Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Sci Total Environ ; 945: 174078, 2024 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-38906279

RESUMO

This paper investigates the potential of graphene-coated sand (GCS) as an advanced filtration medium for improving water quality and mitigating chemicals of emerging concern (CECs) in treated municipal wastewater, aiming to enhance water reuse. The study utilizes three types of sand (Ottawa, masonry, and concrete) coated with graphene to assess the impact of surface morphology, particle shape, and chemical composition on coating and filtration efficiency. Additionally, sand coated with graphene and activated graphene coated sand were both tested to understand the effect of coating and activation on the filtration process. The materials were characterized using digital microscopy, Raman spectroscopy, scanning electron microscopy (SEM), and X-ray diffraction analysis. The material's efficiency in removing turbidity, nutrients, chemical oxygen demand (COD), bacteria, and specific CECs (Aciclovir, Diatrizoic acid, Levodopa, Miconazole, Carbamazepine, Diphenhydramine, Irbesartan, Lidocaine, Losartan, and Sulfamethoxazole) was studied. Our findings indicate that GCS significantly improves water quality parameters, with notable efficiency in removing turbidity, COD (14.1 % and 69.1 % removal), and bacterial contaminants (64.9 % and 99.9 % removal). The study also highlights the material's capacity to remove challenging CECs like Sulfamethoxazole (up to 80 % removal) and Diphenhydramine (up to 90 % removal), showcasing its potential as a sustainable solution for water reuse applications. This research contributes to the field by providing a comprehensive evaluation of GCS in water treatment, suggesting its potential for removing CECs from treated municipal wastewater.

2.
Sci Total Environ ; 917: 170107, 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38232845

RESUMO

Global water quality has deteriorated, leaving over 844 million individuals without access to clean drinking water. While sand filters (SF) offer a solution, their limited surface area and adsorption capacity for emerging contaminants remain a challenge. This has prompted the development of new materials such as graphene-coated sand (GCS) to enhance the sand's adsorptive properties. Notably, GCS also possesses inherent anti-bacterial properties and can function as a photocatalyst when exposed to UV and visible light, offering enhanced water purification. This manuscript 1) reviews the synthesis of GCS, detailing the characterization techniques employed to understand its structure, composition, and multifunctional properties and 2) highlights the superior efficacy of GCS in removing contaminants, including metals (>95 % removal of Cd2+, Pb2+, Zn2+, and Cu2+ in low pH environment), sulfides (full removal compared to 26 % removal by raw sand), antibiotics (98 % removal of tetracycline), and bacteria (complete cell membrane destruction), compared to traditional SF. Due to its enhanced performance and multifaceted purification capabilities, GCS presents a promising alternative to SFs, especially in developing countries, aiming to improve water quality and ensure safe drinking water access. To the best of our knowledge, no other work groups the available research on GCS. Furthermore, future research directions should focus on reducing the overall production cost of GCS, exploring surface modification techniques, and expanding the range of contaminants tested by GCS, to fully realize its potential in water purification.


Assuntos
Água Potável , Grafite , Poluentes Químicos da Água , Purificação da Água , Humanos , Grafite/química , Metais , Purificação da Água/métodos , Adsorção , Poluentes Químicos da Água/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA