Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.214
Filtrar
1.
Lancet Digit Health ; 6(10): e691-e704, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39332853

RESUMO

BACKGROUND: The COVID-19 pandemic resulted in the widespread disruption of cancer health provision services across the entirety of the cancer care pathway in the UK, from screening to treatment. The potential long-term health implications, including increased mortality for individuals who missed diagnoses or appointments, are concerning. However, the precise impact of lockdown policies on national cancer health service provision across diagnostic groups is understudied. We aimed to systematically evaluate changes in patterns of attendance for groups of individuals diagnosed with cancer, including the changes in attendance volume and consultation rates, stratified by both time-based exposures and by patient-based exposures and to better understand the impact of such changes on cancer-specific mortality. METHODS: In this retrospective, cross-sectional, phase-by-phase time-series analysis, by using primary care records linked to hospitals and the death registry from Jan 1, 1998, to June 17, 2021, we conducted descriptive analyses to quantify attendance changes for groups stratified by patient-based exposures (Index of Multiple Deprivation, ethnicity, age, comorbidity count, practice region, diagnosis time, and cancer subtype) across different phases of the COVID-19 pandemic in England, UK. In this study, we defined the phases of the COVID-19 pandemic as: pre-pandemic period (Jan 1, 2018, to March 22, 2020), lockdown 1 (March 23 to June 21, 2020), minimal restrictions (June 22 to Sept 20, 2020), lockdown 2 (Sept 21, 2020, to Jan 3, 2021), lockdown 3 (Jan 4 to March 21, 2021), and lockdown restrictions lifted (March 22 to March 31, 2021). In the analyses we examined changes in both attendance volume and consultation rate. We further compared changes in attendance trends to cancer-specific mortality trends. Finally, we conducted an interrupted time-series analysis with the lockdown on March 23, 2020, as the intervention point using an autoregressive integrated moving average model. FINDINGS: From 561 611 eligible individuals, 7 964 685 attendances were recorded. During the first lockdown, the median attendance volume decreased (-35·30% [IQR -36·10 to -34·25]) compared with the preceding pre-pandemic period, followed by a median change of 4·38% (2·66 to 5·15) during minimal restrictions. More drastic reductions in attendance volume were seen in the second (-48·71% [-49·54 to -48·26]) and third (-71·62% [-72·23 to -70·97]) lockdowns. These reductions were followed by a 4·48% (3·45 to 7·10) increase in attendance when lockdown restrictions were lifted. The median consultation rate change during the first lockdown was 31·32% (25·10 to 33·60), followed by a median change of -0·25% (-1·38 to 1·68) during minimal restrictions. The median consultation rate decreased in the second (-33·89% [-34·64 to -33·18]) and third (-4·98% [-5·71 to -4·00]) lockdowns, followed by a 416·16% increase (409·77 to 429·77) upon lifting of lockdown restrictions. Notably, across many weeks, a year-over-year decrease in weekly attendances corresponded with a year-over-year increase in cancer-specific mortality. Overall, the pandemic period revealed a statistically significant reduction in attendances for patients with cancer (lockdown 1 -24 070·19 attendances, p<0·0001; minimal restrictions -19 194·89 attendances, p<0·0001; lockdown 2 -31 311·28 attendances, p<0·0001; lockdown 3 -43 843·38 attendances, p<0·0001; and lockdown restrictions lifted -56 260·50 attendances, p<0·0001) compared with before the pandemic. INTERPRETATION: The UK's COVID-19 pandemic lockdown affected cancer health service access negatively. Many groups of individuals with cancer had declines in attendance volume and consultation rate across the phases of the pandemic. A decrease in attendances might lead to delays in cancer diagnoses, treatment, and follow-up, putting such groups of individuals at higher risk of negative health outcomes, such as cancer-specific mortality. We discuss the factors potentially responsible for explaining changes in service provision trends and provide insight to help inform clinical follow-up for groups of individuals at risk, alongside potential future policy changes in the care of such patients. FUNDING: Wellcome Trust, National Institute for Health Research University College London Hospitals Biomedical Research Centre, National Institute for Health Research Great Ormond Street Hospital Biomedical Research Centre, Academy of Medical Sciences, and the University College London Overseas Research Scholarship.


Assuntos
COVID-19 , Neoplasias , Humanos , COVID-19/epidemiologia , COVID-19/mortalidade , Neoplasias/mortalidade , Neoplasias/terapia , Inglaterra/epidemiologia , Estudos Retrospectivos , Masculino , Feminino , Estudos Transversais , Pessoa de Meia-Idade , Idoso , Adulto , Aceitação pelo Paciente de Cuidados de Saúde/estatística & dados numéricos , Pandemias , SARS-CoV-2 , Análise de Séries Temporais Interrompida
2.
Trends Ecol Evol ; 39(10): 881-884, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39232857

RESUMO

Language connects cultural and biological diversity and can contribute to both big data and localised approaches to improve conservation. Analysing Indigenous languages at regional level supports understanding of local ecologies and cultural revitalisation. Collated linguistic datasets can help to identify large-scale patterns, including extinctions, and forge robust multidisciplinary approaches to biocultural decision-making.


Assuntos
Conservação dos Recursos Naturais , Idioma , Humanos , Biodiversidade , Povos Indígenas , Linguística
3.
Nat Commun ; 15(1): 3352, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38688933

RESUMO

Highlanders and lowlanders of Papua New Guinea have faced distinct environmental stress, such as hypoxia and environment-specific pathogen exposure, respectively. In this study, we explored the top genomics regions and the candidate driver SNPs for selection in these two populations using newly sequenced whole-genomes of 54 highlanders and 74 lowlanders. We identified two candidate SNPs under selection - one in highlanders, associated with red blood cell traits and another in lowlanders, which is associated with white blood cell count - both potentially influencing the heart rate of Papua New Guineans in opposite directions. We also observed four candidate driver SNPs that exhibit linkage disequilibrium with an introgressed haplotype, highlighting the need to explore the possibility of adaptive introgression within these populations. This study reveals that the signatures of positive selection in highlanders and lowlanders of Papua New Guinea align closely with the challenges they face, which are specific to their environments.


Assuntos
Altitude , Haplótipos , Desequilíbrio de Ligação , Polimorfismo de Nucleotídeo Único , Seleção Genética , Papua Nova Guiné , Humanos , Genoma Humano , Genética Populacional
4.
Cell Rep ; 42(11): 113346, 2023 11 28.
Artigo em Inglês | MEDLINE | ID: mdl-37917587

RESUMO

Borneo was a crossroad of ancient dispersals, with some of the earliest Southeast Asian human remains and rock art. The island is home to traditionally hunter-gatherer Punan communities, whose origins, whether of subsistence reversion or long-term foraging, are unclear. The connection between its past and present-day agriculturalist inhabitants, who currently speak Austronesian languages and have composite and complex genetic ancestry, is equally opaque. Here, we analyze the genetic ancestry of the northeastern Bornean Punan Batu (who still practice some mobile hunting and gathering), Tubu, and Aput. We find deep ancestry connections, with a shared Asian signal outgrouping modern and ancient Austronesian-ancestry proxies, suggesting a time depth of more than 7,500 years. They also largely lack the mainland Southeast Asian signals of agricultural Borneans, who are themselves genetically heterogeneous. Our results support long-term inhabitation of Borneo by some Punan ancestors and reveal unexpected complexity in the origins and dispersal of Austronesian-expansion-related ancestry.


Assuntos
Povo Asiático , Genética Populacional , Idioma , Humanos , Povo Asiático/genética , Bornéu
5.
Fungal Genet Biol ; 169: 103827, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37640199

RESUMO

Vegetative incompatibility is a fungal allorecognition system characterised by the inability of genetically distinct conspecific fungal strains to form a viable heterokaryon and is controlled by multiple polymorphic loci termed vic (vegetative incompatibility) or het (heterokaryon incompatibility). We have genetically identified and characterised the first vic locus in the economically important, plant-pathogenic, necrotrophic fungus Botrytis cinerea. A bulked segregant approach coupled with whole genome Illumina sequencing of near-isogenic lines of B. cinerea was used to map a vic locus to a 60-kb region of the genome. Within that locus, we identified two adjacent, highly polymorphic open reading frames, Bcvic1 and Bcvic2, which encode predicted proteins that contain domain architectures implicated in vegetative incompatibility in other filamentous fungi. Bcvic1 encodes a predicted protein containing a putative serine esterase domain, a NACHT family of NTPases domain, and several Ankyrin repeats. Bcvic2 encodes a putative syntaxin protein containing a SNARE domain; such proteins typically function in vesicular transport. Deletion of Bcvic1 and Bcvic2 individually had no effect on vegetative incompatibility. However, deletion of the region containing both Bcvic1 and Bcvic2 resulted in mutant lines that were severely restricted in growth and showed loss of vegetative incompatibility. Complementation of these mutants by ectopic expression restored the growth and vegetative incompatibility phenotype, indicating that Bcvic1 and Bcvic2 are controlling vegetative incompatibility at this vic locus.


Assuntos
Proteínas Fúngicas , Genes Fúngicos , Sequência de Aminoácidos , Genes Fúngicos/genética , Proteínas Fúngicas/genética , Botrytis/genética
6.
Nat Ecol Evol ; 7(10): 1693-1705, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37640765

RESUMO

The kakapo is a critically endangered, intensively managed, long-lived nocturnal parrot endemic to Aotearoa New Zealand. We generated and analysed whole-genome sequence data for nearly all individuals living in early 2018 (169 individuals) to generate a high-quality species-wide genetic variant callset. We leverage extensive long-term metadata to quantify genome-wide diversity of the species over time and present new approaches using probabilistic programming, combined with a phenotype dataset spanning five decades, to disentangle phenotypic variance into environmental and genetic effects while quantifying uncertainty in small populations. We find associations for growth, disease susceptibility, clutch size and egg fertility within genic regions previously shown to influence these traits in other species. Finally, we generate breeding values to predict phenotype and illustrate that active management over the past 45 years has maintained both genome-wide diversity and diversity in breeding values and, hence, evolutionary potential. We provide new pathways for informing future conservation management decisions for kakapo, including prioritizing individuals for translocation and monitoring individuals with poor growth or high disease risk. Overall, by explicitly addressing the challenge of the small sample size, we provide a template for the inclusion of genomic data that will be transformational for species recovery efforts around the globe.


Assuntos
Espécies em Perigo de Extinção , Papagaios , Humanos , Animais , Genômica , Genoma , Nova Zelândia
8.
CPT Pharmacometrics Syst Pharmacol ; 12(5): 624-630, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36710372

RESUMO

On November 30, 2021, the US Food and Drug administration (FDA) and the Center for Research on Complex Generics (CRCG) hosted a virtual public workshop titled "Establishing the Suitability of Model-Integrated Evidence (MIE) to Demonstrate Bioequivalence for Long-Acting Injectable and Implantable (LAI) Drug Products." This workshop brought relevant parties from the industry, academia, and the FDA in the field of modeling and simulation to explore, identify, and recommend best practices on utilizing MIE for bioequivalence (BE) assessment of LAI products. This report summerized presentations and panel discussions for topics including challenges and opportunities in development and assessment of generic LAI products, current status of utilizing MIE, recent research progress of utilizing MIE in generic LAI products, alternative designs for BE studies of LAI products, and model validation/verification strategies associated with different types of MIE approaches.


Assuntos
Medicamentos Genéricos , Estados Unidos , Humanos , Equivalência Terapêutica , United States Food and Drug Administration , Simulação por Computador
9.
PLoS Genet ; 18(12): e1010470, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36480515

RESUMO

Modern humans have admixed with multiple archaic hominins. Papuans, in particular, owe up to 5% of their genome to Denisovans, a sister group to Neanderthals whose remains have only been identified in Siberia and Tibet. Unfortunately, the biological and evolutionary significance of these introgression events remain poorly understood. Here we investigate the function of both Denisovan and Neanderthal alleles characterised within a set of 56 genomes from Papuan individuals. By comparing the distribution of archaic and non-archaic variants we assess the consequences of archaic admixture across a multitude of different cell types and functional elements. We observe an enrichment of archaic alleles within cis-regulatory elements and transcribed regions of the genome, with Denisovan variants strongly affecting elements active within immune-related cells. We identify 16,048 and 10,032 high-confidence Denisovan and Neanderthal variants that fall within annotated cis-regulatory elements and with the potential to alter the affinity of multiple transcription factors to their cognate DNA motifs, highlighting a likely mechanism by which introgressed DNA can impact phenotypes. Lastly, we experimentally validate these predictions by testing the regulatory potential of five Denisovan variants segregating within Papuan individuals, and find that two are associated with a significant reduction of transcriptional activity in plasmid reporter assays. Together, these data provide support for a widespread contribution of archaic DNA in shaping the present levels of modern human genetic diversity, with different archaic ancestries potentially affecting multiple phenotypic traits within non-Africans.


Assuntos
Evolução Molecular , Hominidae , Sistema Imunitário , Homem de Neandertal , Humanos , Hominidae/genética , Homem de Neandertal/genética , Papua Nova Guiné
10.
BMC Biol ; 20(1): 246, 2022 11 03.
Artigo em Inglês | MEDLINE | ID: mdl-36329441

RESUMO

BACKGROUND: Scab, caused by the biotrophic fungus Venturia inaequalis, is the most economically important disease of apples worldwide. During infection, V. inaequalis occupies the subcuticular environment, where it secretes virulence factors, termed effectors, to promote host colonization. Consistent with other plant-pathogenic fungi, many of these effectors are expected to be non-enzymatic proteins, some of which can be recognized by corresponding host resistance proteins to activate plant defences, thus acting as avirulence determinants. To develop durable control strategies against scab, a better understanding of the roles that these effector proteins play in promoting subcuticular growth by V. inaequalis, as well as in activating, suppressing, or circumventing resistance protein-mediated defences in apple, is required. RESULTS: We generated the first comprehensive RNA-seq transcriptome of V. inaequalis during colonization of apple. Analysis of this transcriptome revealed five temporal waves of gene expression that peaked during early, mid, or mid-late infection. While the number of genes encoding secreted, non-enzymatic proteinaceous effector candidates (ECs) varied in each wave, most belonged to waves that peaked in expression during mid-late infection. Spectral clustering based on sequence similarity determined that the majority of ECs belonged to expanded protein families. To gain insights into function, the tertiary structures of ECs were predicted using AlphaFold2. Strikingly, despite an absence of sequence similarity, many ECs were predicted to have structural similarity to avirulence proteins from other plant-pathogenic fungi, including members of the MAX, LARS, ToxA and FOLD effector families. In addition, several other ECs, including an EC family with sequence similarity to the AvrLm6 avirulence effector from Leptosphaeria maculans, were predicted to adopt a KP6-like fold. Thus, proteins with a KP6-like fold represent another structural family of effectors shared among plant-pathogenic fungi. CONCLUSIONS: Our study reveals the transcriptomic profile underpinning subcuticular growth by V. inaequalis and provides an enriched list of ECs that can be investigated for roles in virulence and avirulence. Furthermore, our study supports the idea that numerous sequence-unrelated effectors across plant-pathogenic fungi share common structural folds. In doing so, our study gives weight to the hypothesis that many fungal effectors evolved from ancestral genes through duplication, followed by sequence diversification, to produce sequence-unrelated but structurally similar proteins.


Assuntos
Ascomicetos , Malus , Ascomicetos/genética , Doenças das Plantas/microbiologia , Fungos do Gênero Venturia , Malus/genética , Malus/microbiologia
11.
iScience ; 25(12): 105470, 2022 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-36404926

RESUMO

Kakapo are a critically endangered species of parrots restricted to a few islands off the coast of New Zealand. Kakapo are very closely monitored, especially during nesting seasons. In 2019, during a highly successful nesting season, an outbreak of aspergillosis affected 21 individuals and led to the deaths of 9, leaving a population of only 211 kakapo. In monitoring this outbreak, cultures of aspergillus were grown, and genome sequenced. These sequences demonstrate that, very unusually for an aspergillus outbreak, a single strain of aspergillus caused the outbreak. This strain was found on two islands, but only one had an outbreak of aspergillosis; indicating that the strain was necessary, but not sufficient, to cause disease. Our analysis provides an understanding of the 2019 outbreak and provides potential ways to manage such events in the future.

12.
Front Microbiol ; 13: 1038444, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36406440

RESUMO

Phytophthora species are notorious plant pathogens, with some causing devastating tree diseases that threaten the survival of their host species. One such example is Phytophthora agathidicida, the causal agent of kauri dieback - a root and trunk rot disease that kills the ancient, iconic and culturally significant tree species, Agathis australis (New Zealand kauri). A deeper understanding of how Phytophthora pathogens infect their hosts and cause disease is critical for the development of effective treatments. Such an understanding can be gained by interrogating pathogen genomes for effector genes, which are involved in virulence or pathogenicity. Although genome sequencing has become more affordable, the complete assembly of Phytophthora genomes has been problematic, particularly for those with a high abundance of repetitive sequences. Therefore, effector genes located in repetitive regions could be truncated or missed in a fragmented genome assembly. Using a combination of long-read PacBio sequences, chromatin conformation capture (Hi-C) and Illumina short reads, we assembled the P. agathidicida genome into ten complete chromosomes, with a genome size of 57 Mb including 34% repeats. This is the first Phytophthora genome assembled to chromosome level and it reveals a high level of syntenic conservation with the complete genome of Peronospora effusa, the only other completely assembled genome sequence of an oomycete. All P. agathidicida chromosomes have clearly defined centromeres and contain candidate effector genes such as RXLRs and CRNs, but in different proportions, reflecting the presence of gene family clusters. Candidate effector genes are predominantly found in gene-poor, repeat-rich regions of the genome, and in some cases showed a high degree of duplication. Analysis of candidate RXLR effector genes that occur in multicopy gene families indicated half of them were not expressed in planta. Candidate CRN effector gene families showed evidence of transposon-mediated recombination leading to new combinations of protein domains, both within and between chromosomes. Further analysis of this complete genome assembly will help inform new methods of disease control against P. agathidicida and other Phytophthora species, ultimately helping decipher how Phytophthora pathogens have evolved to shape their effector repertoires and how they might adapt in the future.

14.
J Evol Biol ; 35(8): 1126-1137, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35830478

RESUMO

Hybridization is a route to speciation that occurs widely across the eukaryote tree of life. The success of allopolyploids (hybrid species with increased ploidy) and homoploid hybrids (with unchanged ploidy) is well documented. However, their formation and establishment is not straightforward, with a suite of near-instantaneous and longer term biological repercussions faced by the new species. Central to these challenges is the rewiring of gene regulatory networks following the merger of distinct genomes inherited from both parental species. Research on the evolution of hybrid gene expression has largely involved studies on a single hybrid species or a few gene families. Here, we present the first standardized transcriptome-wide study exploring the fates of genes following hybridization across three kingdoms: animals, plants and fungi. Within each kingdom, we pair an allopolyploid system with a closely related homoploid hybrid to decouple the influence of increased ploidy from genome merger. Genome merger, not changes in ploidy, has the greatest effect on posthybridization expression patterns across all study systems. Strikingly, we find that differentially expressed genes in parent species preferentially switch to more similar expression in hybrids across all kingdoms, likely as a consequence of regulatory trans-acting cross-talk within the hybrid nucleus. We also highlight the prevalence of gene loss or silencing among extremely differentially expressed genes in hybrid species across all kingdoms. These shared patterns suggest that the evolutionary process of hybridization leads to common high-level expression outcomes, regardless of the particular species or kingdom.


Assuntos
Hibridização Genética , Transcriptoma , Animais , Eucariotos/genética , Genoma , Ploidias
15.
J Fungi (Basel) ; 8(7)2022 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-35887427

RESUMO

Genome rearrangements in filamentous fungi are prevalent but little is known about the modalities of their evolution, in part because few complete genomes are available within a single genus. To address this, we have generated and compared 15 complete telomere-to-telomere genomes across the phylogeny of a single genus of filamentous fungi, Epichloë. We find that the striking distinction between gene-rich and repeat-rich regions previously reported for isolated species is ubiquitous across the Epichloë genus. We built a species phylogeny from single-copy gene orthologs to provide a comparative framing to study chromosome composition and structural change through evolutionary time. All Epichloë genomes have exactly seven nuclear chromosomes, but despite this conserved ploidy, analyses reveal low synteny and substantial rearrangement of gene content across the genus. These rearrangements are highly lineage-dependent, with most occurring over short evolutionary distances, with long periods of structural stasis. Quantification of chromosomal rearrangements shows they are uncorrelated with numbers of substitutions and evolutionary distances, suggesting that different modes of evolution are acting to create nucleotide and chromosome-scale changes.

16.
iScience ; 25(7): 104583, 2022 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-35880026

RESUMO

As human populations left Asia to first settle in Oceania around 50,000 years ago, they entered a territory ecologically separated from the Old World for millions of years. We analyzed genomic data of 239 modern Oceanian individuals to detect and date signals of selection specific to this region. Combining both relative and absolute dating approaches, we identified a strong selection pattern between 52,000 and 54,000 years ago in the genomes of descendants of the first settlers of Sahul. This strikingly corresponds to the dates of initial settlement as inferred from archaeological evidence. Loci under selection during this period, some showing enrichment in Denisovan ancestry, overlap genes involved in the immune response and diet, especially based on plants. Pathogens and natural resources, especially from endemic plants, therefore appear to have acted as strong selective pressures on the genomes of the first settlers of Sahul.

17.
BMC Biol ; 20(1): 144, 2022 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-35706021

RESUMO

BACKGROUND: Fungi exhibit astonishing diversity with multiple major phenotypic transitions over the kingdom's evolutionary history. As part of this process, fungi developed hyphae, adapted to land environments (terrestrialization), and innovated their sexual structures. These changes also helped fungi establish ecological relationships with other organisms (animals and plants), but the genomic basis of these changes remains largely unknown. RESULTS: By systematically analyzing 304 genomes from all major fungal groups, together with a broad range of eukaryotic outgroups, we have identified 188 novel orthogroups associated with major changes during the evolution of fungi. Functional annotations suggest that many of these orthogroups were involved in the formation of key trait innovations in extant fungi and are functionally connected. These innovations include components for cell wall formation, functioning of the spindle pole body, polarisome formation, hyphal growth, and mating group signaling. Innovation of mitochondria-localized proteins occurred widely during fungal transitions, indicating their previously unrecognized importance. We also find that prokaryote-derived horizontal gene transfer provided a small source of evolutionary novelty with such genes involved in key metabolic pathways. CONCLUSIONS: The overall picture is one of a relatively small number of novel genes appearing at major evolutionary transitions in the phylogeny of fungi, with most arising de novo and horizontal gene transfer providing only a small additional source of evolutionary novelty. Our findings contribute to an increasingly detailed portrait of the gene families that define fungal phyla and underpin core features of extant fungi.


Assuntos
Evolução Molecular , Fungos , Animais , Fungos/genética , Transferência Genética Horizontal , Filogenia , Plantas/genética
18.
Ir Med J ; 115(4): 577, 2022 04 29.
Artigo em Inglês | MEDLINE | ID: mdl-35695672

RESUMO

Aim We conducted a survey of practitioners' knowledge of the clinical application of the major drug classes in HF, with reference to the European Society of Cardiology guidelines. The aim was to identify areas for practice development through education, which may improve HF morbidity and mortality. Methods We distributed a 14 item questionnaire assessing doctors knowledge of indications and contraindications for the major HF drug classes. Results Total number of responses was 127: Intern (N=21), SHO (N=64), Registrar (N=12), SpR (N=14), Consultant (N=4), GP (N=2). Consultants and GPs were excluded from analysis due to underrepresentation. Median years of practice was 4. Indications were correctly identified in a mean of 78% of responses overall. Of participants who felt comfortable with initiation and up-titration of beta blockers (N=84), only 31% (N=26) correctly identified an optimal target heart rate of less than 70 beats per minute. Forty-five percent (N=50) identified serum potassium and creatinine concentrations generally considered safe as contraindications to the initiation of MRA. Twenty-five percent of respondents (N=28) were unaware of a specialist HF service that catered to their institution, and how to refer to it, but 99% (N=110) felt that their practice would benefit from further education on HF pharmacotherapy. Conclusion Results of this survey suggest a need, and indeed a demand, for further education for clinicians in order to reduce mortality, morbidity, and hospital readmission in HF, as well as their attendant costs.


Assuntos
Insuficiência Cardíaca , Antagonistas Adrenérgicos beta/uso terapêutico , Insuficiência Cardíaca/tratamento farmacológico , Humanos , Readmissão do Paciente , Inquéritos e Questionários
20.
Mol Biol Evol ; 39(3)2022 03 02.
Artigo em Inglês | MEDLINE | ID: mdl-35294555

RESUMO

Island Southeast Asia (ISEA) and Oceania host one of the world's richest assemblages of human phenotypic, linguistic, and cultural diversity. Despite this, the region's male genetic lineages are globally among the last to remain unresolved. We compiled ∼9.7 Mb of Y chromosome (chrY) sequence from a diverse sample of over 380 men from this region, including 152 first reported here. The granularity of this data set allows us to fully resolve and date the regional chrY phylogeny. This new high-resolution tree confirms two main population bursts: multiple rapid diversifications following the region's initial settlement ∼50 kya, and extensive expansions <6 kya. Notably, ∼40-25 kya the deep rooting local lineages of C-M130, M-P256, and S-B254 show almost no further branching events in ISEA, New Guinea, and Australia, matching a similar pause in diversification seen in maternal mitochondrial DNA lineages. The main local lineages start diversifying ∼25 kya, at the time of the last glacial maximum. This improved chrY topology highlights localized events with important historical implications, including pre-Holocene contact between Mainland and ISEA, potential interactions between Australia and the Papuan world, and a sustained period of diversification following the flooding of the ancient Sunda and Sahul continents as the insular landscape observed today formed. The high-resolution phylogeny of the chrY presented here thus enables a detailed exploration of past isolation, interaction, and change in one of the world's least understood regions.


Assuntos
Povo Asiático , DNA Mitocondrial , Sudeste Asiático , DNA Mitocondrial/genética , Humanos , Masculino , Mitocôndrias/genética , Filogenia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA