Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
Kidney360 ; 2024 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-38781016

RESUMO

BACKGROUND: We previously demonstrated that Empagliflozin (Empa), a sodium-glucose cotransporter-2 (SGLT2) inhibitor, reduces intrarenal lipid accumulation and slows kidney function decline in experimental Alport syndrome (AS). In this study, we aimed to evaluate the renal protective benefits of Linagliptin (Lina), a dipeptidyl peptidase-4 (DPP4) inhibitor in AS and compare it to Empa. METHODS: Metabolite distribution in kidney cortices was assessed using mass spectrometry imaging. We examined albuminuria and histological changes in kidneys from AS mice treated with Lina and/or Empa or vehicle. RESULTS: Several metabolites, including adrenic acid (AdA) and glucose, were increased in renal cortices of AS mice when compared to wildtype (WT) mice, while eicosapentaenoic acid (EPA) levels were decreased. In addition, a redistribution of AdA from the glomerular compartment in WT mice to the tubulointerstitial compartment in AS mice was observed. Both Lina and Empa treatments were found to reduce albuminuria, to extend the survival of AS mice for about 10 days, and to decrease glomerulosclerosis and tubulointerstitial fibrosis compared to WT mice. There were no significant differences with regard to the renal phenotype observed between Empa and Lina treated AS mice, and the combination of Lina and Empa was not superior to individual treatments. In vitro experiments revealed that DPP4 is expressed in podocytes and tubular cells derived from both AS and WT mice. Differently from what we have reported for Empa, Lina treatment was found to reduce glucose-driven respiration in AS tubular cells, but not in AS podocytes. CONCLUSIONS: Renal expression patterns and spatial distribution of several metabolites differ in AS compared to WT mice. While Lina and Empa treatments similarly partially slow the progression of kidney disease in AS, the metabolic mechanisms conferring the protective effect may be different.

2.
Am J Physiol Renal Physiol ; 326(6): F877-F893, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38601984

RESUMO

Autophagy is a protective mechanism through which cells degrade and recycle proteins and organelles to maintain cellular homeostasis and integrity. An accumulating body of evidence underscores the significant impact of dysregulated autophagy on podocyte injury in chronic kidney disease (CKD). In this review, we provide a comprehensive overview of the diverse types of autophagy and their regulation in cellular homeostasis, with a specific emphasis on podocytes. Furthermore, we discuss recent findings that focus on the functional role of different types of autophagy during podocyte injury in chronic kidney disease. The intricate interplay between different types of autophagy and podocyte health requires further research, which is critical for understanding the pathogenesis of CKD and developing targeted therapeutic interventions.


Assuntos
Autofagia , Podócitos , Insuficiência Renal Crônica , Podócitos/patologia , Podócitos/metabolismo , Autofagia/fisiologia , Humanos , Insuficiência Renal Crônica/patologia , Insuficiência Renal Crônica/metabolismo , Insuficiência Renal Crônica/fisiopatologia , Animais , Transdução de Sinais , Homeostase/fisiologia
3.
Pharmaceutics ; 15(5)2023 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-37242602

RESUMO

Diabetic kidney disease (DKD) is a serious complication of diabetes mellitus and a leading cause of end-stage renal disease. Abnormal lipid metabolism and intrarenal accumulation of lipids have been shown to be strongly correlated with the development and progression of diabetic kidney disease (DKD). Cholesterol, phospholipids, triglycerides, fatty acids, and sphingolipids are among the lipids that are altered in DKD, and their renal accumulation has been linked to the pathogenesis of the disease. In addition, NADPH oxidase-induced production of reactive oxygen species (ROS) plays a critical role in the development of DKD. Several types of lipids have been found to be tightly linked to NADPH oxidase-induced ROS production. This review aims to explore the interplay between lipids and NADPH oxidases in order to provide new insights into the pathogenesis of DKD and identify more effective targeted therapies for the disease.

4.
Pharmaceutics ; 15(3)2023 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-36986825

RESUMO

Diabetic kidney disease (DKD) is a serious complication of diabetes, affecting millions of people worldwide. Inflammation and oxidative stress are key contributors to the development and progression of DKD, making them potential targets for therapeutic interventions. Sodium-glucose cotransporter 2 inhibitors (SGLT2i) have emerged as a promising class of drugs, with evidence demonstrating that they can improve renal outcomes in people with diabetes. However, the exact mechanism by which SGLT2i exert their renoprotective effects is not yet fully understood. This study demonstrates that dapagliflozin treatment attenuates renal injury observed in type 2 diabetic mice. This is evidenced by the reduction in renal hypertrophy and proteinuria. Furthermore, dapagliflozin decreases tubulointerstitial fibrosis and glomerulosclerosis by mitigating the generation of reactive oxygen species and inflammation, which are activated through the production of CYP4A-induced 20-HETE. Our findings provide insights onto a novel mechanistic pathway by which SGLT2i exerts their renoprotective effects. Overall, and to our knowledge, the study provides critical insights into the pathophysiology of DKD and represents an important step towards improving outcomes for people with this devastating condition.

5.
J Adv Res ; 44: 109-117, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36725183

RESUMO

INTRODUCTION: The identification and validation of a non-invasive prognostic marker for early detection of diabetic kidney disease (DKD) can lead to substantial improvement in therapeutic decision-making. OBJECTIVES: The main objective of this study is to assess the potential role of the arachidonic acid (AA) metabolite 20-hydroxyeicosatetraenoic (20-HETE) in predicting the incidence and progression of DKD. METHODS: Healthy patients and patients with diabetes were recruited from the Hamad General Hospital in Qatar, and urinary 20-HETE levels were measured. Data analysis was done using the Statistical Package for Social Sciences (SPSS). RESULTS: Our results show that urinary 20-HETE-to-creatinine (20-HETE/Cr) ratios were significantly elevated in patients with DKD when compared to patients with diabetes who did not exhibit clinical signs of kidney injury (p < 0.001). This correlation was preserved in the multivariate linear regression accounting for age, diabetes, family history of kidney disease, hypertension, dyslipidemia, stroke and metabolic syndrome. Urinary 20-HETE/Cr ratios were also positively correlated with the severity of kidney injury as indicated by albuminuria levels (p < 0.001). A urinary 20-HETE/Cr ratio of 4.6 pmol/mg discriminated between the presence and absence of kidney disease with a sensitivity of 82.2 % and a specificity of 67.1%. More importantly, a 10-unit increase in urinary 20-HETE/Cr ratio was tied to a 10-fold increase in the risk of developing DKD, suggesting a 20-HETE prognostic efficiency. CONCLUSION: Taken together, our results suggest that urinary 20-HETE levels can potentially be used as non-invasive diagnostic and prognostic markers for DKD.


Assuntos
Diabetes Mellitus , Nefropatias Diabéticas , Humanos , Nefropatias Diabéticas/diagnóstico , Nefropatias Diabéticas/urina , Prognóstico , Estudos Prospectivos , Rim , Diabetes Mellitus/metabolismo
6.
Diabetes ; 72(7): 947-957, 2023 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-36662655

RESUMO

Diabetes is associated with decreased epoxyeicosatrienoic acid (EET) bioavailability and increased levels of glomerular vascular endothelial growth factor A (VEGF-A) expression. We examined whether a soluble epoxide hydrolase inhibitor protects against pathologic changes in diabetic kidney disease and whether the inhibition of the VEGF-A signaling pathway attenuates diabetes-induced glomerular injury. We also aimed to delineate the cross talk between cytochrome P450 2C (CYP2C)-derived EETs and VEGF-A. Streptozotocin-induced type 1 diabetic (T1D) rats were treated with 25 mg/L of 12-(3-adamantan-1-yl-ureido)-dodecanoic acid (AUDA) in drinking water for 6 weeks. In parallel experiments, T1D rats were treated with either SU5416 or humanized monoclonal anti-VEGF-A neutralizing antibody for 8 weeks. Following treatment, the rats were euthanized, and kidney cortices were isolated for further analysis. Treatment with AUDA attenuated the diabetes-induced decline in kidney function. Furthermore, treatment with AUDA decreased diabetes-associated oxidative stress and NADPH oxidase activity. Interestingly, the downregulation of CYP2C11-derived EET formation is found to be correlated with the activation of the VEGF-A signaling pathway. In fact, inhibiting VEGF-A using anti-VEGF or SU5416 markedly attenuated diabetes-induced glomerular injury through the inhibition of Nox4-induced reactive oxygen species production. These findings were replicated in vitro in rat and human podocytes cultured in a diabetic milieu. Taken together, our results indicate that hyperglycemia-induced glomerular injury is mediated by the downregulation of CYP2C11-derived EET formation, followed by the activation of VEGF-A signaling and upregulation of Nox4. To our knowledge, this is the first study to highlight VEGF-A as a mechanistic link between CYP2C11-derived EET production and Nox4. ARTICLE HIGHLIGHTS: Diabetes is associated with an alteration in cytochrome P450 2C11 (CYP2C11)-derived epoxyeicosatrienoic acid (EET) bioavailability. Decreased CYP2C11-derived EET bioavailability mediates hyperglycemia-induced glomerular injury. Decreased CYP2C11-derived EET bioavailability is associated with increased reactive oxygen species production, NADPH oxidase activity, and Nox4 expression in type 1 diabetes. Decreased CYP2C11-derived EET formation mediates hyperglycemia-induced glomerular injury through the activation of the vascular endothelial growth factor A (VEGF-A) signaling pathway. Inhibiting VEGF signaling using anti-VEGF or SU5416 attenuates type 1 diabetes-induced glomerular injury by decreasing NADPH oxidase activity and NOX4 expression.


Assuntos
Diabetes Mellitus Tipo 1 , Nefropatias Diabéticas , Hiperglicemia , Ratos , Animais , Humanos , Fator A de Crescimento do Endotélio Vascular , Espécies Reativas de Oxigênio/metabolismo , Sistema Enzimático do Citocromo P-450 , NADPH Oxidase 4/genética
7.
J Clin Invest ; 133(4)2023 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-36633903

RESUMO

Diabetic nephropathy (DN) is a polygenic disorder with few risk variants showing robust replication in large-scale genome-wide association studies. To understand the role of DNA methylation, it is important to have the prevailing genomic view to distinguish key sequence elements that influence gene expression. This is particularly challenging for DN because genome-wide methylation patterns are poorly defined. While methylation is known to alter gene expression, the importance of this causal relationship is obscured by array-based technologies since coverage outside promoter regions is low. To overcome these challenges, we performed methylation sequencing using leukocytes derived from participants of the Finnish Diabetic Nephropathy (FinnDiane) type 1 diabetes (T1D) study (n = 39) that was subsequently replicated in a larger validation cohort (n = 296). Gene body-related regions made up more than 60% of the methylation differences and emphasized the importance of methylation sequencing. We observed differentially methylated genes associated with DN in 3 independent T1D registries originating from Denmark (n = 445), Hong Kong (n = 107), and Thailand (n = 130). Reduced DNA methylation at CTCF and Pol2B sites was tightly connected with DN pathways that include insulin signaling, lipid metabolism, and fibrosis. To define the pathophysiological significance of these population findings, methylation indices were assessed in human renal cells such as podocytes and proximal convoluted tubule cells. The expression of core genes was associated with reduced methylation, elevated CTCF and Pol2B binding, and the activation of insulin-signaling phosphoproteins in hyperglycemic cells. These experimental observations also closely parallel methylation-mediated regulation in human macrophages and vascular endothelial cells.


Assuntos
Diabetes Mellitus Tipo 1 , Nefropatias Diabéticas , Humanos , Diabetes Mellitus Tipo 1/complicações , Diabetes Mellitus Tipo 1/genética , Nefropatias Diabéticas/genética , Nefropatias Diabéticas/metabolismo , Estudo de Associação Genômica Ampla , Células Endoteliais/metabolismo , Metilação de DNA , Insulina/metabolismo
8.
Biomedicines ; 9(10)2021 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-34680477

RESUMO

Diabetic kidney disease (DKD), a serious diabetic complication, results in podocyte loss and proteinuria through NADPH oxidases (NOX)-mediated ROS production. DUOX1 and 2 are NOX enzymes that require calcium for their activation which enters renal cells through the pivotal TRPC channels. Hypoglycemic drugs such as liraglutide can interfere with this deleterious mechanism imparting reno-protection. Herein, we aim to investigate the reno-protective effect of GLP1 receptor agonist (GLP1-RA), via its effect on TRPC6 and NADPH oxidases. To achieve our aim, control or STZ-induced T1DM Sprague-Dawley rats were used. Rats were treated with liraglutide, metformin, or their combination. Functional, histological, and molecular parameters of the kidneys were assessed. Our results show that treatment with liraglutide, metformin or their combination ameliorates DKD by rectifying renal function tests and protecting against fibrosis paralleled by restored mRNA levels of nephrin, DUOX1 and 2, and reduced ROS production. Treatment with liraglutide reduces TRPC6 expression, while metformin treatment shows no effect. Furthermore, TRPC6 was found to be directly interacting with nephrin, and indirectly interacting with DUOX1, DUOX2 and GLP1-R. Our findings suggest that treatment with liraglutide may prevent the progression of diabetic nephropathy by modulating the crosstalk between TRPC6 and NADPH oxidases.

9.
J Mol Endocrinol ; 65(4): R65-R76, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-33048064

RESUMO

NETosis, a novel form of neutrophil-related cell death, acts as a major regulator of diabetes and diabetes-associated complications. In this review, we show that the extrusion of neutrophil extracellular traps, termed NETs, plays an important role in the pathogenesis of type 1 diabetes mellitus (T1DM), type 2 diabetes mellitus (T2DM), and diabetes-induced complications. In T1DM, ß-cell death induces the sequestration of neutrophils in the pancreas and seems to be correlated with increased NETosis. In T2DM patients, products of NETs release are significantly elevated. Increased levels of dsDNA are correlated with the presence of cardiovascular disease and diabetic kidney disease, further supporting the role of NETosis in the pathogenesis of other diabetes-induced complications such as impaired wound healing and diabetic retinopathy. NETosis is induced by high glucose through incompletely understood mechanisms, but it also appears to be elevated in patients with diabetes who have tightly controlled glucose levels. We hypothesize that hyperglycemia worsens the already elevated baseline of NETosis in diabetic patients to further increase its detrimental effects.


Assuntos
Complicações do Diabetes/etiologia , Complicações do Diabetes/metabolismo , Diabetes Mellitus/etiologia , Diabetes Mellitus/metabolismo , Armadilhas Extracelulares/imunologia , Armadilhas Extracelulares/metabolismo , Neutrófilos/imunologia , Neutrófilos/metabolismo , Animais , Biomarcadores , Suscetibilidade a Doenças , Armadilhas Extracelulares/genética , Humanos , NADPH Oxidases/genética , NADPH Oxidases/metabolismo , Neutrófilos/patologia
10.
Rev Endocr Metab Disord ; 21(4): 451-463, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32743793

RESUMO

In light of the most challenging public health crisis of modern history, COVID-19 mortality continues to rise at an alarming rate. Patients with co-morbidities such as hypertension, cardiovascular disease, and diabetes mellitus (DM) seem to be more prone to severe symptoms and appear to have a higher mortality rate. In this review, we elucidate suggested mechanisms underlying the increased susceptibility of patients with diabetes to infection with SARS-CoV-2 with a more severe COVID-19 disease. The worsened prognosis of COVID-19 patients with DM can be attributed to a facilitated viral uptake assisted by the host's receptor angiotensin-converting enzyme 2 (ACE2). It can also be associated with a higher basal level of pro-inflammatory cytokines present in patients with diabetes, which enables a hyperinflammatory "cytokine storm" in response to the virus. This review also suggests a link between elevated levels of IL-6 and AMPK/mTOR signaling pathway and their role in exacerbating diabetes-induced complications and insulin resistance. If further studied, these findings could help identify novel therapeutic intervention strategies for patients with diabetes comorbid with COVID-19.


Assuntos
Comorbidade , Infecções por Coronavirus/imunologia , Diabetes Mellitus/imunologia , Suscetibilidade a Doenças/imunologia , Pandemias , Pneumonia Viral/imunologia , COVID-19 , Infecções por Coronavirus/epidemiologia , Diabetes Mellitus/epidemiologia , Suscetibilidade a Doenças/epidemiologia , Humanos , Pneumonia Viral/epidemiologia
11.
Clin Sci (Lond) ; 134(4): 403-417, 2020 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-32095833

RESUMO

Diabetic kidney disease is one of the most serious complications of diabetes worldwide and is the leading cause of end-stage renal disease. While research has primarily focused on hyperglycemia as a key player in the pathophysiology of diabetic complications, recently, increasing evidence have underlined the role of adipose inflammation in modulating the development and/or progression of diabetic kidney disease. This review focuses on how adipose inflammation contribute to diabetic kidney disease. Furthermore, it discusses in detail the underlying mechanisms of adipose inflammation, including pro-inflammatory cytokines, oxidative stress, and AMPK/mTOR signaling pathway and critically describes their role in diabetic kidney disease. This in-depth understanding of adipose inflammation and its impact on diabetic kidney disease highlights the need for novel interventions in the treatment of diabetic complications.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Tecido Adiposo/patologia , Inflamação/patologia , Rim/lesões , NADPH Oxidase 4/metabolismo , Transdução de Sinais , Serina-Treonina Quinases TOR/metabolismo , Animais , Humanos
12.
Bioorg Med Chem Lett ; 29(13): 1580-1585, 2019 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-31078409

RESUMO

Diabetic nephropathy (DN) is one of the most serious complications of diabetes worldwide. It is depicted as the leading cause of end-stage renal disease. Oxidative stress plays a key role in hyperglycemia-induced DN. The preparation and characterization of novel mono-, di-, and trisubstituted-s-triazines endowed with uracil and/or thymine are described in this paper. The synthesis of the title compounds was realized through selective nucleophilic substitution reactions of cyanuric chloride with the corresponding hydrazide nucleobases. In this study, we assessed the effects of these derivatives on the progression of diabetic nephropathy. Our results show that trisubstituted-s-triazines endowed with acylhydrazides attenuate high-glucose induced glomerular mesangial cells proliferation and matrix protein accumulation in vitro. Notably, these derivatives also display anti-oxidative properties. This suggests that the novel trisubstituted-s-triazine derivatives provide renal protection through a reactive oxygen species (ROS)-dependent mechanism. Our data provide evidence that these derivatives may serve as potential therapeutic candidates in the treatment of DN.


Assuntos
Nefropatias Diabéticas/tratamento farmacológico , Pirimidinas/uso terapêutico , Proliferação de Células , Humanos , Células Mesangiais , Pirimidinas/farmacologia , Espécies Reativas de Oxigênio
13.
Asian Pac J Cancer Prev ; 17(4): 2329-36, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27221940

RESUMO

BACKGROUND: Despite the existence of established guidelines advocating the use and value of chemotherapy order templates, chemotherapy orders are still handwritten in many hospitals in Lebanon. This manuscript describes the implementation of standardized chemotherapy order templates (COT) in a Lebanese tertiary teaching hospital through multiple steps. INITIAL ASSESSMENT: An initial assessment was conducted through a retrospective appraisal of completeness of handwritten chemotherapy orders for 100 adult patients to serve as a baseline for the project and identify parameters that might afford improvement. CHOICE OF SOLUTION: Development of over 300 standardized pre-printed COTs based on the National Comprehensive Cancer Network templates and adapted to the practice culture and patient population. IMPLEMENTATION: The COTs were implemented, using Kotter's 8-step model for leading change, by engaging health care providers, and identifying and removing barriers. EVALUATION: Assessment of physicians' compliance with the new practice (122 orders assessed) was completed through two phases and allowed for the identification of areas of improvement. LESSONS LEARNED: Overall, COT implementation showed an average improvement in order completion from 49.5% (handwritten orders) to 77.6% (phase 1-COT) to 87.6% (phase 2-COT) reflecting an increase of 38.1% between baseline and phase 2 and demonstrating that chemotherapy orders completeness was improved by pre-printed COT. As many of the hospitals in Lebanon are moving towards standardized COTs and computerized physician order entry (CPOE) in the next few years, this study provides a prototype for the successful implementation of COT and demonstrates their role in promoting quality improvement of cancer care.


Assuntos
Prescrições de Medicamentos/normas , Quimioterapia Assistida por Computador/normas , Sistemas de Registro de Ordens Médicas/normas , Erros de Medicação/prevenção & controle , Neoplasias/tratamento farmacológico , Padrões de Prática Médica/normas , Melhoria de Qualidade , Adulto , Sistemas de Informação em Farmácia Clínica , Sistemas de Apoio a Decisões Clínicas , Escrita Manual , Humanos , Líbano , Erros de Medicação/estatística & dados numéricos , Prognóstico , Padrões de Referência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA