Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
1.
Anal Chem ; 96(3): 1241-1250, 2024 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-38183660

RESUMO

Herein, we report on surprisingly efficient photochemical vapor generation (PVG) of Ru, Re, and especially Ir, achieved from very dilute HCOOH media employing a thin-film flow-through photoreactor operated in flow injection mode. In the absence of added metal ion sensitizers, efficiencies near 20% for Ir and approximately 0.06% for Ru and Re occur in a narrow range of HCOOH concentrations (around 0.01 M), significantly higher than previously reported from conventionally optimized HCOOH concentrations (1-20 M). A substantial enhancement in efficiency, to around 9 and 1.5%, could be realized for Ru and Re, respectively, when 0.005 M HCOONa served as the PVG medium. The addition of metal ion sensitizers (particularly Cd2+ and Co2+) to 0.01 M HCOOH significantly enhanced PVG efficiencies to 17, 2.2, and 81% for Ru, Re, and Ir, respectively. Possible mechanistic aspects occurring in dilute HCOOH media are discussed, wherein this phenomenon is attributed to the action of 185 nm radiation available in the thin-film flow-through photoreactor. An extended study of PVG of Fe, Co, Ni, As, Se, Mo, Rh, Te, W, and Bi from both dilute HCOOH and CH3COOH was undertaken, and several elements for which a similar phenomenon appears were identified (i.e., Co, As, Se, Te, and Bi). Although use of dilute HCOOH media is attractive for practical analytical applications employing PVG, it is less tolerant toward dissolved gases and interferents in the liquid phase due to the likely lower concentrations of free radicals and aquated electrons required for analyte ion reduction and product synthesis.

2.
Anal Chem ; 95(7): 3694-3702, 2023 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-36763590

RESUMO

Herein, we describe the highly efficient photochemical vapor generation (PVG) of a volatile species of Ir (presumably iridium tetracarbonyl hydride) for subsequent detection by inductively coupled plasma mass spectrometry (ICPMS). A thin-film flow-through photoreactor, operated in flow injection mode, provided high efficiency following optimization of identified key PVG parameters, notably, irradiation time, pH of the reaction medium, and the presence of metal sensitizers. For routine use and analytical application, PVG conditions comprising 4 M formic acid as the reaction medium, the presence of 10 mg L-1 Co2+ and 25 mg L-1 Cd2+ as added sensitizers, and an irradiation time of 29 s were chosen. An almost 90% overall PVG efficiency for both Ir3+ and Ir4+ oxidation states was accompanied by excellent repeatability of 1.0% (n = 15) of the peak area response from a 50 ng L-1 Ir standard. Limits of detection ranged from 3 to 6 pg L-1 (1.5-3 fg absolute), dependent on use of the ICPMS reaction/collision cell. Interferences from several transition metals and metalloids as well as inorganic acids and their anions were investigated, and outstanding tolerance toward chloride was found. Accuracy of the developed methodology was verified by analysis of NIST SRM 2556 (Used Auto Catalyst) following peroxide fusion for sample preparation. Practical application was further demonstrated by the direct analysis of spring water, river water, lake water, and two seawater samples with around 100% spike recovery and no sample preparation except the addition of formic acid and the sensitizers.

3.
Anal Chem ; 94(40): 13995-14003, 2022 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-36179120

RESUMO

An automated and high-throughput (36 h-1) method for extremely sensitive determination of the two main tellurium species in the environment, namely, tellurite (TeIV) and tellurate (TeVI), was developed. Flow injection hydride generation was interfaced for the first time with inductively coupled plasma triple quadrupole mass spectrometry (ICP-MS/MS) detection to assure interference-free tellurium analysis. ICP-MS/MS conditions were studied in detail. Using a mixture of He + O2 gases in the reaction cell, the background signals significantly dropped and Xe isobaric interference was eliminated, allowing measurement with the most abundant Te isotopes, that is, 128Te and 130Te, and offering a huge increase in sensitivity. Volatile H2Te was selectively generated by a HCl/NaBH4 reaction from TeIV or from both TeIV and TeVI (TeIV+VI) after pre-reduction of TeVI by a TiCl3 solution. The optimum conditions for TiCl3 as a pre-reductant and the pre-reduction kinetics were also investigated. Different reduction rates were found depending on the sample stabilization media (HCl, HNO3, or EDTA). The same sensitivity was found for TeIV and TeVI, measured after pre-reduction, and no significant matrix effect was observed in both fresh and seawaters. Therefore, external calibration was used for quantification in real samples. Under optimal conditions, this method reached an unprecedented limit of detection of 0.07 ng L-1 for both TeIV and TeIV+VI and an intra-day repeatability of 5.2% at the 5 ng L-1 level. The methodology was successfully applied to the speciation analyses in commercially available certified reference materials of river water and seawater, and in bottled water and lake water samples.


Assuntos
Água Potável , Telúrio , Água Potável/análise , Ácido Edético , Gases , Substâncias Redutoras , Espectrometria de Massas em Tandem , Telúrio/química , Titânio/análise
4.
Sci Total Environ ; 847: 157429, 2022 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-35863575

RESUMO

Edible seaweeds with a relatively high total arsenic concentration have been a global concern. As the largest seaweed producer, China contributes about 60 % of the global seaweed production. The present study investigated 20 seaweed species collected from representative seaweed farming sites in the six provinces along the Chinese coastline, of which Saccharina japonica, Undaria pinnatifida, Neopyropia spp., Gracilaria spp., Sargassum fusiforme were listed as the most consumed seaweeds in Food and Agriculture Organization of the United Nations (FAO). The inorganic arsenic (iAs) concentration in most of the seaweeds was below maximum limits (0.3 mg iAs/kg) as seaweed additives for infant food in the National Food Safety Standard of Pollutants in China (GB2762-2017, 2017), except for the species Sargassum, in which the iAs concentration significantly exceeded the limit and ranged from 15.1 to 83.7 mg/kg. Arsenic speciation in 4 cultivated seaweeds grown in both temperate and subtropical zones is reported for the first time. No significant differences in total As and iAs concentration were identified, except slightly higher total As concentration were found in Saccharina japonica growing in the temperate zone. The estimated daily intake (EDI) of toxic iAs via seaweed consumption was generally below the EFSA CONTAM Panel benchmark dose lower confidence limit (0.3 µg/kg bw/day) except for all Sargassum species where the EDI was significantly higher than 0.3 µg/kg bw/day. Moreover, the first-ever reported data on As speciation indicated very high iAs concentrations in Sargassum hemiphyllum and Sargassum henslowianum. To minimize the food chain iAs exposure, reducing both human intake of Sargassum spp. and the used of Sargassum spp. for animal feed is highly recommended. CAPSULE: This study showed that edible seaweed Sargassum spp. consumption may pose a health risk related to inorganic arsenic (iAs) exposure. The risk of iAs exposure via seaweed consumption or livestock is a concern that needs to be monitored. The arsenic accumulation and speciation may be predominantly species-dependent rather than environmental-dependent.


Assuntos
Intoxicação por Arsênico , Arsênio , Arsenicais , Poluentes Ambientais , Laminaria , Sargassum , Alga Marinha , Animais , Arsênio/análise , Arsenicais/análise , Contaminação de Alimentos/análise , Humanos
5.
Anal Chim Acta ; 1201: 339634, 2022 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-35300802

RESUMO

Photochemical vapor generation (PVG) of Te4+ was undertaken with a simple reactor consisting of a polytetrafluoroethylene reaction coil wrapped around a low-pressure mercury tube lamp and using a flow-injection for sample delivery. The composition of a reaction medium, the influence of irradiation time and the effect of added sensitizers and interferents were investigated using high-resolution continuum source atomic absorption spectrometry and a miniature diffusion flame atomizer. A mixture of 5 M acetic acid and 3.5 M formic acid and sample flow rate of 4 mL min-1 permitting a 36 s irradiation time were found optimal for PVG of Te4+. The addition of 250 mg L-1 Mn2+ and 15 mg L-1 Fe2+ ions as sensitizers enhanced the overall PVG efficiency 2.75-fold to 50 ± 2%. In order to achieve higher sensitivity necessary for determination of Te in real environmental samples, PVG was coupled to inductively coupled plasma triple quadrupole mass spectrometer and detection was performed with O2 in the reaction cell utilizing a mass shift mode of measurement (m/z 128 → m/z 144) to ensure interference free ion detection. A limit of detection 1.3 ng L-1 and repeatability (RSD) 0.9% at 250 ng L-1 were achieved. This ultrasensitive methodology was validated for speciation analysis of Te in water samples of various matrix complexities (fresh water, well water, seawater and contaminated water). Since no response was observed from Te6+ under optimal PVG conditions, Te4+ was selectively determined by direct PVG. The sum of Te4+ and Te6+ was determined after pre-reduction of Te6+ in 6 M HCl (95 °C), evaporation to dryness and reconstitution in the reaction medium containing sensitizers. Very good accuracy was demonstrated by spiked recoveries for both Te4+ and total Te in water samples and also by total Te determination in fresh water Standard Reference Material NIST 1643f.


Assuntos
Manganês , Telúrio , Íons , Ferro/análise , Espectrometria de Massas em Tandem
6.
Anal Chem ; 93(49): 16543-16551, 2021 12 14.
Artigo em Inglês | MEDLINE | ID: mdl-34846841

RESUMO

An extremely sensitive methodology for the determination of Ru was developed by coupling photochemical vapor generation (PVG) analyte introduction with inductively coupled plasma mass spectrometry (ICPMS). PVG was undertaken with a thin-film flow-through photoreactor in a medium comprising 8 M formic acid in the presence of 10 mg L-1 Co2+ and 25 mg L-1 Cd2+. The volatile product (presumably ruthenium pentacarbonyl) was generated in a flow injection mode, yielding an overall efficiency of 29% at a sample flow rate of 1.4 mL min-1. The presence of both Co2+ and Cd2+ sensitizers enhanced PVG efficiency by 3,200-fold, permitting a 31 s irradiation time. Although enhanced efficiency (≈40%) could be obtained with increased Co2+ concentration, this was not suitable for routine use due to co-generation of cobalt carbonyl. Excellent repeatability (<2.5%) and reproducibility (4%) were achieved for 200 ng L-1 Ru3+. Limits of detection ranged from 20 to 42 pg L-1 (10-21 fg absolute) depending on the measured isotope and operational mode of the ICPMS reaction/collision cell. Interferences from inorganic acids and their anions, several transition metals, and metalloids were investigated. Practical application of the methodology was demonstrated by the analysis of seven water samples of various matrix complexities (well water, spring water, contaminated water, and seawater).


Assuntos
Cobalto , Rutênio , Cádmio , Espectrometria de Massas , Reprodutibilidade dos Testes
7.
Anal Chim Acta ; 1168: 338601, 2021 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-34051996

RESUMO

Chemical vapor generation (CVG) of cadmium was optimized based on response from atomic absorption spectrometry (AAS) with a heated quartz tube atomizer (QTA). Effect of several modifiers on analytical performance was studied. These additives were: inorganic salts of Cr3+, Ti4+ and Co2+ and their on-line synthesized complexes with KCN and thiourea, respectively. The use of these additives resulted in sensitivity enhancement, better repeatability and correspondingly in improvement of overall CVG efficiency. The latter was quantified by two independent approaches: a) by means of 115mCd radioactive indicator, b) from comparison of sensitivities obtained with conventional solution nebulization and with CVG, both coupled simultaneously to inductively coupled plasma mass spectrometry. Both approaches provided comparable results. The highest efficiency, between 60 and 70%, was reached in the presence of Cr3+/KCN and Ti4+/KCN while 19% was achieved in Co2+/ascorbic acid/thiourea environment. Highly irreproducible results with low CVG efficiency ranging from 2.5 to 15% were reached in the absence of any additives. The generated cadmium species were identified to be mostly free atoms regardless of the additives presence or their absence. Cr3+/KCN environment was selected as the most robust for CVG of Cd reaching sensitivity of 6.6 s ng-1 Cd and limit of detection of 60 pg mL-1 Cd (9 pg Cd absolute) with detection by QTA-AAS.

8.
Anal Bioanal Chem ; 413(13): 3443-3453, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33755769

RESUMO

Hydride generation (HG) coupled to cryotrapping was employed to introduce, separately and with high selectivity, four gaseous arsanes into a direct analysis in real time source for high-resolution mass spectrometry (DART-HR-MS). The arsanes, i.e., arsane (AsH3), methylarsane (CH3AsH2), dimethylarsane ((CH3)2AsH), and trimethylarsane ((CH3)3As), were formed under HG conditions that were close to those typically used for analytical purposes. Arsenic containing ion species formed during ambient ionization in the DART were examined both in the positive and negative ion modes. It was clearly demonstrated that numerous arsenic ion species originated in the DART source that did not accurately reflect their origin. Pronounced oxidation, hydride abstraction, methyl group(s) loss, and formation of oligomer ions complicate the identification of the original species in both modes of detection, leading to potential misinterpretation. Suitability of the use of the DART source for identification of arsenic species in multiphase reaction systems comprising HG is discussed.

9.
Anthropol Anz ; 2021 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-33399626

RESUMO

The aim of this work was to document and analyze an exceptionally preserved mummified body of a six-year-old boy found in a family tomb in Skalná, Czech Republic. The boy died of scarlet fever in 1887, and was buried under ground in a cemetery in an unknown coffin shortly after death. His parents exhumed his cadaver and entombed it in the family crypt in two tin coffins a year later. This secondary burial and violent opening of the coffins in the end of the World War II leaving the body exposed to external climatic conditions led to its natural (spontaneous) dry mummification. The computed tomography scan of the corpse showed that the majority of internal organs were well preserved. And surprisingly, parts of the central nervous system estimated to be about 70% of the original size with distinguishable neural structures. We tested the cerebellum, tentorium and hair for mercury and arsenic, and the body was assessed by a forensic examiner for possible signs of an artificial embalming, and pathology. We did not confirm the hypothesis of the eventual preservation using the salts of mercury and/or arsenic or other fixation common for embalming in the 1800s. The anthropogenic mummification can be excluded due to the presence of fly larvae, historical records confirmed the burial of the individual right after death, and the different degree of organs condition. It appears that the unique preservation of the mummy and its internal organs was most likely caused by stable conditions of the environment.

10.
Artigo em Inglês | MEDLINE | ID: mdl-32360816

RESUMO

Lithium (Li) is a typical mood stabilizer and the first choice for treatment of bipolar disorder (BD). Despite an extensive clinical use of Li, its mechanisms of action remain widely different and debated. In this work, we studied the time-course of the therapeutic Li effects on ouabain-sensitive Na+/K+-ATPase in forebrain cortex and hippocampus of rats exposed to 3-day sleep deprivation (SD). We also monitored lipid peroxidation as malondialdehyde (MDA) production. In samples of plasma collected from all experimental groups of animals, Li concentrations were followed by ICP-MS. The acute (1 day), short-term (7 days) and chronic (28 days) treatment of rats with Li resulted in large decrease of Na+/K+-ATPase activity in both brain parts. At the same time, SD of control, Li-untreated rats increased Na+/K+-ATPase along with increased production of MDA. The SD-induced increase of Na+/K+-ATPase and MDA was attenuated in Li-treated rats. While SD results in a positive change of Na+/K+-ATPase, the inhibitory effect of Li treatment may be interpreted as a pharmacological mechanism causing a normalization of the stress-induced shift and return the Na+/K+-ATPase back to control level. We conclude that SD alone up-regulates Na+/K+-ATPase together with increased peroxidative damage of lipids. Chronic treatment of rats with Li before SD, protects the brain tissue against this type of damage and decreases Na+/K+-ATPase level back to control level.


Assuntos
Antimaníacos/farmacologia , Hipocampo/efeitos dos fármacos , Peroxidação de Lipídeos/efeitos dos fármacos , Carbonato de Lítio/farmacologia , Prosencéfalo/efeitos dos fármacos , Prosencéfalo/metabolismo , Privação do Sono/tratamento farmacológico , Privação do Sono/metabolismo , ATPase Trocadora de Sódio-Potássio/metabolismo , Animais , Antimaníacos/uso terapêutico , Ligação Competitiva/efeitos dos fármacos , Hipocampo/metabolismo , Masculino , Malondialdeído/metabolismo , Ouabaína/metabolismo , Prosencéfalo/enzimologia , Ratos , Ratos Wistar , Privação do Sono/enzimologia
11.
Sci Total Environ ; 723: 138002, 2020 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-32213411

RESUMO

Urban heavy metal pollution can impair the health of humans and other organisms inhabiting cities. While birds are suggested as one of the appropriate bioindicators for essential and non-essential trace element monitoring, the process of particular elements' accumulation in blood and its possible adverse health effects during ageing of individuals remain unexplored. We have investigated lifetime changes in blood lead (Pb), cadmium (Cd), arsenic (As) and zinc (Zn) concentrations and searched for links to health-related traits in sub-urban free-living great tit (Parus major) population monitored over a long period of time. The blood As concentrations were under the limit of detection in most samples. The blood Pb levels showed a non-linear relationship to individuals age, where the highest Pb concentrations were measured in nestlings and in a very small group of highly senescent birds (over 7 years old), while no clear trend was observed for the majority of the adult age stages. No age-related patterns were found for blood Cd or Zn concentrations. The positive relationship between date of capture and blood Cd and Zn levels may reflect seasonal changes in diet composition. We did not reveal any anaemia-like conditions (decreased total erythrocyte count or increased immature erythrocyte count) in relation to blood heavy metal concentrations in the investigated birds. Total leukocyte counts, heterophil/lymphocyte (H/L) ratio and total heterophil and lymphocyte counts increased with increasing Pb, Cd and Zn concentrations in blood. This study demonstrates the suitability of avian blood for actual heavy metal spatial and temporal biomonitoring even in situations when the precise age of the individuals remains unknown.


Assuntos
Monitoramento Ambiental , Metais Pesados/análise , Adulto , Animais , Aves , Criança , Cidades , Poluição Ambiental/análise , Humanos
12.
Anal Chem ; 91(20): 13306-13312, 2019 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-31537056

RESUMO

Efficient photochemical vapor generation (PVG) of tungsten has been achieved for the first time using a 19 W thin film flow-through photoreactor. The volatile product (most probably tungsten hexacarbonyl) was generated using a flow injection mode and 40% (v/v) formic acid as the reaction medium. An inductively coupled plasma mass spectrometer was utilized for ultrasensitive detection. The addition of Cd2+ as a sensitizer was critical, enhancing the overall PVG efficiency some 30 000-fold. At an optimal irradiation time of 19 s, a 6.1-fold enhancement factor and an overall PVG efficiency of 43% were determined from a comparison of the response to direct solution nebulization when using a sample flow rate of 2 mL min-1 and 500 mg L-1 Cd2+ as a sensitizer. A limit of detection of 0.9 ng L-1 and repeatability (RSD) of 2% at 100 ng L-1 were achieved. Interference from inorganic acids (HNO3, HCl, H2SO4, and HF) was investigated with respect to analytical application to real samples. The accuracy and practical feasibility of this ultrasensitive methodology was successfully verified by analysis of Certified Reference Material CTA-FFA-1 (Fine Fly Ash) and six natural water samples with low W concentrations.

13.
Naunyn Schmiedebergs Arch Pharmacol ; 392(7): 785-799, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-30790031

RESUMO

Regulation of Na+/K+-ATPase in bipolar disorder and lithium therapy has been investigated for more than 40 years. Contradictory results in this area may be caused by the difference between acute and long-term Li effects on cell metabolism and variance in responsiveness of different cell types. We compared the time-course of Li action focusing on Na+/K+-ATPase and lipid peroxidation in two widely different cell models-Jurkat and HEK293. Na+/K+-ATPase expression level was determined in cells cultivated in the absence or presence of 1 mM Li for different time spans (1, 7, and 28 days) using [3H] ouabain binding and immunoblot assay of α-subunit. In parallel samples, the formation of malondialdehyde (MDA) was quantified by HPLC, and 4-hydroxy-2-nonenal (4-HNE) protein adducts were determined by immunoblot. Cultivation of Jurkat cells in 1 mM Li medium resulted in downregulation of Na+/K+-ATPase (decrease of [3H] ouabain-biding sites and intensity of immunoblot signals) in all Li-groups. In HEK293 cells, the decrease of Na+/K+-ATPase was observed after the acute, 1-day exposure only. The long-term treatment with Li resulted in Na+/K+-ATPase upregulation. MDA and 4-HNE modified proteins were decreased in Jurkat cells in all Li-groups. On the other hand, in HEK293 cells, MDA concentration was decreased after the acute, 1-day Li exposure only; the long-term cultivations, for 7 or 28 days, resulted in a significant increase of lipid peroxidation products. The Li-induced decrease of lipid peroxidation products was associated with the decrease of Na+/K+-ATPase level and vice versa.


Assuntos
Peroxidação de Lipídeos/efeitos dos fármacos , Peróxidos Lipídicos/metabolismo , Compostos de Lítio/farmacologia , ATPase Trocadora de Sódio-Potássio/metabolismo , Transtorno Bipolar/tratamento farmacológico , Transtorno Bipolar/metabolismo , Relação Dose-Resposta a Droga , Regulação da Expressão Gênica/efeitos dos fármacos , Células HEK293 , Humanos , Células Jurkat , Compostos de Lítio/administração & dosagem , Compostos de Lítio/metabolismo , ATPase Trocadora de Sódio-Potássio/genética , Fatores de Tempo
14.
Anal Chim Acta ; 1049: 20-28, 2019 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-30612652

RESUMO

It is advisable to monitor and regulate inorganic arsenic (iAs) in food and feedstuff. This work describes an update and validation of a method of selective hydride generation (HG) with inductively coupled plasma mass spectrometry (ICP-MS) for high-throughput screening of iAs content in seafood samples after microwave-assisted extraction with diluted nitric acid and hydrogen peroxide. High concentration of HCl (8 M) for HG along with hydrogen peroxide in samples of a same concentration as used for extraction leads to a selective conversion of iAs to volatile arsine that is released and transported to the detector. A minor contribution from methylarsonate (≈20% to iAs) was found, while HG from dimethylarsinate, trimethylarsine oxide is substantially suppressed (less than 1% to iAs). Methodology was applied to Certified Reference Materials (CRMs) TORT-3, DORM-3, DORM-4, DOLT-4, DOLT-5, PRON-1, SQID-1 and ERM-CE278k, in some of them iAs has been determined for the first time, and to various seaweed samples from a local store. The results were always compared with a reference method and selectivity of iAs determination was evaluated. An inter-laboratory reproducibility was tested by comparative analyses of six fish and four seaweed samples in three European laboratories, with good agreement of the results. The method of HG-ICP-MS is sensitive (limit of detection 2 µg kg-1 iAs), well suited for screening of large number of samples and selective at iAs concentration levels at which maximum limits are expected to be set into EU legislation for marine samples.


Assuntos
Arsênio/análise , Proteínas de Peixes da Dieta/análise , Contaminação de Alimentos/análise , Hidrogênio/química , Espectrometria de Massas/métodos , Frutos do Mar/análise , Animais , Bivalves/química , Decápodes/química , Decapodiformes/química , Cação (Peixe) , Ácido Clorídrico/química , Peróxido de Hidrogênio/química , Limite de Detecção , Percloratos/química , Alga Marinha/química
15.
Anal Chem ; 90(19): 11688-11695, 2018 10 02.
Artigo em Inglês | MEDLINE | ID: mdl-30189726

RESUMO

Photochemical vapor generation (PVG) of Mo was accomplished using a 19 W high-efficiency flow-through photoreactor operating in a flow injection mode using 30-50% (w/v) formic acid as a reaction medium. The generated volatile product (most probably molybdenum hexacarbonyl) was directed by an argon carrier gas to a plastic gas-liquid separator and introduced into the spray chamber of an inductively coupled plasma mass spectrometer for detection. Particular attention was paid to the determination of overall PVG efficiency relative to that for liquid nebulization. Utilizing a sample flow rate of 1.25 mL min-1, corresponding to an irradiation time of 38 s, PVG efficiencies in the range 46-66% were achieved. The efficiency could be further enhanced by the presence of mg L-1 added Fe3+ ions. A limit of detection of 1.2 ng L-1 and precision of 3% (RSD) at 250 ng L-1 were achieved. Interferences from inorganic anions likely to be encountered during analytical application to real samples (NO3-, Cl-, SO42-, NO2-, and ClO4-) were investigated in detail. The accuracy and applicability of this sensitive methodology was successfully verified by analysis of fresh water Standard Reference Material NIST 1643e, two seawater Certified Reference Materials (NASS-7 and CASS-6), and by analysis of two samples of commercial dietary supplements solubilized in formic acid.

17.
Biochem Pharmacol ; 154: 452-463, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29883706

RESUMO

The functional state of δ-opioid receptor signaling cascade in live cells exposed to a therapeutic concentration of lithium for a prolonged period of time (weeks) is not known because the previous studies of Li interference with OR were oriented to µ-OR only. The same applies to the analysis of the prolonged effect of Li on oxidative stress in context with δ-OR function. HEK293 cells stably expressing δ-OR were cultivated in the presence or absence of 1 mM LiCl for 7 or 21 days, homogenized and the post-nuclear (PNS) and plasma membrane (PM) fractions prepared from all four types of cells. Level of δ-OR in PM was determined by specific radioligand [3H]DADLE binding and immunoblot assays; the functional coupling between δ-OR and G proteins was determined as DADLE-stimulated high-affinity [35S]GTPγS binding. In the whole cells, general oxidative stress was monitored by fluorescent dye 2',7'-dichlorofluorescein diacetate (DCF) and results verified by analysis of PNS and isolated PM. Generation of 4-hydroxy-2-nonenal (4-HNE)-protein adducts and malondialdehyde (MDA) level were determined as products of lipid peroxidation. Li-treated cells exhibited the decreased amount of δ-OR. This was evidenced by both [3H]DADLE binding and immunoblot assays. The δ-OR-G protein coupling efficiency was diminished. Simultaneously, in Li-treated cells, the highly increased oxidative stress measured as DCF fluorescence intensity was noticed. Importantly, this result was detected in live cells as well as PNS and PM. Accordingly, production of 4-HNE-protein adducts and MDA was clearly increased in Li-treated cells. The general significance of our work lies in presentation of novel data indicating that prolonged exposure of live HEK293 cells to the therapeutic concentration of Li results in down-regulation of δ-OR protein level and attenuation of δ-OR function in parallel with increased oxidative stress and increased level of lipid peroxidation products.


Assuntos
Regulação para Baixo/efeitos dos fármacos , Cloreto de Lítio/administração & dosagem , Estresse Oxidativo/efeitos dos fármacos , Receptores Opioides delta/antagonistas & inibidores , Receptores Opioides delta/metabolismo , Regulação para Baixo/fisiologia , Esquema de Medicação , Células HEK293 , Humanos , Estresse Oxidativo/fisiologia
18.
Anal Chim Acta ; 1028: 11-21, 2018 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-29884347

RESUMO

Atomization of SeH2 in an externally heated multiple microflame quartz tube atomizer (MMQTA) as well as planar dielectric barrier discharge (DBD) atomizer was investigated using a variety of probes. Deposits of Se on inner surfaces of the atomizers were quantified and their distribution visualized by autoradiography with 75Se radiotracer. The gas phase fraction of Se transported beyond the confines of the atomizers was also determined. In the MMQTA, a 15% mass fraction of Se was deposited in a narrow zone at both colder ends of the optical arm (100-400 °C). By contrast, a 25-40% mass fraction of Se was deposited homogeneously along the entire length of the optical arm of the DBD, depending on detection technique employed. The fraction of Se transported outside the MMQTA approached 90%, whereas it was 50-70% in the DBD. The presence of H2 was essential for atomization of selenium hydride in both atomizers. The gaseous effluent arising from the hydride generator as well as the atomizers was investigated by direct analysis in real time (DART) coupled to an Orbitrap-mass spectrometer, enabling identification of major gas phase species of Se.

19.
Anal Chim Acta ; 1008: 8-17, 2018 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-29420947

RESUMO

Hydride generation (HG) from arsenosugars (dimethylarsinoylribosides) in batch and flow injection modes was studied. Its efficiency was found higher in H2SO4 medium than in HCl and higher in the batch mode than in the flow injection mode. To increase the efficiency in the flow injection mode a new generator with two inlets of NaBH4 solution was designed. This modified generator was interfaced between a HPLC column and an atomic fluorescence detector. The arsenosugars studied yielded HG efficiencies in the range 13-30% most probably due to a complicated mechanism of HG. While the mechanism included a formation of two structures of the analyte-borane-complexes, only one of them can lead to a formation of volatile arsanes (dimethylarsane, methylarsane, and arsane were identified).

20.
Anal Chim Acta ; 1005: 16-26, 2018 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-29389315

RESUMO

Comprehensive investigation of chemical generation of volatile species (VSG) of palladium for detection by analytical atomic and mass spectrometry and, specifically, the mechanistic aspects of their formation and tentative identification are presented. VSG was achieved in a flow injection mode using a generator that permitted rapid mixing of acidified sample with NaBH4 reductant. Atomization in a diffusion flame with detection by atomic absorption spectrometry was exclusively used for optimization of generation conditions while inductively coupled plasma mass spectrometry was utilized to investigate overall system efficiency and analytical metrics of the VSG system for potential ultratrace analysis. Sodium diethyldithiocarbamate (DDTC) served as a crucial reaction modifier, enhancing overall system efficiency 9-fold. Combinations of modifiers, Triton X-100 and Antifoam B surfactants provided a synergistic effect to yield a further 2-fold enhancement of VSG. The overall system efficiency was in the range 16-22%, with higher efficiencies correlating with higher Pd concentrations. The contribution of co-generated aerosol to the overall system efficiency, determined by means of concurrent measurement of added Cs, was negligible - less than 0.1%. The nature of the volatile species was investigated using several approaches, but principally by transmission electron microscopy (TEM) after their collection on a grid, and by direct analysis in real time (DART) using high resolution orbitrap mass spectrometry. These experiments suggest a parallel but dual-route mechanism of VSG of Pd, one attributed to generation of a volatile DDTC chelate of Pd and a second to nanoparticle formation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA