Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
1.
Math Biosci Eng ; 20(2): 2382-2407, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36899539

RESUMO

The unprecedented rise in the number of COVID-19 cases has drawn global attention, as it has caused an adverse impact on the lives of people all over the world. As of December 31, 2021, more than 2, 86, 901, 222 people have been infected with COVID-19. The rise in the number of COVID-19 cases and deaths across the world has caused fear, anxiety and depression among individuals. Social media is the most dominant tool that disturbed human life during this pandemic. Among the social media platforms, Twitter is one of the most prominent and trusted social media platforms. To control and monitor the COVID-19 infection, it is necessary to analyze the sentiments of people expressed on their social media platforms. In this study, we proposed a deep learning approach known as a long short-term memory (LSTM) model for the analysis of tweets related to COVID-19 as positive or negative sentiments. In addition, the proposed approach makes use of the firefly algorithm to enhance the overall performance of the model. Further, the performance of the proposed model, along with other state-of-the-art ensemble and machine learning models, has been evaluated by using performance metrics such as accuracy, precision, recall, the AUC-ROC and the F1-score. The experimental results reveal that the proposed LSTM + Firefly approach obtained a better accuracy of 99.59% when compared with the other state-of-the-art models.


Assuntos
COVID-19 , Aprendizado Profundo , Humanos , Análise de Sentimentos , Algoritmos , Medo
2.
IEEE Trans Fuzzy Syst ; 30(8): 2902-2914, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-36345371

RESUMO

A global pandemic scenario is witnessed worldwide owing to the menace of the rapid outbreak of the deadly COVID-19 virus. To save mankind from this apocalyptic onslaught, it is essential to curb the fast spreading of this dreadful virus. Moreover, the absence of specialized drugs has made the scenario even more badly and thus an early-stage adoption of necessary precautionary measures would provide requisite supportive treatment for its prevention. The prime objective of this article is to use radiological images as a tool to help in early diagnosis. The interval type 2 fuzzy clustering is blended with the concept of superpixels, and metaheuristics to efficiently segment the radiological images. Despite noise sensitivity of watershed-based approach, it is adopted for superpixel computation owing to its simplicity where the noise problem is handled by the important edge information of the gradient image is preserved with the help of morphological opening and closing based reconstruction operations. The traditional objective function of the fuzzy c-means clustering algorithm is modified to incorporate the spatial information from the neighboring superpixel-based local window. The computational overhead associated with the processing of a huge amount of spatial information is reduced by incorporating the concept of superpixels and the optimal clusters are determined by a modified version of the flower pollination algorithm. Although the proposed approach performs well but should not be considered as an alternative to gold standard detection tests of COVID-19. Experimental results are found to be promising enough to deploy this approach for real-life applications.

3.
J Supercomput ; 78(13): 14866-14891, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35431452

RESUMO

The Internet of Medical Things (IoMT) is a bionetwork of allied medical devices, sensors, wearable biosensor devices, etc. It is gradually reforming the healthcare industry by leveraging its capabilities to improve personalized healthcare services by enabling seamless communication of medical data. IoMT facilitates prompt emergency responses and provides improved quality of medical services with minimum cost. With the advancement of modern technology, progressively ubiquitous medical devices raise critical security and data privacy concerns through resource constraints and open connectivity. Vulnerabilities in IoMT devices allow unauthorized access for potential entry into healthcare and sensitive personal data. In addition, the patient may experience severe physical damage with the attack on IoMT devices. To provide security to IoMT devices and privacy to patient data, we have proposed a novel IoMT framework with the hybridization of Bayesian optimization and extreme learning machine (ELM). The proposed model derives encouraging performance with enhanced accuracy in decision-making process compared to similar state-of-the-art methods.

4.
Math Biosci Eng ; 19(2): 1909-1925, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-35135235

RESUMO

Oral cancer is a prevalent disease happening in the head and neck region. Due to the high occurrence rate and serious consequences of oral cancer, an accurate diagnosis of malignant oral tumors is a major priority. Thus, early diagnosis is very effective to give the patient a prompt response to treatment. The most efficient way for diagnosing oral cancer is from histopathological imaging, which provides a detailed view of inside cells. Accurate and automatic classification of oral histopathological images remains a difficult task due to the complex nature of cell images, staining methods, and imaging conditions. The use of deep learning in imaging techniques and computational diagnostics can assist doctors and physicians in automatically analysing Oral Squamous Cell Carcinoma biopsy images in a timely and efficient manner. Thus, it reduces the operational workload of the pathologist and enhance patient management. Training deeper neural networks takes considerable time and requires a lot of computing resources, due to the complexity of the network and the gradient diffusion problem. With this motivation and inspired by ResNet's significant successes to handle the gradient diffusion problem, in this study we suggest the novel improved ResNet-based model for the automated multistage classification of oral histopathology images. Three prospective candidate model blocks are presented, analyzed, and the best candidate model is chosen as the optimal one which can efficiently classify the oral lesions into well-differentiated, moderately-differentiated and poorly-differentiated in significantly reduced time, with 97.59% accuracy.


Assuntos
Carcinoma de Células Escamosas , Neoplasias Bucais , Carcinoma de Células Escamosas/diagnóstico por imagem , Diagnóstico por Imagem , Humanos , Neoplasias Bucais/diagnóstico por imagem , Redes Neurais de Computação , Estudos Prospectivos
5.
Pattern Recognit Lett ; 153: 246-253, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34975182

RESUMO

Network structures have attracted much interest and have been rigorously studied in the past two decades. Researchers used many mathematical tools to represent these networks, and in recent days, hypergraphs play a vital role in this analysis. This paper presents an efficient technique to find the influential nodes using centrality measure of weighted directed hypergraph. Genetic Algorithm is exploited for tuning the weights of the node in the weighted directed hypergraph through which the characterization of the strength of the nodes, such as strong and weak ties by statistical measurements (mean, standard deviation, and quartiles) is identified effectively. Also, the proposed work is applied to various biological networks for identification of influential nodes and results shows the prominence the work over the existing measures. Furthermore, the technique has been applied to COVID-19 viral protein interactions. The proposed algorithm identified some critical human proteins that belong to the enzymes TMPRSS2, ACE2, and AT-II, which have a considerable role in hosting COVID-19 viral proteins and causes for various types of diseases. Hence these proteins can be targeted in drug design for an effective therapeutic against COVID-19.

6.
Expert Syst ; 39(3): e12677, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33821074

RESUMO

The recent outbreak of a novel coronavirus, named COVID-19 by the World Health Organization (WHO) has pushed the global economy and humanity into a disaster. In their attempt to control this pandemic, the governments of all the countries have imposed a nationwide lockdown. Although the lockdown may have assisted in limiting the spread of the disease, it has brutally affected the country, unsettling complete value-chains of most important industries. The impact of the COVID-19 is devastating on the economy. Therefore, this study has reported about the impact of COVID-19 epidemic on various industrial sectors. In this regard, the authors have chosen six different industrial sectors such as automobile, energy and power, agriculture, education, travel and tourism and consumer electronics, and so on. This study will be helpful for the policymakers and government authorities to take necessary measures, strategies and economic policies to overcome the challenges encountered in different sectors due to the present pandemic.

7.
Appl Intell (Dordr) ; 51(5): 2908-2938, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34764577

RESUMO

This 21st century is notable for experiencing so many disturbances at economic, social, cultural, and political levels in the entire world. The outbreak of novel corona virus 2019 (COVID-19) has been treated as a Public Health crisis of global Concern by the World Health Organization (WHO). Various outbreak models for COVID-19 are being utilized by researchers throughout the world to get well-versed decisions and impose significant control measures. Amid the standard methods for COVID-19 worldwide epidemic prediction, easy statistical, as well as epidemiological methods have got more consideration by researchers and authorities. One main difficulty in controlling the spreading of COVID-19 is the inadequacy and lack of medical tests for detecting as well as identifying a solution. To solve this problem, a few statistical-based advances are being enhanced and turn into a partial resolution up-to some level. To deal with the challenges of the medical field, a broad range of intelligent based methods, frameworks, and equipment have been recommended by Machine Learning (ML) and Deep Learning. As ML and DL have the ability of identifying and predicting patterns in complex large datasets, they are recognized as a suitable procedure for producing effective solutions for the diagnosis of COVID-19. In this paper, a perspective research has been conducted in the applicability of intelligent systems such as ML, DL and others in solving COVID-19 related outbreak issues. The main intention behind this study is (i) to understand the importance of intelligent approaches such as ML and DL for COVID-19 pandemic, (ii) discussing the efficiency and impact of these methods in the prognosis of COVID-19, (iii) the growth in the development of type of ML and advanced ML methods for COVID-19 prognosis,(iv) analyzing the impact of data types and the nature of data along with challenges in processing the data for COVID-19,(v) to focus on some future challenges in COVID-19 prognosis to inspire the researchers for innovating and enhancing their knowledge and research on other impacted sectors due to COVID-19.

8.
Math Biosci Eng ; 18(5): 5737-5757, 2021 06 25.
Artigo em Inglês | MEDLINE | ID: mdl-34517510

RESUMO

Small changes in retinal blood vessels may produce different pathological disorders which may further cause blindness. Therefore, accurate extraction of vasculature map of retinal fundus image has become a challenging task for analysis of different pathologies. The present study offers an unsupervised method for extraction of vasculature map from retinal fundus images. This paper presents the methodology for evolution of vessels using Modified Pixel Level Snake (MPLS) algorithm based on Black Top-Hat (BTH) transformation. In the proposed method, initially bimodal masking is used for extraction of the mask of the retinal fundus image. Then adaptive segmentation and global thresholding is applied on masked image to find the initial contour image. Finally, MPLS is used for evolution of contour in all four cardinal directions using external, internal and balloon potential. This proposed work is implemented using MATLAB software. DRIVE and STARE databases are used for checking the performance of the system. In the proposed work, various performance metrics such as sensitivity, specificity and accuracy are evaluated. The average sensitivity of 76.96%, average specificity of 98.34% and average accuracy of 96.30% is achieved for DRIVE database. This technique can also segment vessels of pathological images accurately; reaching the average sensitivity of 70.80%, average specificity of 96.40% and average accuracy of 94.41%. The present study provides a simple and accurate method for the detection of vasculature map for normal fundus images as well as pathological images. It can be helpful for the assessment of various retinal vascular attributes like length, diameter, width, tortuosity and branching angle.


Assuntos
Algoritmos , Vasos Retinianos , Animais , Bases de Dados Factuais , Fundo de Olho , Vasos Retinianos/diagnóstico por imagem , Serpentes
9.
Arab J Sci Eng ; : 1-18, 2021 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-34395157

RESUMO

Coronavirus (COVID-19) is an epidemic that is rapidly spreading and causing a severe healthcare crisis resulting in more than 40 million confirmed cases across the globe. There are many intensive studies on AI-based technique, which is time consuming and troublesome by considering heavyweight models in terms of more training parameters and memory cost, which leads to higher time complexity. To improve diagnosis, this paper is aimed to design and establish a unique lightweight deep learning-based approach to perform multi-class classification (normal, COVID-19, and pneumonia) and binary class classification (normal and COVID-19) on X-ray radiographs of chest. This proposed CNN scheme includes the combination of three CBR blocks (convolutional batch normalization ReLu) with learnable parameters and one global average pooling (GP) layer and fully connected layer. The overall accuracy of the proposed model achieved 98.33% and finally compared with the pre-trained transfer learning model (DenseNet-121, ResNet-101, VGG-19, and XceptionNet) and recent state-of-the-art model. For validation of the proposed model, several parameters are considered such as learning rate, batch size, number of epochs, and different optimizers. Apart from this, several other performance measures like tenfold cross-validation, confusion matrix, evaluation metrics, sarea under the receiver operating characteristics, kappa score and Mathew's correlation, and Grad-CAM heat map have been used to assess the efficacy of the proposed model. The outcome of this proposed model is more robust, and it may be useful for radiologists for faster diagnostics of COVID-19.

10.
SN Comput Sci ; 2(5): 416, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34423315

RESUMO

The surge of the novel COVID-19 caused a tremendous effect on the health and life of the people resulting in more than 4.4 million confirmed cases in 213 countries of the world as of May 14, 2020. In India, the number of cases is constantly increasing since the first case reported on January 30, 2020, resulting in a total of 81,997 cases including 2649 deaths as of May 14, 2020. To assist the government and healthcare sector in preventing the transmission of disease, it is necessary to predict the future confirmed cases. To predict the dynamics of COVID-19 cases, in this paper, we project the forecast of COVID-19 for five most affected states of India such as Maharashtra, Tamil Nadu, Delhi, Gujarat, and Andhra Pradesh using the real-time data. Using Holt-Winters method, a forecast of the number of confirmed cases in these states has been generated. Further, the performance of the method has been determined using RMSE, MSE, MAPE, MAE and compared with other standard algorithms. The analysis shows that the proposed Holt-Winters model generates RMSE value of 76.0, 338.4, 141.5, 425.9, 1991.5 for Andhra Pradesh, Maharashtra, Gujarat, Delhi and Tamil Nadu, which results in more accurate predictions over Holt's Linear, Auto-regression (AR), Moving Average (MA) and Autoregressive Integrated Moving Average (ARIMA) model. These estimations may further assist the government in employing strong policies and strategies for enhancing healthcare support all over India.

11.
Neurocomputing (Amst) ; 457: 40-66, 2021 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-34149184

RESUMO

The unprecedented surge of a novel coronavirus in the month of December 2019, named as COVID-19 by the World Health organization has caused a serious impact on the health and socioeconomic activities of the public all over the world. Since its origin, the number of infected and deceased cases has been growing exponentially in almost all the affected countries of the world. The rapid spread of the novel coronavirus across the world results in the scarcity of medical resources and overburdened hospitals. As a result, the researchers and technocrats are continuously working across the world for the inculcation of efficient strategies which may assist the government and healthcare system in controlling and managing the spread of the COVID-19 pandemic. Therefore, this study provides an extensive review of the ongoing strategies such as diagnosis, prediction, drug and vaccine development and preventive measures used in combating the COVID-19 along with technologies used and limitations. Moreover, this review also provides a comparative analysis of the distinct type of data, emerging technologies, approaches used in diagnosis and prediction of COVID-19, statistics of contact tracing apps, vaccine production platforms used in the COVID-19 pandemic. Finally, the study highlights some challenges and pitfalls observed in the systematic review which may assist the researchers to develop more efficient strategies used in controlling and managing the spread of COVID-19.

12.
Interdiscip Sci ; 13(2): 212-228, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33566337

RESUMO

This work presents a smart healthcare system for the detection of various abnormalities present in the gastrointestinal (GI) region with the help of time-frequency analysis and convolutional neural network. In this regard, the KVASIR V2 dataset comprising of eight classes of GI-tract images such as Normal cecum, Normal pylorus, Normal Z-line, Esophagitis, Polyps, Ulcerative Colitis, Dyed and lifted polyp, and Dyed resection margins are used for training and validation. The initial phase of the work involves an image pre-processing step, followed by the extraction of approximate discrete wavelet transform coefficients. Each class of decomposed images is later given as input to a couple of considered convolutional neural network (CNN) models for training and testing in two different classification levels to recognize its predicted value. Afterward, the classification performance is measured through the following measuring indices: accuracy, precision, recall, specificity, and F1 score. The experimental result shows 97.25% and 93.75% of accuracy in the first level and second level of classification, respectively. Lastly, a comparative performance analysis is carried out with several other previously published works on a similar dataset where the proposed approach performs better than its contemporary methods.


Assuntos
Gastroenteropatias , Análise de Ondaletas , Atenção à Saúde , Humanos , Processamento de Imagem Assistida por Computador , Redes Neurais de Computação
13.
Interdiscip Sci ; 13(2): 229-259, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33576956

RESUMO

The amount of information in the scientific literature of the bio-medical domain is growing exponentially, which makes it difficult in developing a smart medical system. Summarization techniques help for efficient searching and understanding of relevant information from the medical documents. In the paper, an evolutionary algorithm based ensemble extractive summarization technique is devised as a smart medical application with the idea of hybrid artificial intelligence on natural language processing. We have considered the abstracts of the target article and its cited articles as the base summaries and a multi-objective evolutionary algorithm is applied for generating the ensemble summary of the target article. Each sentence of the base summaries is represented by a concept vector of the medical terms contained in it with the help of the Unified Modelling Language System (UMLS) tool which is widely used in various smart medical applications. These terms carry the key information of the sentence which is very useful to find out the semantic similarity among the sentences. Fitness functions of the evolutionary algorithm are mainly defined using clustering coefficient and sparsity index, the concepts of graph theory. After the convergence of the algorithm, the best solution of the final population gives the ensemble summary. Next, the semantic similarity of each sentence in the target article with the ensemble summary is calculated and the sentences which are most similar to the ensemble summary are considered as the summary of the target article. The method is applied to the articles available in the PubMed MEDLINE database system and experimental results are compared with some state of the art methods applied in the Bio-medical domain. Experimental results and comparative study based on the performance evaluation show that the method competes with some recently proposed summarization methods and outperforms others, which express the effectiveness of the proposed methodology. Different statistical tests have also been made to observe that the method is statistically significant.


Assuntos
Inteligência Artificial , Processamento de Linguagem Natural , Análise por Conglomerados , Semântica
14.
SN Comput Sci ; 1(6): 311, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33063057

RESUMO

Since the past decades, most of the nature inspired optimization algorithms (NIOA) have been developed and become admired due to their effectiveness for resolving a variety of complex problems of dissimilar domain. Firefly algorithm (FA) is well-known, yet efficient nature inspired swarm intelligence (SI) based metaheuristic algorithm. Since from its initiation, FA has become well-liked between the researchers due to its competence and turn out to be an interesting technique for the practitioners as well as researchers for solving the problems of numerous fields of research such as classifications, clustering, neural networks, biomedical engineering, healthcare as well as other research domain. Moreover, there is an outstanding track record of FA in solving biomedical engineering (BME) and healthcare (HC) problems. Abundant complexities have been worked out with the assist of FA and its variants. By taking these particulars into concern, in this paper, a first ever in-depth analysis has been addressed on the variants, importance, applications as well as enhancements of FA in BME as well as HC. The major intention behind this investigative work is to motivate the researchers to improve and innovate new solutions for multifaceted problems of healthcare and biomedical engineering using FA.

15.
Chaos Solitons Fractals ; 138: 109947, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32836916

RESUMO

The World Health Organization (WHO) declared novel coronavirus 2019 (COVID-19), an infectious epidemic caused by SARS-CoV-2, as Pandemic in March 2020. It has affected more than 40 million people in 216 countries. Almost in all the affected countries, the number of infected and deceased patients has been enhancing at a distressing rate. As the early prediction can reduce the spread of the virus, it is highly desirable to have intelligent prediction and diagnosis tools. The inculcation of efficient forecasting and prediction models may assist the government in implementing better design strategies to prevent the spread of virus. In this paper, a state-of-the-art analysis of the ongoing machine learning (ML) and deep learning (DL) methods in the diagnosis and prediction of COVID-19 has been done. Moreover, a comparative analysis on the impact of machine learning and other competitive approaches like mathematical and statistical models on COVID-19 problem has been conducted. In this study, some factors such as type of methods(machine learning, deep learning, statistical & mathematical) and the impact of COVID research on the nature of data used for the forecasting and prediction of pandemic using computing approaches has been presented. Finally some important research directions for further research on COVID-19 are highlighted which may facilitate the researchers and technocrats to develop competent intelligent models for the prediction and forecasting of COVID-19 real time data.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA