endpoint measurements. In this study, we used human melanoma M14 wild type (WT) cells and their drug resistant counterparts, M14 multidrug resistant (ADR) melanoma cells, selected by prolonged exposure to doxorubicin (DOX). Tumour cells were co-cultured with monolayers of human umbilical vein endothelial cells (HUVEC). Results herein reported demonstrated that: (i) the trans-endothelial migration of resistant melanoma cells was faster than sensitive ones; (ii) the endothelial cells appeared to be strongly affected by the transmigration of melanoma cells which showed the ability to degrade their cytoplasm; (iii) resistant cells preferentially adopted the transcellular invasion vs. the paracellular one; (iv) the endothelial damage mediated by tumour metalloproteinases seemed to be reversible.

4.
Int J Oral Maxillofac Implants ; 37(1): 57-66, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35235621

RESUMO

PURPOSE: The aim of this ex vivo study was to assess the ability to remove oral biofilm by different combinations of mechanical and chemical treatments on smooth and rough titanium surfaces, as well as their impact on osteoconduction. MATERIALS AND METHODS: Forty-eight sandblasted acid-etched (SLA) and 48 machined titanium disks were contaminated with oral bacterial biofilm and exposed to the following treatments: (1) titanium brush (TB), (2) TB + 40% citric acid (CA), (3) TB + 5.25% sodium hypochlorite (NaOCl), (4) air polishing with glycine powder (AP), (5) AP + 40% CA, and (6) AP + 5.25% NaOCl. Residual bacteria and chemical contamination were assessed using viable bacterial count assay, scanning electron microscopy (SEM), and x-ray spectroscopy (XPS). Human primary osteoblast (hOB) adhesion and osteocalcin (OC) release were also evaluated. RESULTS: The microbiologic, SEM, and XPS analysis indicate a higher biofilm removal efficiency of combined mechanical-chemical treatments compared with exclusively mechanical approaches, especially on SLA surfaces. SEM analysis revealed significant alterations of surface microtopography on the disks treated with TB, while no changes were observed after AP treatment. OC release by hOBs was mainly decreased on disks treated with CA and NaOCl. CONCLUSION: The combination of mechanical and chemical treatments provides effective oral biofilm removal on both SLA and machined implant surfaces. NaOCl and CA may have a negative effect on osteoblasts cultured on SLA samples.


Assuntos
Descontaminação , Titânio , Biofilmes , Regeneração Óssea , Humanos , Microscopia Eletrônica de Varredura , Osteoblastos , Propriedades de Superfície , Titânio/química
5.
J Nanobiotechnology ; 19(1): 306, 2021 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-34620157

RESUMO

BACKGROUND: There is a huge body of literature data on ZnOnanoparticles (ZnO NPs) toxicity. However, the reported results are seen to be increasingly discrepant, and deep comprehension of the ZnO NPs behaviour in relation to the different experimental conditions is still lacking. A recent literature overview emphasizes the screening of the ZnO NPs toxicity with more than one assay, checking the experimental reproducibility also versus time, which is a key factor for the robustness of the results. In this paper we compared high-throughput real-time measurements through Electric Cell-substrate Impedance-Sensing (ECIS®) with endpoint measurements of multiple independent assays. RESULTS: ECIS-measurements were compared with traditional cytotoxicity tests such as MTT, Neutral red, Trypan blue, and cloning efficiency assays. ECIS could follow the cell behavior continuously and noninvasively for days, so that certain long-term characteristics of cell proliferation under treatment with ZnO NPs were accessible. This was particularly important in the case of pro-mitogenic activity exerted by low-dose ZnO NPs, an effect not revealed by endpoint independent assays. This result opens new worrisome questions about the potential mitogenic activity exerted by ZnO NPs, or more generally by NPs, on transformed cells. Of importance, impedance curve trends (morphology) allowed to discriminate between different cell death mechanisms (apoptosis vs autophagy) in the absence of specific reagents, as confirmed by cell structural and functional studies by high-resolution microscopy. This could be advantageous in terms of costs and time spent. ZnO NPs-exposed A549 cells showed an unusual pattern of actin and tubulin distribution which might trigger mitotic aberrations leading to genomic instability. CONCLUSIONS: ZnO NPs toxicity can be determined not only by the intrinsic NPs characteristics, but also by the external conditions like the experimental setting, and this could account for discrepant data from different assays. ECIS has the potential to recapitulate the needs required in the evaluation of nanomaterials by contributing to the reliability of cytotoxicity tests. Moreover, it can overcome some false results and discrepancies in the results obtained by endpoint measurements. Finally, we strongly recommend the comparison of cytotoxicity tests (ECIS, MTT, Trypan Blue, Cloning efficiency) with the ultrastructural cell pathology studies.


Assuntos
Clonagem Molecular , Impedância Elétrica , Nanopartículas Metálicas , Testes de Toxicidade , Óxido de Zinco , Células A549 , Apoptose/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Humanos , Pulmão/citologia , Nanopartículas Metálicas/química , Nanopartículas Metálicas/toxicidade , Microscopia Confocal , Microscopia Eletrônica , Azul Tripano , Óxido de Zinco/química , Óxido de Zinco/toxicidade
6.
Nanoscale ; 13(27): 11976-11993, 2021 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-34212969

RESUMO

Though liposome-based drugs are in clinical use, the mechanism of cell internalization of liposomes is yet an object of controversy. The present experimental investigation, carried out on human glioblastoma cells, indicated different internalization routes for two diastereomeric liposomes. Molecular dynamics simulations of the lipid bilayers of the two formulations indicated that the different stereochemistry of a lipid component controls some parameters such as area per lipid molecule and fluidity of lipid membranes, surface potential and water organization at the lipid/water interface, all of which affect the interaction with biomolecules and cell components.


Assuntos
Bicamadas Lipídicas , Lipossomos , Composição de Medicamentos , Humanos , Simulação de Dinâmica Molecular , Água
7.
Artigo em Inglês | MEDLINE | ID: mdl-32290450

RESUMO

The surgical treatment of peri-implantitis is currently based on the removal of biofilms from the implant surface by primary means of mechanical and physical treatments. However, such approaches often determine some alterations of the implant surface with detrimental effects on re-osseointegration. This study aims to evaluate the effects of four different mechanical and physical treatments on titanium samples with moderately rough surface. Air powder abrasion (AP) with glycine powder, a titanium brush (TB) and a diode laser at 3 W (L3) and 4 W (L4) were tested. Surface morphology, roughness and chemical composition were then assessed by scanning electron microscope (SEM), white light interferometer and X-ray photoelectron spectroscopy (XPS), respectively. The microscopic analysis revealed significant alterations in surface morphology on TB samples, while AP and L3 had only a minor or null impact. L4 samples revealed signs of overheating due to the excessive power. Nevertheless, the overall roughness of the samples was not significantly altered in terms of roughness parameters. Similarly, surface chemical composition was not significantly affected by the treatments. Among the treatments tested in this study, air powder abrasion with glycine powder and 3 W diode laser had the lowest impact on surface physicochemical properties.


Assuntos
Peri-Implantite , Biofilmes , Humanos , Pós , Propriedades de Superfície , Titânio
8.
Biochim Biophys Acta Biomembr ; 1861(8): 1468-1475, 2019 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-31194958

RESUMO

Liposomes functionalized on their surface with carbohydrates (glycoliposomes) represent an optimal approach for targeting of drugs to diseased tissues in vivo, thanks to biocompatibility, low toxicity and easy manufacturing of these lipid nanoparticles. Here we report on the study of liposomes including a novel glycosylated amphiphile and on the comparison of their features with those of glycosylated analogues described previously. Further, the capability of the different glucosylated formulations to interact with three breast cancer cell lines was investigated. Our results show that the hydrophobic portion of the lipid bilayer strongly influences both the properties and the internalization of glycosylated liposomes.


Assuntos
Glucose/química , Lipossomos , Tensoativos/química , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Feminino , Citometria de Fluxo , Glucose/metabolismo , Glicolipídeos/química , Humanos , Interações Hidrofóbicas e Hidrofílicas , Microscopia Confocal , Propriedades de Superfície
9.
Cell Death Differ ; 26(9): 1813-1831, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-30538287

RESUMO

Achaete-scute homolog 1 gene (ASCL1) is a gene classifier for the proneural (PN) transcriptional subgroup of glioblastoma (GBM) that has a relevant role in the neuronal-like differentiation of GBM cancer stem cells (CSCs) through the activation of a PN gene signature. Besides prototypical ASCL1 PN target genes, the molecular effectors mediating ASCL1 function in regulating GBM differentiation and, most relevantly, subgroup specification are currently unknown. Here we report that ASCL1 not only promotes the acquisition of a PN phenotype in CSCs by inducing a glial-to-neuronal lineage switch but also concomitantly represses mesenchymal (MES) features by directly downregulating the expression of N-Myc downstream-regulated gene 1 (NDRG1), which we propose as a novel gene classifier of MES GBMs. Increasing the expression of ASCL1 in PN CSCs results in suppression of self-renewal, promotion of differentiation and, most significantly, decrease in tumorigenesis, which is also reproduced by NDRG1 silencing. Conversely, both abrogation of ASCL1 expression in PN CSCs and enforcement of NDRG1 expression in either PN or MES CSCs induce proneural-to-mesenchymal transition (PMT) and enhanced mesenchymal features. Surprisingly, ASCL1 overexpression in MES CSCs increases malignant features and gives rise to a neuroendocrine-like secretory phenotype. Altogether, our results propose that the fine interplay between ASCL1 and its target NDRG1 might serve as potential subgroup-specific targetable vulnerability in GBM; enhancing ASCL1 expression in PN GBMs might reduce tumorigenesis, whereas repressing NDRG1 expression might be actionable to hamper the malignancy of GBM belonging to the MES subgroup.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Carcinogênese/genética , Proteínas de Ciclo Celular/genética , Glioblastoma/genética , Peptídeos e Proteínas de Sinalização Intracelular/genética , Diferenciação Celular/genética , Linhagem Celular Tumoral , Proliferação de Células/genética , Autorrenovação Celular/genética , Regulação Neoplásica da Expressão Gênica/genética , Glioblastoma/patologia , Humanos , Células-Tronco Neoplásicas/metabolismo , Células-Tronco Neoplásicas/patologia , Neurônios/metabolismo , Neurônios/patologia , Transdução de Sinais
10.
Biomed Res Int ; 2018: 9031435, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29854805

RESUMO

OBJECTIVE: Platelet-rich fibrin (PRF) clots and membranes are autologous blood concentrates widely used in oral surgical procedures; less is known, however, about the liquid formulations of such products. The aim of this in vitro study is to assess the behavior of different implant surfaces when in contact with two liquid leucocyte- and platelet-rich fibrin (L-PRF) products. METHODS: Six commercial pure titanium discs, of 9.5 mm diameter and 1.5 mm thickness, were used. Three of these samples had a micro/nano-rough surface; three were machined. Three different protocols were tested. Protocols involved the immersion of the samples in (1) a platelets, lymphocytes, and fibrinogen liquid concentrate (PLyF) for 10 minutes, (2) an exudate obtained from L-PRF clots rich in fibronectin and vitronectin for 5 minutes, and (3) the fibronectin/vitronectin exudate for 2 minutes followed by immersion in the PLyF concentrate for further 8 minutes. After these treatments, the samples were fixed and observed using a scanning electron microscope (SEM). RESULTS: Under microscopic observation, (1) the samples treated with the PLyF concentrate revealed a dense fibrin network in direct contact with the implant surface and a significant number of formed elements of blood; (2) in the samples treated with the fibronectin/vitronectin exudates, only a small number of white and red blood cells were detectable; and (3) in samples exposed to the combined treatment, there was an apparent increase in the thickness of the fibrin layer. When compared to the machined surface, the micro/nano-rough samples showed an overall increased retention of fibrin, leading to a thicker coating. CONCLUSIONS: Liquid L-PRF products promote the formation of a dense fibrin clot on micro/nano-rough implant surfaces in vitro. The adjunctive treatment of surfaces with the fibronectin/vitronectin exudate could provide support to contact of the fibrin with the surface, though it is not essential for the clot formation. Further studies are necessary to better elucidate the properties and benefits of liquid L-PRF products.


Assuntos
Coagulação Sanguínea/efeitos dos fármacos , Plaquetas/metabolismo , Fibrina/farmacologia , Fibrina Rica em Plaquetas/química , Biomimética/métodos , Plaquetas/efeitos dos fármacos , Fibronectinas/farmacologia , Humanos , Leucócitos/efeitos dos fármacos , Linfócitos/efeitos dos fármacos , Próteses e Implantes , Vitronectina/farmacologia
11.
Stem Cells Int ; 2018: 3292704, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29531533

RESUMO

Clustering of patient-derived glioma stem-like cells (GSCs) through unsupervised analysis of metabolites detected by magnetic resonance spectroscopy (MRS) evidenced three subgroups, namely clusters 1a and 1b, with high intergroup similarity and neural fingerprints, and cluster 2, with a metabolism typical of commercial tumor lines. In addition, subclones generated by the same GSC line showed different metabolic phenotypes. Aerobic glycolysis prevailed in cluster 2 cells as demonstrated by higher lactate production compared to cluster 1 cells. Oligomycin, a mitochondrial ATPase inhibitor, induced high lactate extrusion only in cluster 1 cells, where it produced neutral lipid accumulation detected as mobile lipid signals by MRS and lipid droplets by confocal microscopy. These results indicate a relevant role of mitochondrial fatty acid oxidation for energy production in GSCs. On the other hand, further metabolic differences, likely accounting for different therapy responsiveness observed after etomoxir treatment, suggest that caution must be used in considering patient treatment with mitochondria FAO blockers. Metabolomics and metabolic profiling may contribute to discover new diagnostic or prognostic biomarkers to be used for personalized therapies.

12.
Ann Ist Super Sanita ; 53(1): 17-24, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28361800

RESUMO

INTRODUCTION: Each of the steps involved in invasion of tumors requires specific molecular program in which the modulation of adhesive and migratory properties of disseminating cells plays an essential role. The improvement in the knowledge of these mechanisms can lead to discovery of new target candidates in drug development. In this study we focused attention on the product of the human AHI-1 (Abelson helper integration site) gene Jouberin (Jbn). METHODS: In particular, we explore by in vitro invasion assay, AHI-1 knockdown and electron microscopy, if Jbn is involved in the signaling machinery that regulates tumor invasion. To this purpose tumor cells of different histological derivation (brain, breast, skin) were employed. RESULTS: We found that Jbn expression correlates with the proliferation, invasive potential and invasion strategy of the tested tumor cells, and that its downregulation reduces their capability of migrating and invading the extracellular matrix. CONCLUSIONS: The results obtained in this study for the first time point to Jbn as a new candidate involved in the invasion process of tumor cells, and as potential molecular target in anticancer therapy.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/genética , Invasividade Neoplásica/genética , Proteínas Adaptadoras de Transporte Vesicular , Linhagem Celular Tumoral , Matriz Extracelular/patologia , Técnicas de Silenciamento de Genes , Humanos , Invasividade Neoplásica/patologia
13.
J Exp Clin Cancer Res ; 35: 55, 2016 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-27015814

RESUMO

BACKGROUND: The CXCL12/CXCR4 pathway regulates tumor cell proliferation, metastasis, angiogenesis and the tumor-microenvironment cross-talk in several solid tumors, including glioblastoma (GBM), the most common and fatal brain cancer. In the present study, we evaluated the effects of peptide R, a new specific CXCR4 antagonist that we recently developed by a ligand-based approach, in an in vitro and in vivo model of GBM. The well-characterized CXCR4 antagonist Plerixafor was also included in the study. METHODS: The effects of peptide R on CXCR4 expression, cell survival and migration were assessed on the human glioblastoma cell line U87MG exposed to CXCL12, by immunofluorescence and western blotting, MTT assay, flow cytometry and transwell chamber migration assay. Peptide R was then tested in vivo, by using U87MG intracranial xenografts in CD1 nude mice. Peptide R was administered for 23 days since cell implantation and tumor volume was assessed by magnetic resonance imaging (MRI) at 4.7 T. Glioma associated microglia/macrophage (GAMs) polarization (anti-tumor M1 versus pro-tumor M2 phenotypes) and expressions of vascular endothelial growth factor (VEGF) and CD31 were assessed by immunohistochemistry and immunofluorescence. RESULTS: We found that peptide R impairs the metabolic activity and cell proliferation of human U87MG cells and stably reduces CXCR4 expression and cell migration in response to CXCL12 in vitro. In the orthotopic U87MG model, peptide R reduced tumor cellularity, promoted M1 features of GAMs and astrogliosis, and hindered intra-tumor vasculature. CONCLUSIONS: Our findings suggest that targeting CXCR4 by peptide R might represent a novel therapeutic approach against GBM, and contribute to the rationale to further explore in more complex pre-clinical settings the therapeutic potential of peptide R, alone or in combination with standard therapies of GBM.


Assuntos
Neoplasias Encefálicas/tratamento farmacológico , Quimiocina CXCL12/antagonistas & inibidores , Glioblastoma/tratamento farmacológico , Microglia/efeitos dos fármacos , Peptídeos/administração & dosagem , Receptores CXCR4/antagonistas & inibidores , Animais , Neoplasias Encefálicas/metabolismo , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Feminino , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Glioblastoma/metabolismo , Humanos , Camundongos , Camundongos Nus , Microglia/patologia , Peptídeos/farmacologia , Carga Tumoral/efeitos dos fármacos , Microambiente Tumoral/efeitos dos fármacos , Ensaios Antitumorais Modelo de Xenoenxerto
14.
Int J Oral Maxillofac Implants ; 31(1): 223-31, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26800182

RESUMO

PURPOSE: To assess and compare topographic features and preosteoblastic cell responses of a new hydrothermally treated, calcium-incorporated surface against other commercially available implant surfaces. MATERIALS AND METHODS: Four different surfaces were the subject of comparison in this study: machined (MC), resorbable blast media (RBM), sandblasted/large-grit/acid-etched (SLA), and calcium-incorporated SLA (Ca-SLA). Surface morphology and roughness were first characterized by scanning electron microscope (SEM) and white light interferometer, respectively. Preosteoblastic MC3T3-E1 cells were then cultured on the titanium surfaces. Cell morphology was observed at 24 hours, 48 hours, 7 days, and 15 days by SEM; differentiation was assessed at 7, 11, and 15 days by assaying alkaline phosphatase (ALP) activity and osteocalcin (OCN) levels. RESULTS: Surface characterization revealed nanotopographic features on Ca-SLA. At topographic analysis, SLA and Ca-SLA showed similar roughness values. Significant differences in cell differentiation parameters were found only at 15 days between the SLA surfaces (both Ca-incorporated and nonincorporated) and MC. CONCLUSION: Collectively, this study demonstrated that hydrothermal treatment determines the formation of nanotopography without altering the SLA microtopography. Moreover, Ca-SLA and SLA induce MC3T3-E1 cell differentiation at comparable levels.


Assuntos
Cálcio/química , Materiais Dentários/química , Osteoblastos/citologia , Titânio/química , Células 3T3 , Condicionamento Ácido do Dente/métodos , Fosfatase Alcalina/análise , Animais , Técnicas de Cultura de Células , Diferenciação Celular/fisiologia , Proliferação de Células , Forma Celular/fisiologia , Corrosão Dentária/métodos , Interferometria/métodos , Luz , Teste de Materiais , Camundongos , Microscopia Eletrônica de Varredura , Nanoestruturas/química , Osteocalcina/análise , Propriedades de Superfície , Fatores de Tempo
15.
Biochim Biophys Acta ; 1848(11 Pt A): 2868-77, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26325345

RESUMO

Saliva contains hundreds of small proline-rich peptides most of which derive from the post-translational and post-secretory processing of the acidic and basic salivary proline-rich proteins. Among these peptides we found that a 20 residue proline-rich peptide (p1932), commonly present in human saliva and patented for its antiviral activity, was internalized within cells of the oral mucosa. The cell-penetrating properties of p1932 have been studied in a primary gingival fibroblast cell line and in a squamous cancer cell line, and compared to its retro-inverso form. We observed by mass-spectrometry, flow cytometry and confocal microscopy that both peptides were internalized in the two cell lines on a time scale of minutes, being the natural form more efficient than the retro-inverso one. The cytosolic localization was dependent on the cell type: both peptide forms were able to localize within nuclei of tumoral cells, but not in the nuclei of gingival fibroblasts. The uptake was shown to be dependent on the culture conditions used: peptide internalization was indeed effective in a complete medium than in a serum-free one allowing the hypothesis that the internalization could be dependent on the cell cycle. Both peptides were internalized likely by a lipid raft-mediated endocytosis mechanism as suggested by the reduced uptake in the presence of methyl-ß-cyclodextrin. These results suggest that the natural peptide may play a role within the cells of the oral mucosa after its secretion and subsequent internalization. Furthermore, lack of cytotoxicity of both peptide forms highlights their possible application as novel drug delivery agents.


Assuntos
Peptídeos Penetradores de Células/metabolismo , Endocitose/fisiologia , Peptídeos/metabolismo , Proteínas Salivares Ricas em Prolina/metabolismo , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Peptídeos Penetradores de Células/farmacocinética , Peptídeos Penetradores de Células/farmacologia , Células Cultivadas , Meios de Cultura/farmacologia , Meios de Cultura Livres de Soro/farmacologia , Endocitose/efeitos dos fármacos , Fibroblastos/metabolismo , Citometria de Fluxo , Gengiva/citologia , Humanos , Microscopia Confocal , Peptídeos/farmacocinética , Peptídeos/farmacologia , Proteínas Salivares Ricas em Prolina/farmacocinética , Proteínas Salivares Ricas em Prolina/farmacologia , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , beta-Ciclodextrinas/farmacologia
16.
Ann Ist Super Sanita ; 51(2): 139-47, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26156185

RESUMO

BACKGROUND: Tumour cells utilize different migration strategies to invade surrounding tissues and elude anticancer treatments. It is therefore important to understand the mechanisms underlying migration process, in order to aid the development of therapies aimed at blocking the dissemination of cancer cells. AIMS: In this study tumour cell lines of different histological origin were analysed by combining 2D and 3D in vitro assays, biochemical tests and high resolution imaging by scanning electron microscopy (SEM) in order to look insight strategies adopted by tumour cells to invade extracellular matrix. RESULTS: Quantitative (computer-assisted colour camera equipped-light microscopy) and qualitative analysis (SEM) indicated that the most aggressive tumour cells adopt an "individual" behaviour. The analysis of intracellular signalling demonstrated that the highest invasive potential was associated with the activation of AKT, ERK, FAK and ERM proteins. The "individual" behaviour was positively related to the expression of VLA-2 and inversely related with the E-cadherin expression. CONCLUSIONS: The combination of 2D and 3D in vitro assays, biochemical tests and ultrastructural investigations proved to be a suitable test for the investigation of tumour cell migration and invasion. The high resolution imaging by SEM highlighted the interrelationships between cells in different migratory behaviours of tumour cells.


Assuntos
Movimento Celular , Neoplasias/patologia , Animais , Linhagem Celular Tumoral , Matriz Extracelular/patologia , Humanos , Camundongos , Microscopia Eletrônica de Varredura , Proteínas de Neoplasias/metabolismo , Neoplasias/metabolismo
17.
Oncotarget ; 6(15): 13520-38, 2015 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-25980494

RESUMO

SFKs are involved in tumorigenesis and metastasis. Here we analyzed c-Src contribution to initial steps of metastasis by tetracycline-dependent expression of a specific shRNA-c-Src, which suppressed c-Src mRNA and protein levels in metastatic MDA-MB-231 cells. c-Src suppression did not alter cell proliferation or survival, but it significantly reduced anchorage-independent growth. Concomitantly with diminished tyrosine-phosphorylation/activation of Fak, caveolin-1, paxillin and p130CAS, c-Src depletion also inhibited cellular migration, invasion and transendothelial migration. Quantitative proteomic analyses of the secretome showed that Cyr61 levels, which were detected in the exosomal fraction, were diminished upon shRNA-c-Src expression. In contrast, Cyr61 expression was unaltered inside cells. Cyr61 partially colocalized with cis-Golgi gp74 marker and with exosomal marker CD63, but c-Src depletion did not alter their cellular distribution. In SUM159PT cells, transient c-Src suppression also reduced secreted exosomal Cyr61 levels. Furthermore, conditional expression of a c-Src dominant negative mutant (SrcDN, c-Src-K295M/Y527F) in MDA-MB-231 and in SUM159PT diminished secreted Cyr61 as well. Cyr61 transient suppression in MDA-MB-231 inhibited invasion and transendothelial migration. Finally, in both MDA-MB-231 and SUM159PT, a neutralizing Cyr61 antibody restrained migration. Collectively, these results suggest that c-Src regulates secreted proteins, including the exosomal Cyr61, which are involved in modulating the metastatic potential of triple negative breast cancer cells.


Assuntos
Proteína Rica em Cisteína 61/metabolismo , Neoplasias de Mama Triplo Negativas/metabolismo , Quinases da Família src/metabolismo , Biomarcadores Tumorais/análise , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Proteína Tirosina Quinase CSK , Linhagem Celular Tumoral , Movimento Celular/fisiologia , Proliferação de Células/fisiologia , Proteína Rica em Cisteína 61/análise , Proteína Rica em Cisteína 61/genética , Feminino , Humanos , Proteômica/métodos , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Transdução de Sinais , Neoplasias de Mama Triplo Negativas/sangue , Neoplasias de Mama Triplo Negativas/genética , Neoplasias de Mama Triplo Negativas/patologia , Quinases da Família src/genética
18.
Int J Nanomedicine ; 10: 975-99, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25678787

RESUMO

Since their discovery in the 1960s, liposomes have been studied in depth, and they continue to constitute a field of intense research. Liposomes are valued for their biological and technological advantages, and are considered to be the most successful drug-carrier system known to date. Notable progress has been made, and several biomedical applications of liposomes are either in clinical trials, are about to be put on the market, or have already been approved for public use. In this review, we briefly analyze how the efficacy of liposomes depends on the nature of their components and their size, surface charge, and lipidic organization. Moreover, we discuss the influence of the physicochemical properties of liposomes on their interaction with cells, half-life, ability to enter tissues, and final fate in vivo. Finally, we describe some strategies developed to overcome limitations of the "first-generation" liposomes, and liposome-based drugs on the market and in clinical trials.


Assuntos
Portadores de Fármacos , Lipossomos , Nanomedicina , Humanos
19.
Ann Ist Super Sanita ; 50(3): 286-90, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25292276

RESUMO

BACKGROUND: Issues regarding cancer stem cell (CSC) movement are important in neurosphere biology as cell-cell or cell-environment interactions may have significant impacts on CSC differentiation and contribute to the heterogeneity of the neurosphere. AIMS: Despite the growing body of literature data on the biology of brain tumor stem cells, floating CSC-derived neurospheres have been scarcely characterized from a morphological and ultrastructural point of view. RESULTS: Here we report a morphological and ultrastructural characterization performed by live imaging and scanning electron microscopy. Glioblastoma multiforme (GBM) CSC-derived neurospheres are heterogeneous and are constituted by cells, morphologically different, capable of forming highly dynamic structures. These dynamic structures are regulated by not serendipitous cell-cell interactions, and they synchronously pulsate following a cyclic course made of "fast" and "slow" alternate phases. Autocrine/paracrine non canonical Wnt signalling appears to be correlated with the association status of neurospheres. CONCLUSIONS: The results obtained suggest that GBM CSCs can behave both as independents cells and as "social" cells, highly interactive with other members of its species, giving rise to a sort of "multicellular organism".


Assuntos
Comunicação Celular , Movimento Celular , Células-Tronco Neoplásicas/fisiologia , Células Cultivadas , Glioblastoma/patologia , Humanos
20.
Int J Oncol ; 45(3): 1109-22, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24969157

RESUMO

It has been confirmed that multidrug resistant (MDR) melanoma cells (M14 ADR2) are more sensitive than their wild-type counterparts (M14 WT) to H2O2 and aldehydes, the products of bovine serum amine oxidase (BSAO)-catalyzed oxidation of spermine. The metabolites formed by BSAO and spermine are more toxic, in M14 cells, than exogenous H2O2 and acrolein, even though their concentration is lower during the initial phase of incubation due to their more gradual release than the exogenous products. Binding of BSAO to the cell membrane and release of the reaction products of spermine into the immediate vicinity of the cells, or directly into the cells, may explain the apparently paradoxical phenomenon. Both WT and MDR cells, after pre-treatment for 24 h, or longer, with the lysosomotropic compound chloroquine (CQ), show to be sensitized to subsequent exposure to BSAO/spermine enzymatic system. Evidence of ultrastructural aberrations and acridine orange release from lysosomes is presented in this study that is in favor of the permeabilization of the lysosomal membrane as the major cause of sensitization by CQ. Pre-treatment with CQ amplifies the ability of the metabolites formed from spermine by oxidative deamination to induce cell death. Melanocytes, differently from melanoma cells, were unaffected by the enzymatic system, even when preceded by CQ treatment. Since it is conceivable that combined treatment with a lysosomotropic compound and BSAO/spermine would be effective against tumour cells, it is of interest to search for such novel compounds, which might be promising for application in a therapeutic setting.


Assuntos
Cloroquina/farmacologia , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Melanócitos/efeitos dos fármacos , Melanoma/tratamento farmacológico , Espermina/farmacologia , Protocolos de Quimioterapia Combinada Antineoplásica , Apoptose , Ciclo Celular/efeitos dos fármacos , Células Cultivadas , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Oxirredução
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA