Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 209
Filtrar
1.
Antibodies (Basel) ; 13(2)2024 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-38651411

RESUMO

The activation of CD40-mediated signaling in antigen-presenting cells is a promising therapeutic strategy to promote immune responses against tumors. Most agonistic anti-CD40 antibodies currently in development require the Fcγ-receptor (FcγR)-mediated crosslinking of CD40 molecules for a meaningful activation of CD40 signaling but have limitations due to dose-limiting toxicities. Here we describe the identification of CD40 antibodies which strongly stimulate antigen-presenting cells in an entirely FcγR-independent manner. These Fc-silenced anti-CD40 antibodies induce an efficient upregulation of costimulatory receptors and cytokine release by dendritic cells. Finally, the most active identified anti-CD40 antibody shows activity in humanized mice. More importantly, there are no signs of obvious toxicities. These studies thus demonstrate the potent activation of antigen-presenting cells with anti-CD40 antibodies lacking FcγR-binding activity and open the possibility for an efficacious and safe combination therapy for cancer patients.

2.
Cell Rep ; 43(3): 113949, 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38492222

RESUMO

Over the last decade, multiple studies have investigated the heterogeneity of murine conventional dendritic cells type 2 (cDC2s). However, their phenotypic similarity with monocytes and macrophages renders their clear identification challenging. By creating a protein atlas utilizing multiparameter flow cytometry, we show that ESAM+ cDC2s are a specialized feature of the spleen strongly differing in their proteome from other cDC2s. In contrast, all other tissues are populated by Clec12A+ cDC2s or Clec12A- cDC2s (high or low for Fcγ receptors, C-type lectin receptors, and CD11b, respectively), rendering Clec12A+ cDC2s classical sentinels. Further, expression analysis of CD301b, Clec12A, and FcγRIIB/III provides a conserved definition of cDC2 heterogeneity, including the discovery of putative FcγRIIB/III+ DC3s across tissues. Finally, our data reveal that cell identity (ontogeny) dictates the proteome that is further fine-tuned by the tissue environment on macrophages and dendritic cells (DCs), while monocytes and plasmacytoid DCs (pDCs) display subset intrinsic default settings.


Assuntos
Monócitos , Proteoma , Animais , Camundongos , Proteoma/metabolismo , Citometria de Fluxo , Células Dendríticas/metabolismo
3.
Cell Rep ; 43(2): 113757, 2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38354088

RESUMO

Understanding the mechanisms underlying cytotoxic immunoglobulin G (IgG) activity is critical for improving therapeutic antibody activity and inhibiting autoantibody-mediated tissue pathology. While prior research highlights the important role of the mononuclear phagocytic system for removing opsonized target cells, it remains unclear which monocyte or macrophage subsets stemming from fetal or post-natal bone-marrow (BM)-associated definitive hematopoiesis are involved in target cell depletion. By using a titrated irradiation approach as well as Kupffer-cell-specific deletion of activated Fcγ receptor signaling, we establish conditions under which the contribution of BM-derived monocytes versus yolk-sac-derived liver-resident macrophages to cytotoxic IgG activity can be studied. Our results demonstrate that liver-resident macrophages originating from either fetal or adult hematopoiesis play a central role in IgG-mediated depletion of opsonized target cells from the peripheral blood under steady-state conditions, highlighting the impact of the tissue niche and not macrophage origin for cytotoxic antibody activity.


Assuntos
Medula Óssea , Imunoglobulina G , Adulto , Humanos , Feto , Macrófagos , Monócitos
4.
Oncoimmunology ; 13(1): 2296713, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38170155

RESUMO

Breast cancer is the most common malignancy in women worldwide and a highly heterogeneous disease. Four different subtypes are described that differ in the expression of hormone receptors as well as the growth factor receptor HER2. Treatment modalities and survival rate depend on the subtype of breast cancer. However, it is still not clear which patients benefit from immunotherapeutic approaches such as checkpoint blockade. Thus, we aimed to decipher the immune cell signature of the different breast cancer subtypes based on high-dimensional flow cytometry followed by unbiased approaches. Here, we show that the frequency of NK cells is reduced in Luminal A and B as well as triple negative breast cancer and that the phenotype of residual NK cells is changed toward regulatory CD11b-CD16- NK cells. Further, we found higher frequencies of PD-1+ CD4+ and CD8+ T cells in triple negative breast cancer. Moreover, while Luminal A-type breast cancer was enriched for CD14+ cDC2 (named type 3 DC (DC3)), CD14- cDC2 (named DC2) were more frequent in triple negative breast cancer. In contrast, HER2-enriched breast cancer did not show major alterations in the composition of the immune cell compartment in the tumor microenvironment. These findings suggest that patients with Luminal A- and B-type as well as triple negative breast cancer might benefit from immunotherapeutic approaches targeting NK cells.


Assuntos
Neoplasias de Mama Triplo Negativas , Humanos , Feminino , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Receptor ErbB-2/metabolismo , Linfócitos T CD8-Positivos , Citometria de Fluxo , Microambiente Tumoral
5.
Methods Mol Biol ; 2713: 377-388, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-37639137

RESUMO

Proximity ligation assays (PLA) enable the detection and characterization of protein interactions independent of protein abundance or genetic modifications. This technique exploits both antibody and DNA-binding features, providing high selectivity and sensitivity for protein recognition and visualization of single-protein molecules with high spatial accuracy. Here, we describe the general procedure for a direct PLA on splenic monocytes to analyze FcγRIIb homodimerization. However, this method can be applied to other cells and receptors of interest.


Assuntos
Monócitos , Receptores de IgG , Anticorpos , Edição de Genes , Baço
6.
Br J Haematol ; 203(1): 119-130, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37735543

RESUMO

Thrombopoietin receptor agonists (TPO-RAs) stimulate platelet production, which might restore immunological tolerance in primary immune thrombocytopenia (ITP). The iROM study investigated romiplostim's immunomodulatory effects. Thirteen patients (median age, 31 years) who previously received first-line treatment received romiplostim for 22 weeks, followed by monitoring until week 52. In addition to immunological data, secondary end-points included the sustained remission off-treatment (SROT) rate at 1 year, romiplostim dose, platelet count and bleedings. Scheduled discontinuation of romiplostim and SROT were achieved in six patients with newly diagnosed ITP, whereas the remaining seven patients relapsed. Romiplostim dose titration was lower and platelet count response was stronger in patients with SROT than in relapsed patients. In all patients, regulatory T lymphocyte (Treg) counts increased until study completion and the counts were higher in patients with SROT. Interleukin (IL)-4, IL-9 and IL-17F levels decreased significantly in all patients. FOXP3 (Treg), GATA3 (Th2) mRNA expression and transforming growth factor-ß levels increased in patients with SROT. Treatment with romiplostim modulates the immune system and possibly influences ITP prognosis. A rapid increase in platelet counts is likely important for inducing immune tolerance. Better outcomes might be achieved at an early stage of autoimmunity, but clinical studies are needed for confirmation.


Assuntos
Púrpura Trombocitopênica Idiopática , Humanos , Adulto , Púrpura Trombocitopênica Idiopática/tratamento farmacológico , Imunomodulação , Tolerância Imunológica , Proteínas Recombinantes de Fusão/farmacologia , Proteínas Recombinantes de Fusão/uso terapêutico
8.
Nat Immunol ; 24(8): 1244-1255, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37414906

RESUMO

Humoral immune responses are characterized by complex mixtures of polyclonal antibody species varying in their isotype, target epitope specificity and affinity. Posttranslational modifications occurring during antibody production in both the antibody variable and constant domain create further complexity and can modulate antigen specificity and antibody Fc-dependent effector functions, respectively. Finally, modifications of the antibody backbone after secretion may further impact antibody activity. An in-depth understanding of how these posttranslational modifications impact antibody function, especially in the context of individual antibody isotypes and subclasses, is only starting to emerge. Indeed, only a minute proportion of this natural variability in the humoral immune response is currently reflected in therapeutic antibody preparations. In this Review, we summarize recent insights into how IgG subclass and posttranslational modifications impact IgG activity and discuss how these insights may be used to optimize therapeutic antibody development.


Assuntos
Imunoglobulina G , Imunoterapia , Epitopos
10.
Cell Rep ; 42(7): 112734, 2023 07 25.
Artigo em Inglês | MEDLINE | ID: mdl-37421619

RESUMO

Immunoglobulin G (IgG) antibodies coordinate immune effector responses by interacting with effector cells via fragment crystallizable γ (Fcγ) receptors. The IgG Fc domain directs effector responses through subclass and glycosylation variation. Although each Fc variant has been extensively characterized in isolation, during immune responses, IgG is almost always produced in Fc mixtures. How this influences effector responses has not been examined. Here, we measure Fcγ receptor binding to mixed Fc immune complexes. Binding of these mixtures falls along a continuum between pure cases and quantitatively matches a mechanistic model, except for several low-affinity interactions mostly involving IgG2. We find that the binding model provides refined estimates of their affinities. Finally, we demonstrate that the model predicts effector cell-elicited platelet depletion in humanized mice. Contrary to previous views, IgG2 exhibits appreciable binding through avidity, though it is insufficient to induce effector responses. Overall, this work demonstrates a quantitative framework for modeling mixed IgG Fc-effector cell regulation.


Assuntos
Complexo Antígeno-Anticorpo , Receptores de IgG , Animais , Camundongos , Receptores de IgG/metabolismo , Complexo Antígeno-Anticorpo/metabolismo , Imunoglobulina G , Fragmentos Fc das Imunoglobulinas/química , Glicosilação , Receptores Fc/metabolismo
11.
Nat Commun ; 14(1): 4253, 2023 07 20.
Artigo em Inglês | MEDLINE | ID: mdl-37474523

RESUMO

Immune checkpoint blockade therapy is beneficial and even curative for some cancer patients. However, the majority don't respond to immune therapy. Across different tumor types, pre-existing T cell infiltrates predict response to checkpoint-based immunotherapy. Based on in vitro pharmacological studies, mouse models and analyses of human melanoma patients, we show that the cytokine GDF-15 impairs LFA-1/ß2-integrin-mediated adhesion of T cells to activated endothelial cells, which is a pre-requisite of T cell extravasation. In melanoma patients, GDF-15 serum levels strongly correlate with failure of PD-1-based immune checkpoint blockade therapy. Neutralization of GDF-15 improves both T cell trafficking and therapy efficiency in murine tumor models. Thus GDF-15, beside its known role in cancer-related anorexia and cachexia, emerges as a regulator of T cell extravasation into the tumor microenvironment, which provides an even stronger rationale for therapeutic anti-GDF-15 antibody development.


Assuntos
Melanoma , Linfócitos T , Humanos , Camundongos , Animais , Linfócitos T/patologia , Antígeno-1 Associado à Função Linfocitária , Células Endoteliais/patologia , Inibidores de Checkpoint Imunológico/farmacologia , Inibidores de Checkpoint Imunológico/uso terapêutico , Melanoma/patologia , Imunoterapia , Microambiente Tumoral
13.
Cell Mol Life Sci ; 80(7): 189, 2023 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-37353664

RESUMO

Targeting CD40 by agonistic antibodies used as vaccine adjuvants or for cancer immunotherapy is a strategy to stimulate immune responses. The majority of studied agonistic anti-human CD40 antibodies require crosslinking of their Fc region to inhibitory FcγRIIb to induce immune stimulation although this has been associated with toxicity in previous studies. Here we introduce an agonistic anti-human CD40 monoclonal IgG1 antibody (MAB273) unique in its specificity to the CD40L binding site of CD40 but devoid of Fcγ-receptor binding. We demonstrate rapid binding of MAB273 to B cells and dendritic cells resulting in activation in vitro on human cells and in vivo in rhesus macaques. Dissemination of fluorescently labeled MAB273 after subcutaneous administration was found predominantly at the site of injection and specific draining lymph nodes. Phenotypic cell differentiation and upregulation of genes associated with immune activation were found in the targeted tissues. Antigen-specific T cell responses were enhanced by MAB273 when given in a prime-boost regimen and for boosting low preexisting responses. MAB273 may therefore be a promising immunostimulatory adjuvant that warrants future testing for therapeutic and prophylactic vaccination strategies.


Assuntos
Antineoplásicos , Receptores de IgG , Animais , Receptores de IgG/genética , Macaca mulatta/metabolismo , Antígenos CD40 , Ligante de CD40 , Imunoglobulina G
14.
bioRxiv ; 2023 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-37214871

RESUMO

The inhibitory Fcγ receptor FcγRIIb is involved in immune regulation and is known to localize to specific regions of the plasma membrane called lipid rafts. Previous studies suggested a link between the altered lateral receptor localization within the plasma membrane and the functional impairment of the FcγRIIb-I232T variant that is associated with systemic lupus erythematosus. Here, we conducted microsecond all-atom molecular dynamics simulations and IgG binding assays to investigate the lipid nano-environment of FcγRIIb monomers and of the FcγRIIb-I232T mutant within a plasma membrane model, the orientation of the FcγRIIb ectodomain, and its accessibility to IgG ligands. In contrast to previously proposed models, our simulations indicated that FcγRIIb does not favor a cholesterol- or a sphingolipid-enriched lipid environment. Interestingly, cholesterol was depleted for all studied FcγRIIb variants within a 2-3 nm environment of the receptor, counteracting the usage of raft terminology for models on receptor functionality. Instead, the receptor interacts with lipids that have poly-unsaturated fatty acyl chains and with (poly-) anionic lipids within the cytosolic membrane leaflet. We also found that FcγRIIb monomers adopt a conformation that is not suitable for binding to its IgG ligand, consistent with a lack of detectable binding of monomeric IgG in experiments on primary immune cells. However, our results propose that multivalent IgG complexes might stabilize FcγRIIb in a binding-competent conformation. We suggest differences in receptor complex formation within the membrane as a plausible cause of the altered membrane localization or clustering and the altered suppressive function of the FcγRIIb-I232T variant.

15.
J Exp Med ; 220(6)2023 06 05.
Artigo em Inglês | MEDLINE | ID: mdl-36976180

RESUMO

Clodronate liposomes (Clo-Lip) have been widely used to deplete mononuclear phagocytes (MoPh) to study the function of these cells in vivo. Here, we revisited the effects of Clo-Lip together with genetic models of MoPh deficiency, revealing that Clo-Lip exert their anti-inflammatory effects independent of MoPh. Notably, not only MoPh but also polymorphonuclear neutrophils (PMN) ingested Clo-Lip in vivo, which resulted in their functional arrest. Adoptive transfer of PMN, but not of MoPh, reversed the anti-inflammatory effects of Clo-Lip treatment, indicating that stunning of PMN rather than depletion of MoPh accounts for the anti-inflammatory effects of Clo-Lip in vivo. Our data highlight the need for a critical revision of the current literature on the role of MoPh in inflammation.


Assuntos
Ácido Clodrônico , Lipossomos , Humanos , Ácido Clodrônico/farmacologia , Neutrófilos , Inflamação , Anti-Inflamatórios/farmacologia
16.
Nat Rev Immunol ; 23(9): 563-579, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-36922638

RESUMO

Macrophages are innate immune cells that form a 3D network in all our tissues, where they phagocytose dying cells and cell debris, immune complexes, bacteria and other waste products. Simultaneously, they produce growth factors and signalling molecules - such activities not only promote host protection in response to invading microorganisms but are also crucial for organ development and homeostasis. There is mounting evidence of macrophages orchestrating fundamental physiological processes, such as blood vessel formation, adipogenesis, metabolism and central and peripheral neuronal function. In parallel, novel methodologies have led to the characterization of tissue-specific macrophages, with distinct subpopulations of these cells showing different developmental trajectories, transcriptional programmes and life cycles. Here, we summarize our growing knowledge of macrophage diversity and how macrophage subsets orchestrate tissue development and function. We further interrelate macrophage ontogeny with their core functions across tissues, that is, the signalling events within the macrophage niche that may control organ functionality during development, homeostasis and ageing. Finally, we highlight the open questions that will need to be addressed by future studies to better understand the tissue-specific functions of distinct macrophage subsets.


Assuntos
Macrófagos , Fagocitose , Humanos , Transdução de Sinais , Biologia
17.
Immunity ; 56(5): 1046-1063.e7, 2023 05 09.
Artigo em Inglês | MEDLINE | ID: mdl-36948194

RESUMO

Immunoglobulin G (IgG) antibodies are major drivers of inflammation during infectious and autoimmune diseases. In pooled serum IgG (IVIg), however, antibodies have a potent immunomodulatory and anti-inflammatory activity, but how this is mediated is unclear. We studied IgG-dependent initiation of resolution of inflammation in cytokine- and autoantibody-driven models of rheumatoid arthritis and found IVIg sialylation inhibited joint inflammation, whereas inhibition of osteoclastogenesis was sialic acid independent. Instead, IVIg-dependent inhibition of osteoclastogenesis was abrogated in mice lacking receptors Dectin-1 or FcγRIIb. Atomistic molecular dynamics simulations and super-resolution microscopy revealed that Dectin-1 promoted FcγRIIb membrane conformations that allowed productive IgG binding and enhanced interactions with mouse and human IgG subclasses. IVIg reprogrammed monocytes via FcγRIIb-dependent signaling that required Dectin-1. Our data identify a pathogen-independent function of Dectin-1 as a co-inhibitory checkpoint for IgG-dependent inhibition of mouse and human osteoclastogenesis. These findings may have implications for therapeutic targeting of autoantibody and cytokine-driven inflammation.


Assuntos
Artrite Reumatoide , Imunoglobulinas Intravenosas , Lectinas Tipo C , Receptores de IgG , Animais , Humanos , Camundongos , Artrite Reumatoide/tratamento farmacológico , Artrite Reumatoide/imunologia , Membrana Celular/metabolismo , Imunoglobulinas Intravenosas/administração & dosagem , Lectinas Tipo C/metabolismo , Camundongos Endogâmicos C57BL , Osteoclastos/metabolismo , Processamento de Proteína Pós-Traducional , Receptores de IgG/metabolismo
18.
Proc Natl Acad Sci U S A ; 120(13): e2300648120, 2023 03 28.
Artigo em Inglês | MEDLINE | ID: mdl-36943883

RESUMO

Autoantibodies against myelin oligodendrocyte glycoprotein (MOG) have recently been established to define a new disease entity, MOG-antibody-associated disease (MOGAD), which is clinically overlapping with multiple sclerosis. MOG-specific antibodies (Abs) from patients are pathogenic, but the precise effector mechanisms are currently still unknown and no therapy is approved for MOGAD. Here, we determined the contributions of complement and Fc-receptor (FcR)-mediated effects in the pathogenicity of MOG-Abs. Starting from a recombinant anti-MOG (mAb) with human IgG1 Fc, we established MOG-specific mutant mAbs with differential FcR and C1q binding. We then applied selected mutants of this MOG-mAb in two animal models of experimental autoimmune encephalomyelitis. First, we found MOG-mAb-induced demyelination was mediated by both complement and FcRs about equally. Second, we found that MOG-Abs enhanced activation of cognate MOG-specific T cells in the central nervous system (CNS), which was dependent on FcR-, but not C1q-binding. The identification of complement-dependent and -independent pathomechanisms of MOG-Abs has implications for therapeutic strategies in MOGAD.


Assuntos
Encefalomielite Autoimune Experimental , Esclerose Múltipla , Animais , Humanos , Glicoproteína Mielina-Oligodendrócito , Autoanticorpos , Receptores Fc , Proteínas do Sistema Complemento , Anticorpos Monoclonais
19.
bioRxiv ; 2023 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-36824734

RESUMO

Immunoglobulin (Ig)G antibodies coordinate immune effector responses by selectively binding to target antigens and then interacting with various effector cells via the Fcγ receptors. The Fc domain of IgG can promote or inhibit distinct effector responses across several different immune cell types through variation based on subclass and Fc domain glycosylation. Extensive characterization of these interactions has revealed how the inclusion of certain Fc subclasses or glycans results in distinct immune responses. During an immune response, however, IgG is produced with mixtures of Fc domain properties, so antigen-IgG immune complexes are likely to almost always be comprised of a combination of Fc forms. Whether and how this mixed composition influences immune effector responses has not been examined. Here, we measured Fcγ receptor binding to immune complexes of mixed Fc domain composition. We found that the binding properties of the mixed-composition immune complexes fell along a continuum between those of the corresponding pure cases. Binding quantitatively matched a mechanistic binding model, except for several low-affinity interactions mostly involving IgG2. We found that the affinities of these interactions are different than previously reported, and that the binding model could be used to provide refined estimates of these affinities. Finally, we demonstrated that the binding model can predict effector-cell elicited platelet depletion in humanized mice, with the model inferring the relevant effector cell populations. Contrary to the previous view in which IgG2 poorly engages with effector populations, we observe appreciable binding through avidity, but insufficient amounts to observe immune effector responses. Overall, this work demonstrates a quantitative framework for reasoning about effector response regulation arising from IgG of mixed Fc composition. Summary points: The binding behavior of mixed Fc immune complexes is a blend of the binding properties for each constituent IgG species.An equilibrium, multivalent binding model can be generalized to incorporate immune complexes of mixed Fc composition.Particularly for low-affinity IgG-Fcγ receptor interactions, immune complexes provide better estimates of affinities.The FcγR binding model predicts effector-elicited cell clearance in humanized mice.

20.
Blood ; 140(15): 1663-1665, 2022 10 13.
Artigo em Inglês | MEDLINE | ID: mdl-36227751
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA