Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
1.
Thyroid ; 33(7): 835-848, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37171127

RESUMO

Background: Anaplastic thyroid carcinoma (ATC) is a rapidly fatal cancer with a median survival of a few months. Enhanced therapeutic options for durable management of ATC will rely on an understanding of genetics and the role of the tumor microenvironment. The prognosis for patients with ATC has not improved despite more detailed scrutiny of underlying tumor genetics. Pericytes in the microenvironment play a key evasive role for thyroid carcinoma (TC) cells. Lenvatinib improves outcomes in patients with radioiodine-refractory well-differentiated TC. In addition to the unclear role of pericytes in ATC, the effect and mechanism of lenvatinib efficacy on ATC have not been sufficiently elucidated. Design: We assessed pericyte enrichment in ATC. We determined the effect of lenvatinib on ATC cell growth cocultured with pericytes and in a xenograft mouse model from human BRAFWT/V600E-ATC-derived cells coimplanted with pericytes. Results: ATC samples were significantly enriched in pericytes compared with normal thyroid samples. BRAFWT/V600E-ATC-derived cells were resistant to lenvatinib treatment shown by a lack of suppression of MAPK and Akt pathways. Moreover, lenvatinib increased CD47 protein (thrombospondin-1 [TSP-1] receptor) levels over time vs. vehicle. TSP-1 levels were downregulated upon lenvatinib at late vs. early time points. Critically, ATC cells, when cocultured with pericytes, showed increased sensitivity to this therapy and ultimately decreased number of cells. The coimplantation in vivo of ATC cells with pericytes increased ATC growth and did not downregulate TSP-1 in the microenvironment in vivo. Conclusions and Implications: Pericytes are enriched in ATC samples. Lenvatinib showed inhibitory effects on BRAFWT/V600E-ATC cells in the presence of pericytes. The presence of pericytes could be crucial for effective lenvatinib treatment in patients with ATC. Degree of pericyte abundance may be an attractive prognostic marker in assessing pharmacotherapeutic options. Effective durable management of ATC will rely on an understanding not only of genetics but also on the role of the tumor microenvironment.


Assuntos
Carcinoma Anaplásico da Tireoide , Neoplasias da Glândula Tireoide , Humanos , Animais , Camundongos , Carcinoma Anaplásico da Tireoide/patologia , Pericitos/metabolismo , Pericitos/patologia , Trombospondina 1/uso terapêutico , Microambiente Tumoral , Proteínas Proto-Oncogênicas B-raf , Radioisótopos do Iodo/uso terapêutico , Neoplasias da Glândula Tireoide/tratamento farmacológico , Neoplasias da Glândula Tireoide/genética , Neoplasias da Glândula Tireoide/metabolismo , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico , Modelos Animais de Doenças
2.
Thyroid ; 32(12): 1580-1585, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36150036

RESUMO

Papillary thyroid carcinoma (PTC) is the most common type of thyroid cancer, usually with an indolent course. ALK fusions are rare in PTC but may give rise to a more aggressive behavior. We report a novel ALK fusion, CCDC149-ALK, not previously described in PTC, detected by next-generation sequencing in a 30-year-old woman with progressive widely metastatic radioiodine-refractory (RAIR) disease to lung, muscle, and brain. The patient was started on alectinib, a second-generation anaplastic lymphoma kinase (ALK) inhibitor. Within eight weeks, her palpable disease had completely regressed, and the serum thyroglobulin decreased dramatically. Restaging imaging demonstrated an objective partial response. Our case highlights the role of ALK fusions in thyroid cancer and highlights its clinical significance in PTC. We recommend deep mutational sequencing in BRAFV600E-negative RAIR PTC to identify targetable genetic alterations, including gene fusions, that may result in dramatic therapeutic benefits.


Assuntos
Carcinoma Papilar , Neoplasias da Glândula Tireoide , Humanos , Feminino , Adulto , Câncer Papilífero da Tireoide/genética , Câncer Papilífero da Tireoide/patologia , Carcinoma Papilar/genética , Carcinoma Papilar/patologia , Radioisótopos do Iodo , Quinase do Linfoma Anaplásico/genética , Neoplasias da Glândula Tireoide/tratamento farmacológico , Neoplasias da Glândula Tireoide/genética , Neoplasias da Glândula Tireoide/patologia , Mutação , Proteínas Proto-Oncogênicas B-raf/genética
3.
Adv Exp Med Biol ; 1329: 253-269, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34664244

RESUMO

Thyroid cancer is the most common endocrine malignancy, and aggressive radioactive iodine refractory thyroid carcinomas still lack an effective treatment. A deeper understanding of tumor heterogeneity and microenvironment will be critical to establishing new therapeutic approaches. One of the important influencing factors of tumor heterogeneity is the diversity of cells in the tumor microenvironment. Among these are pericytes, which play an important role in blood vessel stability and angiogenesis, as well as tumor growth and metastasis. Pericytes also have stem cell-like properties and are a heterogeneous cell population, and their lineage, which has been challenging to define, may impact tumor resistance at different tumor stages. Pericytes are also important stroma cell types in the angiogenic microenvironment which express tyrosine-kinase (TK) pathways (e.g., PDGFR-ß). Although TK inhibitors (TKI) and BRAFV600E inhibitors are currently used in the clinic for thyroid cancer, their efficacy is not durable and drug resistance often develops. Characterizing the range of distinct pericyte populations and distinguishing them from other perivascular cell types may enable the identification of their specific functions in the thyroid carcinoma vasculature. This remains an essential step in developing new therapeutic strategies. Also, assessing whether thyroid tumors hold immature and/or mature vasculature with pericyte populations coverage may be key to predicting tumor response to either targeted or anti-angiogenesis therapies. It is also critical to apply different markers in order to identify pericyte populations and characterize their cell lineage. This chapter provides an overview of pericyte ontogenesis and the lineages of diverse cell populations. We also discuss the role(s) and targeting of pericytes in thyroid carcinoma, as well as their potential impact on precision targeted therapies and drug resistance.


Assuntos
Pericitos , Neoplasias da Glândula Tireoide , Humanos , Radioisótopos do Iodo , Neovascularização Patológica/tratamento farmacológico , Neovascularização Patológica/genética , Neoplasias da Glândula Tireoide/tratamento farmacológico , Neoplasias da Glândula Tireoide/genética , Microambiente Tumoral
4.
J Clin Endocrinol Metab ; 106(12): 3569-3590, 2021 11 19.
Artigo em Inglês | MEDLINE | ID: mdl-34302727

RESUMO

CONTEXT: Pericyte populations abundantly express tyrosine kinases (eg, platelet-derived growth factor receptor-ß [PDGFR-ß]) and impact therapeutic response. Lenvatinib is a clinically available tyrosine kinase inhibitor that also targets PDGFR-ß. Duration of therapeutic response was shorter in patients with greater disease burden and metastasis. Patients may develop drug resistance and tumor progression. OBJECTIVES: Develop a gene signature of pericyte abundance to assess with tumor aggressiveness and determine both the response of thyroid-derived pericytes to lenvatinib and their synergies with thyroid carcinoma-derived cells. DESIGN: Using a new gene signature, we estimated the relative abundance of pericytes in papillary thyroid carcinoma (PTC) and normal thyroid (NT) TCGA samples. We also cocultured CD90+;PAX8- thyroid-derived pericytes and BRAFWT/V600E-PTC-derived cells to determine effects of coculture on paracrine communications and lenvatinib response. RESULTS: Pericyte abundance is significantly higher in BRAFV600E-PTC with hTERT mutations and copy number alterations compared with NT or BRAFWT-PTC samples, even when data are corrected for clinical-pathologic confounders. We have identified upregulated pathways important for tumor survival, immunomodulation, RNA transcription, cell-cycle regulation, and cholesterol metabolism. Pericyte growth is significantly increased by platelet-derived growth factor-BB, which activates phospho(p)-PDGFR-ß, pERK1/2, and pAKT. Lenvatinib strongly inhibits pericyte viability by down-regulating MAPK, pAKT, and p-p70S6-kinase downstream PDGFR-ß. Critically, lenvatinib significantly induces higher BRAFWT/V600E-PTC cell death when cocultured with pericytes, as a result of pericyte targeting via PDGFR-ß. CONCLUSIONS: This is the first thyroid-specific model of lenvatinib therapeutic efficacy against pericyte viability, which disadvantages BRAFWT/V600E-PTC growth. Assessing pericyte abundance in patients with PTC could be essential to selection rationales for appropriate targeted therapy with lenvatinib.


Assuntos
Antineoplásicos/farmacologia , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Pericitos/efeitos dos fármacos , Compostos de Fenilureia/farmacologia , Quinolinas/farmacologia , Receptor beta de Fator de Crescimento Derivado de Plaquetas/antagonistas & inibidores , Câncer Papilífero da Tireoide/tratamento farmacológico , Neoplasias da Glândula Tireoide/tratamento farmacológico , Humanos , Mutação , Pericitos/metabolismo , Pericitos/patologia , Prognóstico , Proteínas Proto-Oncogênicas B-raf/genética , Câncer Papilífero da Tireoide/genética , Câncer Papilífero da Tireoide/metabolismo , Câncer Papilífero da Tireoide/patologia , Neoplasias da Glândula Tireoide/genética , Neoplasias da Glândula Tireoide/metabolismo , Neoplasias da Glândula Tireoide/patologia
5.
Molecules ; 26(10)2021 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-34069428

RESUMO

Thyroid cancer (TC) is the most common endocrine malignancy. Most TCs have a favorable prognosis, whereas anaplastic thyroid carcinoma (ATC) is a lethal form of cancer. Different genetic and epigenetic alterations have been identified in aggressive forms of TC such as ATC. Non-coding RNAs (ncRNAs) represent functional regulatory molecules that control chromatin reprogramming, including transcriptional and post-transcriptional mechanisms. Intriguingly, they also play an important role as coordinators of complex gene regulatory networks (GRNs) in cancer. GRN analysis can model molecular regulation in different species. Neural networks are robust computing systems for learning and modeling the dynamics or dependencies between genes, and are used for the reconstruction of large data sets. Canonical network motifs are coordinated by ncRNAs through gene production from each transcript as well as through the generation of a single transcript that gives rise to multiple functional products by post-transcriptional modifications. In non-canonical network motifs, ncRNAs interact through binding to proteins and/or protein complexes and regulate their functions. This article overviews the potential role of ncRNAs GRNs in TC. It also suggests prospective applications of deep neural network analysis to predict ncRNA molecular language for early detection and to determine the prognosis of TC. Validation of these analyses may help in the design of more effective and precise targeted therapies against aggressive TC.


Assuntos
Redes Neurais de Computação , RNA não Traduzido/fisiologia , Neoplasias da Glândula Tireoide/patologia , Humanos , Metástase Neoplásica/genética
6.
Thyroid ; 31(9): 1335-1358, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-33107403

RESUMO

Background: BRAFV600E acts as an ATP-dependent cytosolic kinase. BRAFV600E inhibitors are widely available, but resistance to them is widely reported in the clinic. Lipid metabolism (fatty acids) is fundamental for energy and to control cell stress. Whether and how BRAFV600E impacts lipid metabolism regulation in papillary thyroid carcinoma (PTC) is still unknown. Acetyl-CoA carboxylase (ACC) is a rate-limiting enzyme for de novo lipid synthesis and inhibition of fatty acid oxidation (FAO). ACC1 and ACC2 genes encode distinct isoforms of ACC. The aim of our study was to determine the relationship between BRAFV600E and ACC in PTC. Methods: We performed RNA-seq and DNA copy number analyses in PTC and normal thyroid (NT) in The Cancer Genome Atlas samples. Validations were performed by using assays on PTC-derived cell lines of differing BRAF status and a xenograft mouse model derived from a heterozygous BRAFWT/V600E PTC-derived cell line with knockdown (sh) of ACC1 or ACC2. Results:ACC2 mRNA expression was significantly downregulated in BRAFV600E-PTC vs. BRAFWT-PTC or NT clinical samples. ACC2 protein levels were downregulated in BRAFV600E-PTC cell lines vs. the BRAFWT/WT PTC cell line. Vemurafenib increased ACC2 (and to a lesser extent ACC1) mRNA levels in PTC-derived cell lines in a BRAFV600E allelic dose-dependent manner. BRAFV600E inhibition increased de novo lipid synthesis rates, and decreased FAO due to oxygen consumption rate (OCR), and extracellular acidification rate (ECAR), after addition of palmitate. Only shACC2 significantly increased OCR rates due to FAO, while it decreased ECAR in BRAFV600E PTC-derived cells vs. controls. BRAFV600E inhibition synergized with shACC2 to increase intracellular reactive oxygen species production, leading to increased cell proliferation and, ultimately, vemurafenib resistance. Mice implanted with a BRAFWT/V600E PTC-derived cell line with shACC2 showed significantly increased tumor growth after vemurafenib treatment, while vehicle-treated controls, or shGFP control cells treated with vemurafenib showed stable tumor growth. Conclusions: These findings suggest a potential link between BRAFV600E and lipid metabolism regulation in PTC. BRAFV600E downregulates ACC2 levels, which deregulates de novo lipid synthesis, FAO due to OCR, and ECAR rates. ShACC2 may contribute to vemurafenib resistance and increased tumor growth. ACC2 rescue may represent a novel molecular strategy for overcoming resistance to BRAFV600E inhibitors in refractory PTC.


Assuntos
Acetil-CoA Carboxilase/genética , Metabolismo Energético/genética , Lipogênese/genética , Mitocôndrias/genética , Mutação , Proteínas Proto-Oncogênicas B-raf/genética , Câncer Papilífero da Tireoide/genética , Neoplasias da Glândula Tireoide/genética , Acetil-CoA Carboxilase/metabolismo , Animais , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Bases de Dados Genéticas , Resistencia a Medicamentos Antineoplásicos , Metabolismo Energético/efeitos dos fármacos , Ácidos Graxos/metabolismo , Predisposição Genética para Doença , Humanos , Lipogênese/efeitos dos fármacos , Camundongos , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/enzimologia , Mitocôndrias/patologia , Oxirredução , Fenótipo , Inibidores de Proteínas Quinases/farmacologia , Proteínas Proto-Oncogênicas B-raf/antagonistas & inibidores , Proteínas Proto-Oncogênicas B-raf/metabolismo , Câncer Papilífero da Tireoide/tratamento farmacológico , Câncer Papilífero da Tireoide/enzimologia , Câncer Papilífero da Tireoide/patologia , Neoplasias da Glândula Tireoide/tratamento farmacológico , Neoplasias da Glândula Tireoide/enzimologia , Neoplasias da Glândula Tireoide/patologia , Vemurafenib/farmacologia , Ensaios Antitumorais Modelo de Xenoenxerto
8.
Artigo em Inglês | MEDLINE | ID: mdl-31379741

RESUMO

The introduction of ultra-precision targeted therapy has become a significant advancement in cancer therapeutics by creating treatments with less off target effects. Specifically with papillary thyroid carcinoma (PTC), the cancer's hallmark genetic mutation BRAFV600E can be targeted with selective inhibitors, such as vemurafenib. Despite initial positive tumor responses of regression and decreased viability, both single agent or combination agent drug treatments provide a selective pressure for drug resistant evolving clones within the overall heterogeneous tumor. Also, there are evidences suggesting that sequential monotherapy is ineffective and selects for resistant and ultimately lethal tumor clones. Reconstructing both clonal and subclonal thyroid tumor heterogeneous cell clusters for somatic mutations and epigenetic profile, copy number variation, cytogenetic alterations, and non-coding RNA expression becomes increasingly critical as different clonal enrichments implicate how the tumor may respond to drug treatment and dictate its invasive, metastatic, and progressive abilities, and predict prognosis. Therefore, development of novel preclinical and clinical empirical models supported by mathematical assessment will be the tools required for estimating the parameters of clonal and subclonal evolution, and unraveling the dormant vs. non-dormant state of thyroid cancer. In sum, novel experimental models performing the reconstruction both pre- and post-drug treatment of the thyroid tumor will enhance our understanding of clonal and sub-clonal reconstruction and tumor evolution exposed to treatments during ultra-precision targeted therapies. This approach will improve drug development strategies in thyroid oncology and identification of disease-specific biomarkers.

10.
Endocrinol Metab Clin North Am ; 48(1): 37-59, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30717910

RESUMO

Thyroid cancer is the most common endocrine malignancy. Its incidence and mortality rates have increased for patients with advanced-stage papillary thyroid cancer. The characterization of the molecular pathways essential in thyroid cancer initiation and progression has made huge progress, underlining the role of intracellular signaling to promote clonal evolution, dedifferentiation, metastasis, and drug resistance. The discovery of genetic alterations that include mutations (BRAF, hTERT), translocations, deletions (eg, 9p), and copy-number gain (eg, 1q) has provided new biological insights with clinical applications. Understanding how molecular pathways interplay is one of the key strategies to develop new therapeutic treatments and improve prognosis.


Assuntos
Progressão da Doença , Neoplasias da Glândula Tireoide/genética , Humanos
11.
Clin Cancer Res ; 24(23): 6078-6097, 2018 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-30076136

RESUMO

PURPOSE: The BRAFV600E oncogene modulates the papillary thyroid carcinoma (PTC) microenvironment, in which pericytes are critical regulators of tyrosine-kinase (TK)-dependent signaling pathways. Although BRAFV600E and TK inhibitors are available, their efficacy as bimodal therapeutic agents in BRAFV600E-PTC is still unknown. EXPERIMENTAL DESIGN: We assessed the effects of vemurafenib (BRAFV600E inhibitor) and sorafenib (TKI) as single agents or in combination in BRAFWT/V600E-PTC and BRAFWT/WT cells using cell-autonomous, pericyte coculture, and an orthotopic mouse model. We also used BRAFWT/V600E-PTC and BRAFWT/WT-PTC clinical samples to identify differentially expressed genes fundamental to tumor microenvironment. RESULTS: Combined therapy blocks tumor cell proliferation, increases cell death, and decreases motility via BRAFV600E inhibition in thyroid tumor cells in vitro. Vemurafenib produces cytostatic effects in orthotopic tumors, whereas combined therapy (likely reflecting sorafenib activity) generates biological fluctuations with tumor inhibition alternating with tumor growth. We demonstrate that pericytes secrete TSP-1 and TGFß1, and induce the rebound of pERK1/2, pAKT and pSMAD3 levels to overcome the inhibitory effects of the targeted therapy in PTC cells. This leads to increased BRAFV600E-PTC cell survival and cell death refractoriness. We find that BRAFWT/V600E-PTC clinical samples are enriched in pericytes, and TSP1 and TGFß1 expression evoke gene-regulatory networks and pathways (TGFß signaling, metastasis, tumor growth, tumor microenvironment/ECM remodeling functions, inflammation, VEGF ligand-VEGF receptor interactions, immune modulation, etc.) in the microenvironment essential for BRAFWT/V600E-PTC cell survival. Critically, antagonism of the TSP-1/TGFß1 axis reduces tumor cell growth and overcomes drug resistance. CONCLUSIONS: Pericytes shield BRAFV600E-PTC cells from targeted therapy via TSP-1 and TGFß1, suggesting this axis as a new therapeutic target for overcoming resistance to BRAFV600E and TK inhibitors.


Assuntos
Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/metabolismo , Resistencia a Medicamentos Antineoplásicos , Pericitos/efeitos dos fármacos , Pericitos/metabolismo , Neoplasias da Glândula Tireoide/metabolismo , Fator de Crescimento Transformador beta1/metabolismo , Vemurafenib/farmacologia , Animais , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/genética , Biomarcadores Tumorais , Linhagem Celular Tumoral , Modelos Animais de Doenças , Resistencia a Medicamentos Antineoplásicos/genética , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Humanos , Camundongos , Modelos Biológicos , Transdução de Sinais/efeitos dos fármacos , Sorafenibe/farmacologia , Neoplasias da Glândula Tireoide/tratamento farmacológico , Neoplasias da Glândula Tireoide/genética , Neoplasias da Glândula Tireoide/patologia , Fator de Crescimento Transformador beta1/genética , Microambiente Tumoral/efeitos dos fármacos , Microambiente Tumoral/genética , Ensaios Antitumorais Modelo de Xenoenxerto
12.
Oncotarget ; 8(49): 84743-84760, 2017 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-29156680

RESUMO

PURPOSE: Papillary thyroid carcinoma (PTC) is the most frequent endocrine tumor. BRAFV600E represents the PTC hallmark and is targeted with selective inhibitors (e.g. vemurafenib). Although there have been promising results in clinical trials using these inhibitors, most patients develop resistance and progress. Tumor clonal diversity is proposed as one mechanism underlying drug resistance. Here we have investigated mechanisms of primary and secondary resistance to vemurafenib in BRAFWT/V600E-positive PTC patient-derived cells with P16-/- (CDKN2A-/-). EXPERIMENTAL DESIGN: Following treatment with vemurafenib, we expanded a sub-population of cells with primary resistance and characterized them genetically and cytogenetically. We have used exome sequencing, metaphase chromosome analysis, FISH and oligonucleotide SNP-microarray assays to assess clonal evolution of vemurafenib-resistant cells. Furthermore, we have validated our findings by networks and pathways analyses using PTC clinical samples. RESULTS: Vemurafenib-resistant cells grow similarly to naïve cells but are refractory to apoptosis upon treatment with vemurafenib, and accumulate in G2-M phase. We find that vemurafenib-resistant cells show amplification of chromosome 5 and de novo mutations in the RBM (RNA-binding motifs) genes family (i.e. RBMX, RBM10). RBMX knockdown in naïve-cells contributes to tetraploidization, including expansion of clones with chromosome 5 aberrations (e.g. isochromosome 5p). RBMX elicits gene regulatory networks with chromosome 5q cancer-associated genes and pathways for G2-M and DNA damage-response checkpoint regulation in BRAFWT/V600E-PTC. Importantly, combined therapy with vemurafenib plus palbociclib (inhibitor of CDK4/6, mimicking P16 functions) synergistically induces stronger apoptosis than single agents in resistant-cells and in anaplastic thyroid tumor cells harboring the heterozygous BRAFWT/V600E mutation. CONCLUSIONS: Critically, our findings suggest for the first time that targeting BRAFWT/V600E and CDK4/6 represents a novel therapeutic strategy to treat vemurafenib-resistant or vemurafenib-naïve radioiodine-refractory BRAFWT/V600E-PTC. This combined therapy could prevent selection and expansion of aggressive PTC cell sub-clones with intrinsic resistance, targeting tumor cells either with primary or secondary resistance to BRAFV600E inhibitor.

13.
Int J Surg Case Rep ; 38: 180-184, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28780248

RESUMO

INTRODUCTION: The follicular variant of papillary thyroid cancer (FVPTC) can be noninvasive or invasive. The invasive form of FVPTC commonly harbors BRAF mutations whereas RAS mutations are more often associated with noninvasive FVPTC and a favorable clinical outcome. CASE REPORT: A 47-year-old man presented with a metastasis to his right iliac bone as the initial manifestation of a 1.6cm invasive FVPTC. After total thyroidectomy, the patient underwent additional treatment, including thyroid hormone suppressive treatment to non-detectable TSH levels, repeated courses of radioiodine treatment, external beam radiation, and treatment with the tyrosine kinase inhibitor sorafenib. Despite these therapeutic efforts, the disease progressed with growth of the iliac mass and additional metastatic spread to cervical and lumbar vertebrae causing increasing pain and disability. The patient succumbed to the disease four years after presentation. Retrospective next-generation sequencing of the primary tumor using a pan-cancer targeted mutation and gene fusion panel revealed NRAS Q61K mutation and no other oncogenic alterations. DISCUSSION: The study challenges the concept that thyroid neoplasms with isolated RAS mutations are often associated with favorable clinical behavior and may be candidates for conservative management. CONCLUSION: An isolated RAS mutation in invasive FVPTC may be associated with an aggressive clinical behavior.

14.
Aging (Albany NY) ; 8(12): 3180-3184, 2016 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-27997357

RESUMO

Iodide is a micronutrient essential for thyroid hormone production. The uptake and metabolism of iodide by thyrocytes is crucial to proper thyroid function. Iodide ions are drawn into the thyroid follicular cell via the sodium-iodide symporter (NIS) in the cell membrane and become integrated into tyrosyl residues to ultimately form thyroid hormones. We sought to learn how an abnormal concentration of iodide within thyrocyte can have significant effects on the thyroid, specifically the surrounding vascular network. Insufficient levels of iodide can lead to increased expression or activity of several pathways, including vascular endothelial growth factor (VEGF). The VEGF protein fuel vessel growth (angiogenesis) and therefore enhances the nutrients available to surrounding cells. Alternatively, normal/surplus iodide levels can have inhibitory effects on angiogenesis. Varying levels of iodide in the thyroid can influence thyroid carcinoma cell proliferation and angiogenesis via regulation of the hypoxia inducible factor-1 (HIF-1) and VEGF-dependent pathway. We have reviewed a number of studies to investigate how the effect of iodide on angiogenic and oxidative stress regulation can affect the viability of thyroid carcinoma cells. The various studies outlined give key insights to the role of iodide in thyroid follicles function and vascular growth, generally highlighting that insufficient levels of iodide stimulate pathways resulting in vascular growth, and viceversa normal/surplus iodide levels inhibit such pathways. Intriguingly, TSH and iodine levels differentially regulate the expression levels of angiogenic factors. All cells, including carcinoma cells, increase uptake of blood nutrients, meaning the vascular profile is influential to tumor growth and progression. Importantly, variation in the iodine concentrations also influence BRAFV600E-mediated oncogenic activity and might deregulate tumor proliferation. Although the mechanisms are not well eluted, iodine concentrations and metabolism might have a crucial influence on thyroid carcinoma cell viability via regulation of different molecular pathways, including angiogenesis regulatory autocrine and microenvironment-mediated signals.


Assuntos
Carcinoma/metabolismo , Iodo/metabolismo , Micronutrientes/metabolismo , Neovascularização Patológica/metabolismo , Neoplasias da Glândula Tireoide/metabolismo , Carcinoma/patologia , Humanos , Neovascularização Patológica/patologia , Estresse Oxidativo/fisiologia , Neoplasias da Glândula Tireoide/patologia , Fator A de Crescimento do Endotélio Vascular/metabolismo
15.
16.
Cancer Lett ; 380(2): 577-585, 2016 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-26189429

RESUMO

Cachexia is the result of complex metabolic alterations which cause morbidity and mortality in patients with advanced cancers including undifferentiated (anaplastic) thyroid carcinoma (ATC). ATC is a lethal disease with limited therapeutic options and unclear etiology for cachexia. We hypothesize that the BRAF(V600E) oncoprotein triggers microvascular endothelial cell tubule formation (in vitro angiogenesis) by means of factors which play a crucial role in angiogenic switch, inflammation/immune response and cachexia. We use human ATC cells and applied multiplex ELISA assay to screen for and measure angiogenic/cachectic and pro-inflammatory factors in the ATC-derived secretome. We find that vemurafenib anti-BRAF(V600E) therapy significantly reduces secreted VEGFA, VEGFC and IL6 protein levels compared to vehicle-treated ATC cells. As a result, the secretome from vemurafenib-treated ATC cells inhibits microvascular endothelial cell-related in vitro angiogenesis. Furthermore, ATC clinical samples express VEGFA, VEGFC and IL6 proteins. Our results suggest that angiogenic/cachectic and pro-inflammatory/immune response factors could play a crucial role in BRAF(V600E)-positive human ATC aggressiveness. Understanding the extent to which microenvironment-associated angiogenic factors participate in cachexia and cancer metabolism in advanced thyroid cancers will reveal new biomarkers and foster novel therapeutic approaches.


Assuntos
Proteínas Angiogênicas/metabolismo , Caquexia/enzimologia , Citocinas/metabolismo , Mediadores da Inflamação/metabolismo , Leptina/metabolismo , Neovascularização Patológica , Proteínas Proto-Oncogênicas B-raf/metabolismo , Carcinoma Anaplásico da Tireoide/irrigação sanguínea , Carcinoma Anaplásico da Tireoide/enzimologia , Neoplasias da Glândula Tireoide/irrigação sanguínea , Neoplasias da Glândula Tireoide/enzimologia , Caquexia/genética , Linhagem Celular Tumoral , Humanos , Indóis/farmacologia , Mutação , Inibidores de Proteínas Quinases/farmacologia , Proteínas Proto-Oncogênicas B-raf/antagonistas & inibidores , Proteínas Proto-Oncogênicas B-raf/genética , Transdução de Sinais , Sulfonamidas/farmacologia , Carcinoma Anaplásico da Tireoide/tratamento farmacológico , Carcinoma Anaplásico da Tireoide/genética , Neoplasias da Glândula Tireoide/tratamento farmacológico , Neoplasias da Glândula Tireoide/genética , Microambiente Tumoral , Fator A de Crescimento do Endotélio Vascular/metabolismo , Fator C de Crescimento do Endotélio Vascular/metabolismo , Vemurafenib
17.
Oncotarget ; 6(40): 42445-67, 2015 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-26636651

RESUMO

BRAF(V600E) mutation exerts an essential oncogenic function in many tumors, including papillary thyroid carcinoma (PTC). Although BRAF(V600E) inhibitors are available, lack of response has been frequently observed. To study the mechanism underlying intrinsic resistance to the mutant BRAF(V600E) selective inhibitor vemurafenib, we established short-term primary cell cultures of human metastatic/recurrent BRAF(V600E)-PTC, intrathyroidal BRAF(V600E)-PTC, and normal thyroid (NT). We also generated an early intervention model of human BRAF(V600E)-PTC orthotopic mouse. We find that metastatic BRAF(V600E)-PTC cells elicit paracrine-signaling which trigger migration of pericytes, blood endothelial cells and lymphatic endothelial cells as compared to BRAF(WT)-PTC cells, and show a higher rate of invasion. We further show that vemurafenib therapy significantly suppresses these aberrant functions in non-metastatic BRAF(V600E)-PTC cells but lesser in metastatic BRAF(V600E)-PTC cells as compared to vehicle treatment. These results concur with similar folds of down-regulation of tumor microenvironment-associated pro-metastatic molecules, with no effects in BRAF(WT)-PTC and NT cells. Our early intervention preclinical trial shows that vemurafenib delays tumor growth in the orthotopic BRAF(WT/V600E)-PTC mice. Importantly, we identify high copy number gain of MCL1 (chromosome 1q) and loss of CDKN2A (P16, chromosome 9p) in metastatic BRAF(V600E)-PTC cells which are associated with resistance to vemurafenib treatment. Critically, we demonstrate that combined vemurafenib therapy with BCL2/MCL1 inhibitor increases metastatic BRAF(V600E)-PTC cell death and ameliorates response to vemurafenib treatment as compared to single agent treatment. In conclusion, short-term PTC and NT cultures offer a predictive model for evaluating therapeutic response in patients with PTC. Our PTC pre-clinical model suggests that combined targeted therapy might be an important therapeutic strategy for metastatic and refractory BRAF(V600E)-positive PTC.


Assuntos
Antineoplásicos/farmacologia , Carcinoma/genética , Resistencia a Medicamentos Antineoplásicos/genética , Dosagem de Genes , Genes p16 , Indóis/farmacologia , Proteína de Sequência 1 de Leucemia de Células Mieloides/genética , Sulfonamidas/farmacologia , Neoplasias da Glândula Tireoide/genética , Animais , Apoptose/efeitos dos fármacos , Western Blotting , Carcinoma Papilar , Sobrevivência Celular/efeitos dos fármacos , Modelos Animais de Doenças , Ensaio de Imunoadsorção Enzimática , Xenoenxertos , Humanos , Imuno-Histoquímica , Marcação In Situ das Extremidades Cortadas , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Mutação , Metástase Neoplásica/genética , Metástase Neoplásica/patologia , Neovascularização Patológica , Análise de Sequência com Séries de Oligonucleotídeos , Proteínas Proto-Oncogênicas B-raf/genética , Câncer Papilífero da Tireoide , Transfecção , Vemurafenib
19.
Artigo em Inglês | MEDLINE | ID: mdl-26317117

RESUMO

Evaluation for malignancy of the adrenal cortex, adrenal cortical carcinoma (ACC), is a challenge in surgical pathology due to its relative rarity and histologic overlap with its benign counterpart, adrenocortical adenoma (ACA). We characterized a cohort of human ACC and ACA, including a molecular screen, with a goal of identifying potential diagnostic adjuncts. Thirty-six cases of ACC underwent histologic and clinical review. In the 31 ACC cases with available material and a cohort of 10 ACA cases, a multiplex nucleotide amplification molecular screen from formalin-fixed, paraffin-embedded tissue was peformed. ACCs demonstrated a wide variety of clinical and histologic characteristics with overall poor but unpredictable survival for subjects with ACC. By mutational screen, 12/31 (38.7%) carcinomas harbored CTNNB1 mutations, 1 with an additional TP53 mutation; 1 case each had isolated APC and TP53 mutations; 16 were wild-type for all tested loci; and 1 case demonstrated repeated assay failures. Two of the 10 ACA (20%) demonstrated CTNNB1 mutations by mutational screen, with no additional mutations. Immunohistochemistry for beta-catenin was performed and compared with the results of the molecular screen. Strong nuclear beta-catenin immunopositivity corresponded to the presence of CTNNB1 mutation by genotyping in 10 of 12 cases (83% sensitivity); the mismatched case(s) demonstrated strong membranous staining by immunohistochemistry. Seventeen of the 18 cases without CTNNB1 mutation showed membranous staining or did not stain (94% specificity); the mismatched case demonstrated scattered (<10%) positive nuclei. Both mutations in ACA were corroborated with immunohistochemistry for beta-catenin. No histomorphologic parameter appeared dominant in lesions with a particular mutational status. Based on these results, mutational status of CTNNB1 in adrenal cortical neoplasms can be predicted with reasonable accuracy by immunohistochemical cellular localization. Nuclear localization of beta-catenin by immunostain may be helpful in analysis of select lesions of the adrenal cortex whose biological behavior is uncertain from clinical and histologic information; a larger cohort is required to test this hypothesis.

20.
J Clin Endocrinol Metab ; 100(1): 35-42, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25347569

RESUMO

CONTEXT: Anaplastic thyroid cancer (ATC) is the most lethal of all thyroid cancers and one of the most aggressive human carcinomas. In the search for effective treatment options, research toward targeted, personalized therapies is proving to be a path with great potential. As we gain a deeper understanding of the genetic (eg, BRAF(V600E), PIK3CA, TP53, hTERT mutations, etc) and epigenetic (eg, histone methylation, histone de-acetylation, microRNA regulatory circuits, etc) alterations driving ATC, we are able to find targets when developing novel therapies to improve the lives of patients. Beyond development, we can look into the effectiveness of already approved targeted therapies (eg, anti-BRAF(V600E) selective inhibitors, tyrosine kinase inhibitors, histone deacetylase inhibitors, inhibitors of DNA methylation, etc) to potentially test in ATC after learning the molecular mechanisms that aid in tumor progression. DESIGN: We performed a literature analysis in Medline through the PubMed web site for studies published between 2003 and 2014 using the following main keywords: anaplastic thyroid cancer, genetic and epigenetic alterations. OBJECTIVE: Here, we outlined the common pathways that are altered in ATC, including the BRAF(V600E)/ERK1/2-MEK1/2 and PI3K-AKT pathways. We then examined the current research looking into personalized, potential targeted therapies in ATC, mentioning those that have been tentatively advanced into clinical trials and those with the potential to reach that stage. We also reviewed side effects of the current and potential targeted therapies used in patients with advanced thyroid cancer. CONCLUSIONS: DNA and RNA next-generation sequencing analysis will be fundamental to unraveling a precise medicine and therapy in patients with ATC. Indeed, given the deep biological heterogeneity/complexity and high histological grade of this malignancy and its tumor microenvironment, personalized therapeutic approaches possibly based on the use of combinatorial targeted therapy will provide a rational approach when finding the optimal way to improve treatments for patients with ATC.


Assuntos
Epigênese Genética , Medicina de Precisão , Transdução de Sinais/genética , Carcinoma Anaplásico da Tireoide/terapia , Neoplasias da Glândula Tireoide/terapia , Humanos , Carcinoma Anaplásico da Tireoide/genética , Carcinoma Anaplásico da Tireoide/patologia , Neoplasias da Glândula Tireoide/genética , Neoplasias da Glândula Tireoide/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA