Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
1.
EMBO J ; 2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38806660

RESUMO

Autotrophy is the basis for complex life on Earth. Central to this process is rubisco-the enzyme that catalyzes almost all carbon fixation on the planet. Yet, with only a small fraction of rubisco diversity kinetically characterized so far, the underlying biological factors driving the evolution of fast rubiscos in nature remain unclear. We conducted a high-throughput kinetic characterization of over 100 bacterial form I rubiscos, the most ubiquitous group of rubisco sequences in nature, to uncover the determinants of rubisco's carboxylation velocity. We show that the presence of a carboxysome CO2 concentrating mechanism correlates with faster rubiscos with a median fivefold higher rate. In contrast to prior studies, we find that rubiscos originating from α-cyanobacteria exhibit the highest carboxylation rates among form I enzymes (≈10 s-1 median versus <7 s-1 in other groups). Our study systematically reveals biological and environmental properties associated with kinetic variation across rubiscos from nature.

2.
bioRxiv ; 2024 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-38645011

RESUMO

Rubisco is the primary CO2 fixing enzyme of the biosphere yet has slow kinetics. The roles of evolution and chemical mechanism in constraining the sequence landscape of rubisco remain debated. In order to map sequence to function, we developed a massively parallel assay for rubisco using an engineered E. coli where enzyme function is coupled to growth. By assaying >99% of single amino acid mutants across CO2 concentrations, we inferred enzyme velocity and CO2 affinity for thousands of substitutions. We identified many highly conserved positions that tolerate mutation and rare mutations that improve CO2 affinity. These data suggest that non-trivial kinetic improvements are readily accessible and provide a comprehensive sequence-to-function mapping for enzyme engineering efforts.

3.
Proc Natl Acad Sci U S A ; 120(25): e2304833120, 2023 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-37311001

RESUMO

The slow kinetics and poor substrate specificity of the key photosynthetic CO2-fixing enzyme Rubisco have prompted the repeated evolution of Rubisco-containing biomolecular condensates known as pyrenoids in the majority of eukaryotic microalgae. Diatoms dominate marine photosynthesis, but the interactions underlying their pyrenoids are unknown. Here, we identify and characterize the Rubisco linker protein PYCO1 from Phaeodactylum tricornutum. PYCO1 is a tandem repeat protein containing prion-like domains that localizes to the pyrenoid. It undergoes homotypic liquid-liquid phase separation (LLPS) to form condensates that specifically partition diatom Rubisco. Saturation of PYCO1 condensates with Rubisco greatly reduces the mobility of droplet components. Cryo-electron microscopy and mutagenesis data revealed the sticker motifs required for homotypic and heterotypic phase separation. Our data indicate that the PYCO1-Rubisco network is cross-linked by PYCO1 stickers that oligomerize to bind to the small subunits lining the central solvent channel of the Rubisco holoenzyme. A second sticker motif binds to the large subunit. Pyrenoidal Rubisco condensates are highly diverse and tractable models of functional LLPS.


Assuntos
Diatomáceas , Príons , Ribulose-Bifosfato Carboxilase/genética , Microscopia Crioeletrônica , Condensados Biomoleculares , Diatomáceas/genética
4.
J Mol Biol ; 435(5): 167971, 2023 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-36690068

RESUMO

In the past almost 15 years, we witnessed the birth of a new scientific field focused on the existence, formation, biological functions, and disease associations of membraneless bodies in cells, now referred to as biomolecular condensates. Pioneering studies from several laboratories [reviewed in1-3] supported a model wherein biomolecular condensates associated with diverse biological processes form through the process of phase separation. These and other findings that followed have revolutionized our understanding of how biomolecules are organized in space and time within cells to perform myriad biological functions, including cell fate determination, signal transduction, endocytosis, regulation of gene expression and protein translation, and regulation of RNA metabolism. Further, condensates formed through aberrant phase transitions have been associated with numerous human diseases, prominently including neurodegeneration and cancer. While in some cases, rigorous evidence supports links between formation of biomolecular condensates through phase separation and biological functions, in many others such links are less robustly supported, which has led to rightful scrutiny of the generality of the roles of phase separation in biology and disease.4-7 During a week-long workshop in March 2022 at the Telluride Science Research Center (TSRC) in Telluride, Colorado, ∼25 scientists addressed key questions surrounding the biomolecular condensates field. Herein, we present insights gained through these discussions, addressing topics including, roles of condensates in diverse biological processes and systems, and normal and disease cell states, their applications to synthetic biology, and the potential for therapeutically targeting biomolecular condensates.


Assuntos
Condensados Biomoleculares , Doença , Transição de Fase , Humanos
5.
J Exp Bot ; 74(2): 612-626, 2023 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-35903998

RESUMO

Aquatic autotrophs that fix carbon using ribulose 1,5-bisphosphate carboxylase/oxygenase (Rubisco) frequently expend metabolic energy to pump inorganic carbon towards the enzyme's active site. A central requirement of this strategy is the formation of highly concentrated Rubisco condensates (or Rubiscondensates) known as carboxysomes and pyrenoids, which have convergently evolved multiple times in prokaryotes and eukaryotes, respectively. Recent data indicate that these condensates form by the mechanism of liquid-liquid phase separation. This mechanism requires networks of weak multivalent interactions typically mediated by intrinsically disordered scaffold proteins. Here we comparatively review recent rapid developments that detail the determinants and precise interactions that underlie diverse Rubisco condensates. The burgeoning field of biomolecular condensates has few examples where liquid-liquid phase separation can be linked to clear phenotypic outcomes. When present, Rubisco condensates are essential for photosynthesis and growth, and they are thus emerging as powerful and tractable models to investigate the structure-function relationship of phase separation in biology.


Assuntos
Dióxido de Carbono , Ribulose-Bifosfato Carboxilase , Dióxido de Carbono/metabolismo , Ribulose-Bifosfato Carboxilase/metabolismo , Plastídeos/metabolismo , Fotossíntese , Carbono/metabolismo
6.
J Exp Bot ; 74(2): 591-599, 2023 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-35981868

RESUMO

The world's population may reach 10 billion by 2050, but 10% still suffer from food shortages. At the same time, global warming threatens food security by decreasing crop yields, so it is necessary to develop crops with enhanced resistance to high temperatures in order to secure the food supply. In this review, the role of Rubisco activase as an important factor in plant heat tolerance is summarized, based on the conclusions of recent findings. Rubisco activase is a molecular chaperone determining the activation of Rubisco, whose heat sensitivity causes reductions of photosynthesis at high temperatures. Thus, the thermostability of Rubisco activase is considered to be critical for improving plant heat tolerance. It has been shown that the introduction of thermostable Rubisco activase through gene editing into Arabidopsis thaliana and from heat-adapted wild Oryza species or C4Zea mays into Oryza sativa improves Rubisco activation, photosynthesis, and plant growth at high temperatures. We propose that developing a universal thermostable Rubisco activase could be a promising direction for further studies.


Assuntos
Arabidopsis , Oryza , Termotolerância , Ribulose-Bifosfato Carboxilase/genética , Ribulose-Bifosfato Carboxilase/metabolismo , Ativador de Plasminogênio Tecidual , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas/metabolismo , Fotossíntese/fisiologia , Arabidopsis/genética , Oryza/metabolismo , Segurança Alimentar
7.
Science ; 378(6616): 155-160, 2022 10 14.
Artigo em Inglês | MEDLINE | ID: mdl-36227987

RESUMO

The evolution of ribulose-1,5-bisphosphate carboxylase/oxygenases (Rubiscos) that discriminate strongly between their substrate carbon dioxide and the undesired side substrate dioxygen was an important event for photosynthetic organisms adapting to an oxygenated environment. We use ancestral sequence reconstruction to recapitulate this event. We show that Rubisco increased its specificity and carboxylation efficiency through the gain of an accessory subunit before atmospheric oxygen was present. Using structural and biochemical approaches, we retrace how this subunit was gained and became essential. Our work illuminates the emergence of an adaptation to rising ambient oxygen levels, provides a template for investigating the function of interactions that have remained elusive because of their essentiality, and sheds light on the determinants of specificity in Rubisco.


Assuntos
Dióxido de Carbono , Domínio Catalítico , Evolução Molecular , Ribulose-Bifosfato Carboxilase , Dióxido de Carbono/química , Oxigênio/química , Fotossíntese , Ribulose-Bifosfato Carboxilase/química , Ribulose-Bifosfato Carboxilase/genética , Especificidade por Substrato , Domínio Catalítico/genética , Metagenoma , Firmicutes/enzimologia
8.
J Biol Chem ; 298(1): 101476, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34890642

RESUMO

The CO2-fixing enzyme rubisco is responsible for almost all carbon fixation. This process frequently requires rubisco activase (Rca) machinery, which couples ATP hydrolysis to the removal of inhibitory sugar phosphates, including the rubisco substrate ribulose 1,5-bisphosphate (RuBP). Rubisco is sometimes compartmentalized in carboxysomes, bacterial microcompartments that enable a carbon dioxide concentrating mechanism (CCM). Characterized carboxysomal rubiscos, however, are not prone to inhibition, and often no activase machinery is associated with these enzymes. Here, we characterize two carboxysomal rubiscos of the form IAC clade that are associated with CbbQO-type Rcas. These enzymes release RuBP at a much lower rate than the canonical carboxysomal rubisco from Synechococcus PCC6301. We found that CbbQO-type Rcas encoded in carboxysome gene clusters can remove RuBP and the tight-binding transition state analog carboxy-arabinitol 1,5-bisphosphate from cognate rubiscos. The Acidithiobacillus ferrooxidans genome encodes two form IA rubiscos associated with two sets of cbbQ and cbbO genes. We show that the two CbbQO activase systems display specificity for the rubisco enzyme encoded in the same gene cluster, and this property can be switched by substituting the C-terminal three residues of the large subunit. Our findings indicate that the kinetic and inhibitory properties of proteobacterial form IA rubiscos are diverse and predict that Rcas may be necessary for some α-carboxysomal CCMs. These findings will have implications for efforts aiming to introduce biophysical CCMs into plants and other hosts for improvement of carbon fixation of crops.


Assuntos
Proteínas de Bactérias , Ribulose-Bifosfato Carboxilase , Synechococcus , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Dióxido de Carbono , Família Multigênica , Ribulose-Bifosfato Carboxilase/química , Ribulose-Bifosfato Carboxilase/genética , Ribulose-Bifosfato Carboxilase/metabolismo , Synechococcus/enzimologia , Synechococcus/genética , Synechococcus/metabolismo , Ativador de Plasminogênio Tecidual
9.
Nat Plants ; 6(12): 1480-1490, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33230314

RESUMO

Approximately one-third of global CO2 fixation occurs in a phase-separated algal organelle called the pyrenoid. The existing data suggest that the pyrenoid forms by the phase separation of the CO2-fixing enzyme Rubisco with a linker protein; however, the molecular interactions underlying this phase separation remain unknown. Here we present the structural basis of the interactions between Rubisco and its intrinsically disordered linker protein Essential Pyrenoid Component 1 (EPYC1) in the model alga Chlamydomonas reinhardtii. We find that EPYC1 consists of five evenly spaced Rubisco-binding regions that share sequence similarity. Single-particle cryo-electron microscopy of these regions in complex with Rubisco indicates that each Rubisco holoenzyme has eight binding sites for EPYC1, one on each Rubisco small subunit. Interface mutations disrupt binding, phase separation and pyrenoid formation. Cryo-electron tomography supports a model in which EPYC1 and Rubisco form a codependent multivalent network of specific low-affinity bonds, giving the matrix liquid-like properties. Our results advance the structural and functional understanding of the phase separation underlying the pyrenoid, an organelle that plays a fundamental role in the global carbon cycle.


Assuntos
Chlamydomonas reinhardtii/química , Chlamydomonas reinhardtii/metabolismo , Estrutura Molecular , Fotossíntese/fisiologia , Ribulose-Bifosfato Carboxilase/química , Ribulose-Bifosfato Carboxilase/metabolismo
10.
Curr Opin Plant Biol ; 58: 1-7, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32966943

RESUMO

The transient assembly or sequestration of enzymes into clusters permits the channeling of metabolites, but requires spatiotemporal control. Liquid liquid phase separation (LLPS) has recently emerged as a fundamental concept enabling formation of such assemblies into non-membrane bound organelles. The role of LLPS in the formation of condensates containing the CO2-fixing enzyme Rubisco has recently become appreciated. Both prokaryotic carboxysomes and eukaryotic pyrenoids enhance the carboxylation reaction by enabling the saturation of the enzyme with CO2 gas. Biochemical reconstitution and structural biology are revealing the mechanistic basis of these photosynthetic condensates. At the same time other enzyme clusters, such as purinosomes for de-novo purine biosynthesis and G-bodies containing glycolytic enzymes, are emerging to behave like phase-separated systems. In the near future we anticipate details of many more such metabolic condensates to be revealed, deeply informing our ability to influence metabolic fluxes.


Assuntos
Organelas , Ribulose-Bifosfato Carboxilase , Fenômenos Biofísicos , Organelas/metabolismo , Fotossíntese , Ribulose-Bifosfato Carboxilase/metabolismo
11.
J Biol Chem ; 295(48): 16427-16435, 2020 11 27.
Artigo em Inglês | MEDLINE | ID: mdl-32948656

RESUMO

The photosynthetic CO2 fixing enzyme ribulose 1,5-bisphosphate carboxylase/oxygenase (Rubisco) forms dead-end inhibited complexes while binding multiple sugar phosphates, including its substrate ribulose 1,5-bisphosphate. Rubisco can be rescued from this inhibited form by molecular chaperones belonging to the ATPases associated with diverse cellular activities (AAA+ proteins) termed Rubisco activases (Rcas). The mechanism of green-type Rca found in higher plants has proved elusive, in part because until recently higher-plant Rubiscos could not be expressed recombinantly. Identifying the interaction sites between Rubisco and Rca is critical to formulate mechanistic hypotheses. Toward that end here we purify and characterize a suite of 33 Arabidopsis Rubisco mutants for their ability to be activated by Rca. Mutation of 17 surface-exposed large subunit residues did not yield variants that were perturbed in their interaction with Rca. In contrast, we find that Rca activity is highly sensitive to truncations and mutations in the conserved N terminus of the Rubisco large subunit. Large subunits lacking residues 1-4 are functional Rubiscos but cannot be activated. Both T5A and T7A substitutions result in functional carboxylases that are poorly activated by Rca, indicating the side chains of these residues form a critical interaction with the chaperone. Many other AAA+ proteins function by threading macromolecules through a central pore of a disc-shaped hexamer. Our results are consistent with a model in which Rca transiently threads the Rubisco large subunit N terminus through the axial pore of the AAA+ hexamer.


Assuntos
Proteínas de Arabidopsis , Arabidopsis/enzimologia , Modelos Moleculares , Mutação , Subunidades Proteicas , Ribulose-Bifosfato Carboxilase , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Subunidades Proteicas/química , Subunidades Proteicas/genética , Subunidades Proteicas/metabolismo , Ribulose-Bifosfato Carboxilase/química , Ribulose-Bifosfato Carboxilase/genética , Ribulose-Bifosfato Carboxilase/metabolismo
12.
EMBO J ; 39(18): e104081, 2020 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-32500941

RESUMO

CO2 is converted into biomass almost solely by the enzyme rubisco. The poor carboxylation properties of plant rubiscos have led to efforts that made it the most kinetically characterized enzyme, yet these studies focused on < 5% of its natural diversity. Here, we searched for fast-carboxylating variants by systematically mining genomic and metagenomic data. Approximately 33,000 unique rubisco sequences were identified and clustered into ≈ 1,000 similarity groups. We then synthesized, purified, and biochemically tested the carboxylation rates of 143 representatives, spanning all clusters of form-II and form-II/III rubiscos. Most variants (> 100) were active in vitro, with the fastest having a turnover number of 22 ± 1 s-1 -sixfold faster than the median plant rubisco and nearly twofold faster than the fastest measured rubisco to date. Unlike rubiscos from plants and cyanobacteria, the fastest variants discovered here are homodimers and exhibit a much simpler folding and activation kinetics. Our pipeline can be utilized to explore the kinetic space of other enzymes of interest, allowing us to get a better view of the biosynthetic potential of the biosphere.


Assuntos
Mineração de Dados , Bases de Dados de Ácidos Nucleicos , Ribulose-Bifosfato Carboxilase , Isoenzimas/classificação , Isoenzimas/genética , Ribulose-Bifosfato Carboxilase/classificação , Ribulose-Bifosfato Carboxilase/genética
14.
Proc Natl Acad Sci U S A ; 117(1): 381-387, 2020 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-31848241

RESUMO

The vast majority of biological carbon dioxide fixation relies on the function of ribulose 1,5-bisphosphate carboxylase/oxygenase (Rubisco). In most cases the enzyme exhibits a tendency to become inhibited by its substrate RuBP and other sugar phosphates. The inhibition is counteracted by diverse molecular chaperones known as Rubisco activases (Rcas). In some chemoautotrophic bacteria, the CbbQO-type Rca Q2O2 repairs inhibited active sites of hexameric form II Rubisco. The 2.2-Å crystal structure of the MoxR AAA+ protein CbbQ2 from Acidithiobacillus ferrooxidans reveals the helix 2 insert (H2I) that is critical for Rca function and forms the axial pore of the CbbQ hexamer. Negative-stain electron microscopy shows that the essential CbbO adaptor protein binds to the conserved, concave side of the CbbQ2 hexamer. Site-directed mutagenesis supports a model in which adenosine 5'-triphosphate (ATP)-powered movements of the H2I are transmitted to CbbO via the concave residue L85. The basal ATPase activity of Q2O2 Rca is repressed but strongly stimulated by inhibited Rubisco. The characterization of multiple variants where this repression is released indicates that binding of inhibited Rubisco to the C-terminal CbbO VWA domain initiates a signal toward the CbbQ active site that is propagated via elements that include the CbbQ α4-ß4 loop, pore loop 1, and the presensor 1-ß hairpin (PS1-ßH). Detailed mechanistic insights into the enzyme repair chaperones of the highly diverse CO2 fixation machinery of Proteobacteria will facilitate their successful implementation in synthetic biology ventures.


Assuntos
ATPases Associadas a Diversas Atividades Celulares/metabolismo , Acidithiobacillus/enzimologia , Proteínas de Bactérias/metabolismo , Proteínas de Transporte/metabolismo , Chaperonas Moleculares/metabolismo , Ribulose-Bifosfato Carboxilase/metabolismo , ATPases Associadas a Diversas Atividades Celulares/genética , ATPases Associadas a Diversas Atividades Celulares/ultraestrutura , Acidithiobacillus/genética , Acidithiobacillus/ultraestrutura , Trifosfato de Adenosina/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/ultraestrutura , Proteínas de Transporte/genética , Proteínas de Transporte/ultraestrutura , Domínio Catalítico/genética , Cristalografia por Raios X , Ativação Enzimática , Ensaios Enzimáticos , Microscopia Eletrônica , Modelos Moleculares , Chaperonas Moleculares/genética , Chaperonas Moleculares/ultraestrutura , Mutagênese Sítio-Dirigida , Multimerização Proteica , Estrutura Secundária de Proteína , Ribulose-Bifosfato Carboxilase/genética , Ribulose-Bifosfato Carboxilase/ultraestrutura
15.
Proc Natl Acad Sci U S A ; 116(48): 24041-24048, 2019 11 26.
Artigo em Inglês | MEDLINE | ID: mdl-31712424

RESUMO

During photosynthesis the AAA+ protein and essential molecular chaperone Rubisco activase (Rca) constantly remodels inhibited active sites of the CO2-fixing enzyme Rubisco (ribulose 1,5-bisphosphate carboxylase/oxygenase) to release tightly bound sugar phosphates. Higher plant Rca is a crop improvement target, but its mechanism remains poorly understood. Here we used structure-guided mutagenesis to probe the Rubisco-interacting surface of rice Rca. Mutations in Ser-23, Lys-148, and Arg-321 uncoupled adenosine triphosphatase and Rca activity, implicating them in the Rubisco interaction. Mutant doping experiments were used to evaluate a suite of known Rubisco-interacting residues for relative importance in the context of the functional hexamer. Hexamers containing some subunits that lack the Rubisco-interacting N-terminal domain displayed a ∼2-fold increase in Rca function. Overall Rubisco-interacting residues located toward the rim of the hexamer were found to be less critical to Rca function than those positioned toward the axial pore. Rca is a key regulator of the rate-limiting CO2-fixing reactions of photosynthesis. A detailed functional understanding will assist the ongoing endeavors to enhance crop CO2 assimilation rate, growth, and yield.


Assuntos
Oryza/enzimologia , Proteínas de Plantas/metabolismo , Ribulose-Bifosfato Carboxilase/metabolismo , Modelos Moleculares , Mutagênese Sítio-Dirigida , Fotossíntese , Proteínas de Plantas/química , Proteínas de Plantas/genética , Domínios Proteicos , Ribulose-Bifosfato Carboxilase/química , Ribulose-Bifosfato Carboxilase/genética
16.
J Exp Bot ; 70(19): 5271-5285, 2019 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-31504763

RESUMO

Photosynthetic efficiencies in plants are restricted by the CO2-fixing enzyme Rubisco but could be enhanced by introducing a CO2-concentrating mechanism (CCM) from green algae, such as Chlamydomonas reinhardtii (hereafter Chlamydomonas). A key feature of the algal CCM is aggregation of Rubisco in the pyrenoid, a liquid-like organelle in the chloroplast. Here we have used a yeast two-hybrid system and higher plants to investigate the protein-protein interaction between Rubisco and essential pyrenoid component 1 (EPYC1), a linker protein required for Rubisco aggregation. We showed that EPYC1 interacts with the small subunit of Rubisco (SSU) from Chlamydomonas and that EPYC1 has at least five SSU interaction sites. Interaction is crucially dependent on the two surface-exposed α-helices of the Chlamydomonas SSU. EPYC1 could be localized to the chloroplast in higher plants and was not detrimental to growth when expressed stably in Arabidopsis with or without a Chlamydomonas SSU. Although EPYC1 interacted with Rubisco in planta, EPYC1 was a target for proteolytic degradation. Plants expressing EPYC1 did not show obvious evidence of Rubisco aggregation. Nevertheless, hybrid Arabidopsis Rubisco containing the Chlamydomonas SSU could phase separate into liquid droplets with purified EPYC1 in vitro, providing the first evidence of pyrenoid-like aggregation for Rubisco derived from a higher plant.


Assuntos
Proteínas de Algas/metabolismo , Arabidopsis/metabolismo , Chlamydomonas reinhardtii/metabolismo , Ribulose-Bifosfato Carboxilase/metabolismo , Plantas Geneticamente Modificadas/metabolismo
17.
Traffic ; 20(6): 380-389, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-31001862

RESUMO

CO2 enters the biosphere via the slow, oxygen-sensitive carboxylase, Rubisco. To compensate, most microalgae saturate Rubisco with its substrate gas through a carbon dioxide concentrating mechanism. This strategy frequently involves compartmentalization of the enzyme in the pyrenoid, a non-membrane enclosed compartment of the chloroplast stroma. Recently, tremendous advances have been achieved concerning the structure, physical properties, composition and in vitro reconstitution of the pyrenoid matrix from the green alga Chlamydomonas reinhardtii. The discovery of the intrinsically disordered multivalent Rubisco linker protein EPYC1 provided a biochemical framework to explain the subsequent finding that the pyrenoid resembles a liquid droplet in vivo. Reconstitution of the corresponding liquid-liquid phase separation using pure Rubisco and EPYC1 allowed a detailed characterization of this process. Finally, a large high-quality dataset of pyrenoidal protein-protein interactions inclusive of spatial information provides ample substrate for rapid further functional dissection of the pyrenoid. Integrating and extending recent advances will inform synthetic biology efforts towards enhancing plant photosynthesis as well as contribute a versatile model towards experimentally dissecting the biochemistry of enzyme-containing membraneless organelles.


Assuntos
Dióxido de Carbono/metabolismo , Cloroplastos/metabolismo , Proteínas Intrinsicamente Desordenadas/metabolismo , Microalgas/metabolismo , Ribulose-Bifosfato Carboxilase/metabolismo , Proteínas Intrinsicamente Desordenadas/química , Ribulose-Bifosfato Carboxilase/química
18.
Nat Commun ; 9(1): 5076, 2018 11 29.
Artigo em Inglês | MEDLINE | ID: mdl-30498228

RESUMO

The slow and promiscuous properties of the CO2-fixing enzyme Rubisco constrain photosynthetic efficiency and have prompted the evolution of powerful CO2 concentrating mechanisms (CCMs). In eukaryotic microalgae a key strategy involves sequestration of the enzyme in the pyrenoid, a liquid non-membranous compartment of the chloroplast stroma. Here we show using pure components that two proteins, Rubisco and the linker protein Essential Pyrenoid Component 1 (EPYC1), are both necessary and sufficient to phase separate and form liquid droplets. The phase-separated Rubisco is functional. Droplet composition is dynamic and components rapidly exchange with the bulk solution. Heterologous and chimeric Rubiscos exhibit variability in their tendency to demix with EPYC1. The ability to dissect aspects of pyrenoid biochemistry in vitro will permit us to inform and guide synthetic biology ambitions aiming to engineer microalgal CCMs into crop plants.


Assuntos
Microalgas/enzimologia , Ribulose-Bifosfato Carboxilase/metabolismo , Dióxido de Carbono/metabolismo , Chlamydomonas reinhardtii/enzimologia , Cloroplastos/metabolismo , Fotossíntese/fisiologia
19.
Nat Plants ; 4(10): 746-747, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30287948
20.
FEMS Microbiol Lett ; 364(16)2017 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-28854711

RESUMO

The universal, but catalytically modest, CO2-fixing enzyme Rubisco is currently experiencing intense interest by researchers aiming to enhance crop photosynthesis. These efforts are mostly focused on the highly conserved hexadecameric enzyme found in land plants. In comparison, prokaryotic organisms harbor a far greater diversity in Rubisco forms. Recent work towards improving our appreciation of microbial Rubisco properties and harnessing their potential is surveyed. New structural models are providing informative glimpses into catalytic subtleties and diverse oligomeric states. Ongoing characterization is informing us about the conservation of constraints, such as sugar phosphate inhibition and the associated dependence on Rubisco activase helper proteins. Prokaryotic Rubiscos operate under a far wider range of metabolic contexts than the photosynthetic function of higher plant enzymes. Relaxed selection pressures may have resulted in the exploration of a larger volume of sequence space than permitted in organisms performing oxygenic photosynthesis. To tap into the potential of microbial Rubiscos, in vivo selection systems are being used to discover functional metagenomic Rubiscos. Various directed evolution systems to optimize their function have been developed. It is anticipated that this approach will provide access to biotechnologically valuable enzymes that cannot be encountered in the higher plant Rubisco space.


Assuntos
Archaea/enzimologia , Bactérias/enzimologia , Biotecnologia/tendências , Ribulose-Bifosfato Carboxilase , Dióxido de Carbono/metabolismo , Evolução Molecular Direcionada , Embriófitas/enzimologia , Variação Genética , Metagenômica , Fotossíntese , Ribulose-Bifosfato Carboxilase/química , Ribulose-Bifosfato Carboxilase/classificação , Ribulose-Bifosfato Carboxilase/genética , Ribulose-Bifosfato Carboxilase/metabolismo , Seleção Genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA