RESUMO
Herein, we report the efficient photocatalytic degradation of the diclofenac drug using the Zn1-x-yPrxAlyO photocatalyst [x, y] = (0.00, 0.00), (0.03, 0.01), (0.03,0.03) under UV light irradiation. The analysis of the structure reveals that the Pr3+ and Al3+ cations insertion into the ZnO lattice leads to a decrease in the lattice constant (a and c), Zn-O bond length, strain lattice, and crystallite size. These alterations are linked to the high degree of atomic disorder triggered by the dopants, which produce stress and strain in the ZnO structure. The Raman measurements confirmed the structural phase and showed changes in the position and intensity of the E2High mode, associated with oxygen vibrations and material crystallinity. The presence of the dopants reduces the concentration of VZn and VO++ type defects while increasing the levels of VO, VO+, and Oi defects, as observed from the fitting of the Photoluminescence spectra. Furthermore, it was noted that de Pr3+ and Al3+ cations insertion into ZnO increases the optical band gap, which is associated with the Moss-Burstein effect. The micrograph images show that dopants transform the morphology from quasi-spherical particles to irregular cluster structures. The textural analysis indicated that an increase in the concentration of Al3+ in the ZnO lattice led to a higher surface area, likely enhancing photocatalytic activity. The sample containing 3% Pr3+ and 3% Al3+ showed the highest photocatalytic activity and degraded up to 71.42% of diclofenac. In addition, experiments with scavengers revealed that hydroxyl radicals are the main species involved in the drug's photodegradation mechanism. Finally, the Zn1-x-yPrxAlyO compound is highly recyclable and stable.
Assuntos
Diclofenaco , Raios Ultravioleta , Diclofenaco/química , Catálise , Óxido de Zinco/química , Zinco/química , FotóliseRESUMO
This work adopted a green synthesis route using cashew tree gum as a mediating agent to obtain Ni-doped ZnO nanoparticles through the sol-gel method. Structural analysis confirmed the formation of the hexagonal wurtzite phase and distortions in the crystal lattice due to the inclusion of Ni cations, which increased the average crystallite size from 61.9 nm to 81.6 nm. These distortions resulted in the growth of point defects in the structure, which influenced the samples' optical properties, causing slight reductions in the band gaps and significant increases in the Urbach energy. The fitting of the photoluminescence spectra confirmed an increase in the concentration of zinc vacancy defects (VZn) and monovacancies (Vo) as Zn cations were replaced by Ni cations in the ZnO structure. The percentage of VZn defects for the pure compound was 11%, increasing to 40% and 47% for the samples doped with 1% and 3% of Ni cations, respectively. In contrast, the highest percentage of VO defects is recorded for the material with the lowest Ni ions concentration, comprising about 60%. The influence of dopant concentration was also reflected in the photocatalytic performance. Among the samples tested, the Zn0.99Ni0.01O compound presented the best result in MB degradation, reaching an efficiency of 98.4%. Thus, the recovered material underwent reuse tests, revealing an efficiency of 98.2% in dye degradation, confirming the stability of the photocatalyst. Furthermore, the use of different inhibitors indicated that â¢OH radicals are the main ones involved in removing the pollutant. This work is valuable because it presents an ecological synthesis using cashew gum, a natural polysaccharide that has been little explored in the literature.
RESUMO
In this work, a ZnO hemisphere-like structure co-doped with Er and Cr was obtained by the co-precipitation method for photocatalytic applications. The dopant's effect on the ZnO lattice was investigated using X-ray diffraction, Raman, photoluminescence, UV-Vis and scanning electron microscopy/energy dispersive spectroscopy techniques. The photocatalytic response of the material was analyzed using methylene blue (MB) as the model pollutant under UV irradiation. The wurtzite structure of the Zn0.94Er0.02Cr0.04O compound presented distortions in the lattice due to the difference between the ionic radii of the Cr3+, Er3+ and Zn2+ cations. Oxygen vacancy defects were predominant, and the energy competition of the dopants interfered in the band gap energy of the material. In the photocatalytic test, the MB degradation rate was 42.3%. However, using optimized H2O2 concentration, the dye removal capacity reached 90.1%. Inhibitor tests showed that â¢OH radicals were the main species involved in MB degradation that occurred without the formation of toxic intermediates, as demonstrated in the ecotoxicity assays in Artemia salina. In short, the co-doping with Er and Cr proved to be an efficient strategy to obtain new materials for environmental remediation.