Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
1.
PLoS One ; 19(4): e0297453, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38625898

RESUMO

Assessing the microbes present on tree fruit carpospheres as the fruit enters postharvest processing could have useful applications, as these microbes could have a major influence on spoilage, food safety, verification of packing process controls, or other aspects of processing. The goal of this study was to establish a baseline profile of bacterial communities associated with apple (pome fruit), peach (stone fruit), and Navel orange (citrus fruit) at harvest. We found that commercial peaches had the greatest bacterial richness followed by oranges then apples. Time of harvest significantly changed bacterial diversity in oranges and peaches, but not apples. Shifts in diversity varied by fruit type, where 70% of the variability in beta diversity on the apple carposphere was driven by the gain and loss of species (i.e., nestedness). The peach and orange carposphere bacterial community shifts were driven by nearly an even split between turnover (species replacement) and nestedness. We identified a small core microbiome for apples across and between growing seasons that included only Methylobacteriaceae and Sphingomonadaceae among the samples, while peaches had a larger core microbiome composed of five bacterial families: Bacillaceae, Geodermtophilaceae, Nocardioidaceae, Micrococcaeceae, and Trueperaceae. There was a relatively diverse core microbiome for oranges that shared all the families present on apples and peaches, except for Trueperaceae, but also included an additional nine bacterial families not shared including Oxalobacteraceae, Cytophagaceae, and Comamonadaceae. Overall, our findings illustrate the important temporal dynamics of bacterial communities found on major commercial tree fruit, but also the core bacterial families that constantly remain with both implications being important entering postharvest packing and processing.


Assuntos
Citrus sinensis , Prunus persica , Humanos , Estações do Ano , Bactérias , Citrus sinensis/microbiologia , Frutas/microbiologia
2.
Bioinform Adv ; 3(1): vbad165, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38046097

RESUMO

Motivation: Biologists increasingly turn to machine learning models not just to predict, but to explain. Feature reduction is a common approach to improve both the performance and interpretability of models. However, some biological datasets, such as microbiome data, are inherently organized in a taxonomy, but these hierarchical relationships are not leveraged during feature reduction. We sought to design a feature engineering algorithm to exploit relationships in hierarchically organized biological data. Results: We designed an algorithm, called TaxaHFE, to collapse information-poor features into their higher taxonomic levels. We applied TaxaHFE to six previously published datasets and found, on average, a 90% reduction in the number of features (SD = 5.1%) compared to using the most complete taxonomy. Using machine learning to compare the most resolved taxonomic level (i.e. species) against TaxaHFE-preprocessed features, models based on TaxaHFE features achieved an average increase of 3.47% in receiver operator curve area under the curve. Compared to other hierarchical feature engineering implementations, TaxaHFE introduces the novel ability to consider both categorical and continuous response variables to inform the feature set collapse. Importantly, we find TaxaHFE's ability to reduce hierarchically organized features to a more information-rich subset increases the interpretability of models. Availability and implementation: TaxaHFE is available as a Docker image and as R code at https://github.com/aoliver44/taxaHFE.

3.
mBio ; 13(3): e0010122, 2022 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-35536006

RESUMO

Antimicrobial resistance (AMR) represents a significant source of morbidity and mortality worldwide, with expectations that AMR-associated consequences will continue to worsen throughout the coming decades. Since resistance to antibiotics is encoded in the microbiome, interventions aimed at altering the taxonomic composition of the gut might allow us to prophylactically engineer microbiomes that harbor fewer antibiotic resistant genes (ARGs). Diet is one method of intervention, and yet little is known about the association between diet and antimicrobial resistance. To address this knowledge gap, we examined diet using the food frequency questionnaire (FFQ; habitual diet) and 24-h dietary recalls (Automated Self-Administered 24-h [ASA24®] tool) coupled with an analysis of the microbiome using shotgun metagenome sequencing in 290 healthy adult participants of the United States Department of Agriculture (USDA) Nutritional Phenotyping Study. We found that aminoglycosides were the most abundant and prevalent mechanism of AMR in these healthy adults and that aminoglycoside-O-phosphotransferases (aph3-dprime) correlated negatively with total calories and soluble fiber intake. Individuals in the lowest quartile of ARGs (low-ARG) consumed significantly more fiber in their diets than medium- and high-ARG individuals, which was concomitant with increased abundances of obligate anaerobes, especially from the family Clostridiaceae, in their gut microbiota. Finally, we applied machine learning to examine 387 dietary, physiological, and lifestyle features for associations with antimicrobial resistance, finding that increased phylogenetic diversity of diet was associated with low-ARG individuals. These data suggest diet may be a potential method for reducing the burden of AMR. IMPORTANCE Antimicrobial resistance (AMR) represents a considerable burden to health care systems, with the public health community largely in consensus that AMR will be a major cause of death worldwide in the coming decades. Humans carry antibiotic resistance in the microbes that live in and on us, collectively known as the human microbiome. Diet is a powerful method for shaping the human gut microbiome and may be a tractable method for lessening antibiotic resistance, and yet little is known about the relationship between diet and AMR. We examined this relationship in healthy individuals who contained various abundances of antibiotic resistance genes and found that individuals who consumed diverse diets that were high in fiber and low in animal protein had fewer antibiotic resistance genes. Dietary interventions may be useful for lessening the burden of antimicrobial resistance and might ultimately motivate dietary guidelines which will consider how nutrition can reduce the impact of infectious disease.


Assuntos
Antibacterianos , Microbioma Gastrointestinal , Animais , Antibacterianos/farmacologia , Dieta , Fibras na Dieta , Farmacorresistência Bacteriana/genética , Humanos , Filogenia
4.
Microbiol Spectr ; 10(3): e0003222, 2022 06 29.
Artigo em Inglês | MEDLINE | ID: mdl-35475626

RESUMO

The capacity of the human microbiome to modulate inflammation in the context of cancer is becoming increasingly clear. Myeloproliferative neoplasms (MPNs) are chronic hematologic malignancies in which inflammation plays a key role in disease initiation, progression, and symptomatology. To better understand the composition of the gut microbiome in patients with MPN, triplicate fecal samples were collected from 25 MPN patients and 25 non-MPN controls. Although most of the variance between the microbial community compositions could be attributed to the individual (permutational analysis of variance [PERMANOVA], R2 = 0.92, P = 0.001), 1.7% of the variance could be attributed to disease status (MPN versus non-MPN). When a more detailed analysis was performed, significantly fewer reads mapping to a species of Phascolarctobacterium, a microbe previously associated with reduced inflammation, were found in MPNs. Further, our data revealed an association between Parabacteroides and tumor necrosis factor alpha (TNF-α), an inflammatory cytokine elevated in MPNs. Taken together, our results indicate a significant difference in the microbiome of MPN patients compared to non-MPN controls, and we identify specific species which may have a role in the chronic inflammation central to this disease. IMPORTANCE MPNs are chronic blood cancers in which inflammation plays a key role in disease initiation, progression, and symptomatology. The gut microbiome modulates normal blood development and inflammation and may also impact the development and manifestation of blood cancers. Therefore, the microbiome may be an important modulator of inflammation in MPN and could potentially be leveraged therapeutically in this disease. However, the relationship between the gut microbiome and MPNs has not been defined. Therefore, we performed an evaluation of the MPN microbiome, comparing the microbiomes of MPN patients with healthy donors and between MPN patients with various states of disease.


Assuntos
Microbioma Gastrointestinal , Transtornos Mieloproliferativos , Neoplasias , Doença Crônica , Fezes , Humanos , Inflamação , Transtornos Mieloproliferativos/patologia
5.
Pathogens ; 10(5)2021 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-33925684

RESUMO

Salmonella enterica subsp. enterica serovar Typhimurium DT104, a multidrug-resistant phage type, has emerged globally as a major cause of foodborne outbreaks particularly associated with contaminated beef products. In this study, we sequenced three S. Typhimurium DT104 strains associated with a 2009 outbreak caused by ground beef, including the outbreak source strain and two clinical strains. The goal of the study was to gain a stronger understanding of the genomics and genomic epidemiology of highly clonal S. typhimurium DT104 strains associated with bovine sources. Our study found no single nucleotide polymorphisms (SNPs) between the ground beef source strain and the clinical isolates from the 2009 outbreak. SNP analysis including twelve other S. typhimurium strains from bovine and clinical sources, including both DT104 and non-DT104, determined DT104 strains averaged 55.0 SNPs between strains compared to 474.5 SNPs among non-DT104 strains. Phylogenetic analysis separated the DT104 strains from the non-DT104 strains, but strains did not cluster together based on source of isolation even within the DT104 phage type. Pangenome analysis of the strains confirmed previous studies showing that DT104 strains are missing the genes for the allantoin utilization pathway, but this study confirmed that the genes were part of a deletion event and not substituted or disrupted by the insertion of another genomic element. Additionally, cgMLST analysis revealed that DT104 strains with cattle as the source of isolation were quite diverse as a group and did not cluster together, even among strains from the same country. Expansion of the analysis to 775 S. typhimurium ST19 strains associated with cattle from North America revealed diversity between strains, not limited to just among DT104 strains, which suggests that the cattle environment is favorable for a diverse group of S. typhimurium strains and not just DT104 strains.

6.
mSystems ; 6(2)2021 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-33727392

RESUMO

Dietary shifts can have a direct impact on the gut microbiome by preferentially selecting for microbes capable of utilizing the various dietary nutrients. The intake of dietary fiber has decreased precipitously in the last century, while consumption of processed foods has increased. Fiber, or microbiota-accessible carbohydrates (MACs), persist in the digestive tract and can be metabolized by specific bacteria encoding fiber-degrading enzymes. The digestion of MACs results in the accumulation of short-chain fatty acids (SCFAs) and other metabolic by-products that are critical to human health. Here, we implemented a 2-week dietary fiber intervention aiming for 40 to 50 g of fiber per day within the context of a course-based undergraduate research experience (CURE) (n = 20). By coupling shotgun metagenomic sequencing and targeted gas chromatography-mass spectrometry (GC-MS), we found that the dietary intervention significantly altered the composition of individual gut microbiomes, accounting for 8.3% of the longitudinal variability within subjects. Notably, microbial taxa that increased in relative abundance as a result of the diet change included known MAC degraders (i.e., Bifidobacterium and Lactobacillus). We further assessed the genetic diversity within Bifidobacterium, assayed by amplification of the groEL gene. Concomitant with microbial composition changes, we show an increase in the abundance of genes involved in inositol degradation. Despite these changes in gut microbiome composition, we did not detect a consistent shift in SCFA abundance. Collectively, our results demonstrate that on a short-term timescale of 2 weeks, increased fiber intake can induce compositional changes of the gut microbiome, including an increase in MAC-degrading bacteria.IMPORTANCE A profound decrease in the consumption of dietary fiber in many parts of the world in the last century may be associated with the increasing prevalence of type II diabetes, colon cancer, and other health problems. A typical U.S. diet includes about ∼15 g of fiber per day, far less fiber than the daily recommended allowance. Changes in dietary fiber intake affect human health not only through the uptake of nutrients directly but also indirectly through changes in the microbial community and their associated metabolism. Here, we conducted a 2-week diet intervention in healthy young adults to investigate the impact of fiber consumption on the gut microbiome. Participants increased their average fiber consumption by 25 g/day on average for 2 weeks. The high-fiber diet intervention altered the gut microbiome of the study participants, including increases in known fiber-degrading microbes, such as Bifidobacterium and Lactobacillus.

8.
mBio ; 11(4)2020 08 25.
Artigo em Inglês | MEDLINE | ID: mdl-32843557

RESUMO

Microbes and their metabolic products influence early-life immune and microbiome development, yet remain understudied during pregnancy. Vaginal microbial communities are typically dominated by one or a few well-adapted microbes which are able to survive in a narrow pH range and are adapted to live on host-derived carbon sources, likely sourced from glycogen and mucin present in the vaginal environment. We characterized the cervicovaginal microbiomes of 16 healthy women throughout the three trimesters of pregnancy. Additionally, we analyzed saliva and urine metabolomes using gas chromatography-time of flight mass spectrometry (GC-TOF MS) and liquid chromatography-tandem mass spectrometry (LC-MS/MS) lipidomics approaches for samples from mothers and their infants through the first year of life. Amplicon sequencing revealed most women had either a simple community with one highly abundant species of Lactobacillus or a more diverse community characterized by a high abundance of Gardnerella, as has also been previously described in several independent cohorts. Integrating GC-TOF MS and lipidomics data with amplicon sequencing, we found metabolites that distinctly associate with particular communities. For example, cervicovaginal microbial communities dominated by Lactobacillus crispatus have high mannitol levels, which is unexpected given the characterization of L. crispatus as a homofermentative Lactobacillus species. It may be that fluctuations in which Lactobacillus dominate a particular vaginal microbiome are dictated by the availability of host sugars, such as fructose, which is the most likely substrate being converted to mannitol. Overall, using a multi-"omic" approach, we begin to address the genetic and molecular means by which a particular vaginal microbiome becomes vulnerable to large changes in composition.IMPORTANCE Humans have a unique vaginal microbiome compared to other mammals, characterized by low diversity and often dominated by Lactobacillus spp. Dramatic shifts in vaginal microbial communities sometimes contribute to the presence of a polymicrobial overgrowth condition called bacterial vaginosis (BV). However, many healthy women lacking BV symptoms have vaginal microbiomes dominated by microbes associated with BV, resulting in debate about the definition of a healthy vaginal microbiome. Despite substantial evidence that the reproductive health of a woman depends on the vaginal microbiota, future therapies that may improve reproductive health outcomes are stalled due to limited understanding surrounding the ecology of the vaginal microbiome. Here, we use sequencing and metabolomic techniques to show novel associations between vaginal microbes and metabolites during healthy pregnancy. We speculate these associations underlie microbiome dynamics and may contribute to a better understanding of transitions between alternative vaginal microbiome compositions.


Assuntos
Colo do Útero/microbiologia , Metaboloma , Microbiota , Vagina/microbiologia , Adulto , Cromatografia Líquida , Estudos de Coortes , Feminino , Voluntários Saudáveis , Humanos , Lactente , Metabolômica , Gravidez , RNA Ribossômico 16S/genética , Espectrometria de Massas em Tandem , Adulto Jovem
9.
Artigo em Inglês | MEDLINE | ID: mdl-32431776

RESUMO

Course-based undergraduate research experiences (CUREs) are an effective way to introduce students to contemporary scientific research. Research experiences have been shown to promote critical thinking, improve understanding and proper use of the scientific method, and help students learn practical skills including writing and oral communication. We aimed to improve scientific training by engaging students enrolled in an upper division elective course in a human microbiome CURE. The "Fiber Force" course is aimed at studying the effect of a wholesome high-fiber diet (40 to 50 g/day for two weeks) on the students' gut microbiomes. Enrolled students participated in a noninvasive diet intervention, designed health surveys, tested hypotheses on the effect of a diet intervention on the gut microbiome, and analyzed their own samples (as anonymized aggregates). The course involved learning laboratory techniques (e.g., DNA extraction, PCR, and 16S sequencing) and the incorporation of computational techniques to analyze microbiome data with QIIME2 and within the R software environment. In addition, the learning objectives focused on effective student performance in writing, data analysis, and oral communication. Enrolled students showed high performance grades on writing, data analysis and oral communication assignments. Pre- and post-course surveys indicate that the students found the experience favorable, increased their interest in science, and heightened awareness of their diet habits. Fiber Force constitutes a validated case of a research experience on microbiology with the capacity to improve research training and promote healthy dietary habits.

10.
J Bacteriol ; 201(7)2019 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-30642989

RESUMO

The airway fluids of cystic fibrosis (CF) patients contain local pH gradients and are more acidic than those of healthy individuals. pH is a critical factor that is often overlooked in studies seeking to recapitulate the infection microenvironment. We sought to determine the impact of pH on the physiology of a ubiqituous yet understudied microbe, Stenotrophomonas maltophilia Phylogenomics was first used to reconstruct evolutionary relationships between 74 strains of S. maltophilia (59 from CF patients). Neither the core genome (2,158 genes) nor the accessory genome (11,978 genes) distinguish the CF and non-CF isolates; however, strains from similar isolation sources grouped into the same subclades. We grew two human and six CF S. maltophilia isolates from different subclades at a range of pH values and observed impaired growth and altered antibiotic tolerances at pH 5. Transcriptomes revealed increased expression of both antibiotic resistance and DNA repair genes in acidic conditions. Although the gene expression profiles of S. maltophilia in lab cultures and CF sputum were distinct, we found that the same genes associated with low pH were also expressed during infection, and the higher pH cultures were more similar to sputum metatranscriptomes. Our findings suggest that S. maltophilia is not well adapted to acidity and may cope with low pH by expressing stress response genes and colonizing less acidic microenvironments. As a whole, our study underlines the impact of microenvironments on bacterial colonization and adaptation in CF infections.IMPORTANCE Understanding bacterial responses to physiological conditions is an important priority for combating opportunistic infections. The majority of CF patients succumb to inflammation and necrosis in the airways, arising from chronic infection due to ineffective mucociliary clearance. Steep pH gradients characterize the CF airways but are not often incorporated in standard microbiology culture conditions. Stenotrophomonas maltophilia is a prevalent CF opportunistic pathogen also found in many disparate environments, yet this bacterium's contribution to CF lung damage and its response to changing environmental factors remain largely understudied. Here, we show that pH impacts the physiology and antibiotic susceptibility of S. maltophilia, with implications for the development of relevant in vitro models and assessment of antibiotic sensitivity.


Assuntos
Adaptação Fisiológica , Fibrose Cística/complicações , Infecções por Bactérias Gram-Negativas/microbiologia , Stenotrophomonas maltophilia/efeitos dos fármacos , Stenotrophomonas maltophilia/fisiologia , Perfilação da Expressão Gênica , Humanos , Concentração de Íons de Hidrogênio , Stenotrophomonas maltophilia/genética , Stenotrophomonas maltophilia/isolamento & purificação
11.
BMC Genomics ; 19(1): 310, 2018 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-29716534

RESUMO

BACKGROUND: Cocci-shaped Sporosarcina strains are currently one of the few known cocci-shaped spore-forming bacteria, yet we know very little about the genomics. The goal of this study is to utilize comparative genomics to investigate the diversity of cocci-shaped Sporosarcina strains that differ in their geographical isolation and show different nutritional requirements. RESULTS: For this study, we sequenced 28 genomes of cocci-shaped Sporosarcina strains isolated from 13 different locations around the world. We generated the first six complete genomes and methylomes utilizing PacBio sequencing, and an additional 22 draft genomes using Illumina sequencing. Genomic analysis revealed that cocci-shaped Sporosarcina strains contained an average genome of 3.3 Mb comprised of 3222 CDS, 54 tRNAs and 6 rRNAs, while only two strains contained plasmids. The cocci-shaped Sporosarcina genome on average contained 2.3 prophages and 15.6 IS elements, while methylome analysis supported the diversity of these strains as only one of 31 methylation motifs were shared under identical growth conditions. Analysis with a 90% identity cut-off revealed 221 core genes or ~ 7% of the genome, while a 30% identity cut-off generated a pan-genome of 8610 genes. The phylogenetic relationship of the cocci-shaped Sporosarcina strains based on either core genes, accessory genes or spore-related genes consistently resulted in the 29 strains being divided into eight clades. CONCLUSIONS: This study begins to unravel the phylogenetic relationship of cocci-shaped Sporosarcina strains, and the comparative genomics of these strains supports identification of several new species.


Assuntos
Genômica , Sporosarcina/genética , Metilação de DNA , Genoma Bacteriano/genética , Filogenia , Análise Espacial , Sintenia
12.
FEMS Microbiol Lett ; 365(10)2018 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-29617986

RESUMO

Pseudomonas aeruginosa is a well-known dominant opportunistic pathogen in cystic fibrosis (CF) with a wide range of metabolic capacities. However, P. aeruginosa does not colonize the airways alone, and benefits from the metabolic products of neighboring cells-especially volatile molecules that can travel between different parts of the airways easily. Here, we present a study that investigates the metabolic, gene expression profiles and phenotypic responses of a P. aeruginosa clinical isolate to fermentation products lactic acid and 2,3-butanediol, metabolites that are produced by facultative anaerobic members of the CF polymicrobial community and potential biomarkers of disease progression. Although previous studies have successfully investigated the metabolic and transcriptional profiles of P. aeruginosa, most have used common lab reference strains that may differ in important ways from clinical isolates. Using transcriptomics and metabolomics with gas chromatography time of flight mass spectrometry, we observe that fermentation products induce pyocyanin production along with the expression of genes involved in P. aeruginosa amino acid utilization, dormancy and aggregative or biofilm modes of growth. These findings have important implications for how interactions within the diverse CF microbial community influence microbial physiology, with potential clinical consequences.


Assuntos
Biofilmes , Fibrose Cística/microbiologia , Pulmão/metabolismo , Infecções por Pseudomonas/microbiologia , Pseudomonas aeruginosa/genética , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Butileno Glicóis/metabolismo , Fibrose Cística/metabolismo , Fermentação , Humanos , Ácido Láctico/metabolismo , Pulmão/microbiologia , Filogenia , Infecções por Pseudomonas/metabolismo , Pseudomonas aeruginosa/classificação , Pseudomonas aeruginosa/isolamento & purificação , Pseudomonas aeruginosa/fisiologia , Piocianina/metabolismo , Escarro/microbiologia
13.
Front Microbiol ; 9: 3192, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30766528

RESUMO

Bacteriophages are highly abundant in human microbiota where they coevolve with resident bacteria. Phage predation can drive the evolution of bacterial resistance, which can then drive reciprocal evolution in the phage to overcome that resistance. Such coevolutionary dynamics have not been extensively studied in human gut bacteria, and are of particular interest for both understanding and eventually manipulating the human gut microbiome. We performed experimental evolution of an Enterococcus faecium isolate from healthy human stool in the absence and presence of a single infecting Myoviridae bacteriophage, EfV12-phi1. Four replicates of E. faecium and phage were grown with twice daily serial transfers for 8 days. Genome sequencing revealed that E. faecium evolved resistance to phage through mutations in the yqwD2 gene involved in exopolysaccharide biogenesis and export, and the rpoC gene which encodes the RNA polymerase ß' subunit. In response to bacterial resistance, phage EfV12-phi1 evolved varying numbers of 1.8 kb tandem duplications within a putative tail fiber gene. Host range assays indicated that coevolution of this phage-host pair resulted in arms race dynamics in which bacterial resistance and phage infectivity increased over time. Tracking mutations from population sequencing of experimental coevolution can quickly illuminate phage entry points along with resistance strategies in both phage and host - critical information for using phage to manipulate microbial communities.

14.
Nicotine Tob Res ; 15(1): 88-92, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22529222

RESUMO

INTRODUCTION: The initiation and maintenance of tobacco use are influenced by several factors, but of equal and often overlooked importance, until recently, is the palatability of the product. Because of the role that flavor may play in the initiation and maintenance of tobacco use, the Food and Drug Administration has decided to ban the use of flavorings, other than menthol, from cigarettes. To date, little attention has been paid to the impact of flavoring in smokeless tobacco (ST) products. METHODS: This study combined the data from 5 previously completed treatment or switching studies to examine the choice of brand flavor in the course of ST use, from initiation to regular use. RESULTS: The analyses revealed that a majority of subjects' first and current choice of product was flavored, specifically mint or wintergreen, and that a significant number of ST users switched to a flavored brand after already initiating ST use with a regular nonflavored product. In this population, however, flavored products did not appear to lead to greater dependence or increased exposure to nicotine or carcinogens. CONCLUSIONS: More treatment seeking ST users began by using mint-flavored product and switched to and were current users of mint-flavored products. It is possible that mint products play a role in the initiation and maintenance of ST use.


Assuntos
Aromatizantes , Tabaco sem Fumaça , Adolescente , Adulto , Idoso , Humanos , Mentha , Pessoa de Meia-Idade , Tabaco sem Fumaça/estatística & dados numéricos , Adulto Jovem
15.
J Pharmacol Exp Ther ; 342(3): 750-60, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22674470

RESUMO

Polycyclic aromatic hydrocarbons (PAHs) in cigarette smoke are among the most likely causes of lung cancer. PAHs require metabolic activation to initiate the carcinogenic process. Phenanthrene (Phe), a noncarcinogenic PAH, was used as a surrogate of benzo[α]pyrene and related PAHs to study the metabolic activation of PAHs in smokers. A dose of 10 µg of deuterated Phe ([D10]Phe) was administered to 25 healthy smokers in a crossover design, either as an oral solution or by smoking cigarettes containing [D10]Phe. Phe was deuterated to avoid interference from environmental Phe. Intensive blood and urine sampling was performed to quantitate the formation of deuterated r-1,t-2,3,c-4-tetrahydroxy-1,2,3,4-tetrahydrophenanthrene ([D10]PheT), a biomarker of the diol epoxide metabolic activation pathway. In both the oral and smoking arms approximately 6% of the dose was metabolically converted to diol epoxides, with a large intersubject variability in the formation of [D10]PheT observed. Two diagnostic plots were developed to identify subjects with large systemic exposure and significant lung contribution to metabolic activation. The combination of the two plots led to the identification of subjects with substantial local exposure. These subjects produced, in one single pass of [D10]Phe through the lung, a [D10]PheT exposure equivalent to the systemic exposure of a typical subject and may be an indicator of lung cancer susceptibility. Polymorphisms in PAH-metabolizing genes of the 25 subjects were also investigated. The integration of phenotyping and genotyping results indicated that GSTM1-null subjects produced approximately 2-fold more [D10]PheT than did GSTM1-positive subjects.


Assuntos
Fenantrenos/farmacocinética , Hidrocarbonetos Policíclicos Aromáticos/farmacocinética , Fumar/metabolismo , Adulto , Biomarcadores/sangue , Biomarcadores/urina , Biotransformação , Carcinógenos/farmacocinética , Estudos Cross-Over , Feminino , Glutationa Transferase/genética , Glutationa Transferase/metabolismo , Humanos , Neoplasias Pulmonares/etiologia , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Masculino , Pessoa de Meia-Idade , Fenantrenos/sangue , Fenantrenos/urina , Hidrocarbonetos Policíclicos Aromáticos/efeitos adversos , Polimorfismo Genético/efeitos dos fármacos , Polimorfismo Genético/genética , Fumar/efeitos adversos , Fumar/genética , Poluição por Fumaça de Tabaco/efeitos adversos , Adulto Jovem
16.
J Pharmacol Exp Ther ; 338(1): 353-61, 2011 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-21515812

RESUMO

Polycyclic aromatic hydrocarbons (PAHs) are believed to be among the causative agents for lung cancer in smokers. PAHs require metabolic activation for carcinogenicity. One pathway produces diol epoxides that react with DNA, causing mutations. Because diol epoxides are converted to tetraols, quantitation of tetraols can potentially be used to identify smokers who may be at higher risk for lung cancer. Our approach uses [D(10)]phenanthrene, a labeled version of phenanthrene, a noncarcinogenic PAH structurally analogous to carcinogenic PAH. Although smokers are exposed to PAH by inhalation, oral dosing would be more practical for phenotyping studies. Therefore, we investigated [D(10)]phenanthrene metabolism in smokers after administration by inhalation in cigarette smoke or orally. Sixteen smokers received 10 µg of [D(10)]phenanthrene in a cigarette or orally. Plasma and urine samples were analyzed for [D(10)]r-1,t-2,3,c-4-tetrahydroxy-1,2,3,4-tetrahydrophenanthrene ([D(10)]PheT), the major end product of the diol epoxide pathway, by gas chromatography-negative ion chemical ionization-tandem mass spectrometry. The ratios of [D(10)]PheT (oral dosing/inhalation) in 15 smokers were 1.03 ± 0.32 and 1.02 ± 0.35, based on plasma area under the concentration-time curve (0-∞) and total 48-h urinary excretion, respectively. Overall, there was no significant difference in the extent of [D(10)]PheT formation after the two different routes of exposure in smokers. A large interindividual variation in [D(10)]PheT formation was observed. These results demonstrate that the level of [D(10)]PheT in urine after oral dosing of [D(10)]phenanthrene can be used to assess individual capacity of PAH metabolism by the diol epoxide pathway.


Assuntos
Neoplasias Pulmonares/metabolismo , Fenantrenos/administração & dosagem , Fenantrenos/metabolismo , Fumar/metabolismo , Administração por Inalação , Administração Oral , Adulto , Estudos Cross-Over , Suscetibilidade a Doenças/sangue , Suscetibilidade a Doenças/metabolismo , Suscetibilidade a Doenças/urina , Feminino , Humanos , Neoplasias Pulmonares/sangue , Neoplasias Pulmonares/urina , Masculino , Pessoa de Meia-Idade , Fenantrenos/sangue , Fenantrenos/química , Fenantrenos/urina , Fumar/sangue , Fumar/urina
17.
Chem Res Toxicol ; 24(2): 246-52, 2011 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-21184614

RESUMO

Polycyclic aromatic hydrocarbons (PAH) are among the likely major causative agents for lung cancer in smokers. PAH require metabolic activation to exert their carcinogenic effects, and one important pathway proceeds through a three-step sequence resulting in the formation of diol epoxides, which react with DNA to produce adducts that can cause mutations and initiate the carcinogenic process. However, no previous published studies have examined this critical pathway in humans specifically exposed to PAH by inhalation of cigarette smoke. This study used a unique approach employing a stable isotope derivative of phenanthrene, the simplest PAH with a bay region, a feature closely associated with PAH carcinogenicity. Twelve subjects each smoked a cigarette to which [D(10)]phenanthrene had been added. Plasma was analyzed for [D(10)]r-1,t-2,3,c-4-tetrahydroxy-1,2,3,4-tetrahydrophenanthrene ([D(10)]PheT), the major end product of the diol epoxide metabolism pathway of phenanthrene. The analysis was performed by gas chromatography--negative ion chemical ionization--tandem mass spectrometry, using [(13)C(6)]PheT as internal standard. The results demonstrated that the three-step pathway resulting in the formation of diol epoxides, as monitored by [D(10)]PheT, occurred with remarkable rapidity. Levels of [D(10)]PheT in plasma of all subjects were maximal at the earliest time points examined, 15-30 min after smoking the cigarette containing [D(10)]phenanthrene, and decreased thereafter. These results demonstrate that the formation of a PAH diol epoxide occurs rapidly in smokers. Because PAH diol epoxides are mutagenic and carcinogenic, the results clearly demonstrate immediate negative health consequences of smoking, which should serve as a major warning to anyone contemplating initiating tobacco use.


Assuntos
Compostos de Epóxi/metabolismo , Fenantrenos/sangue , Hidrocarbonetos Policíclicos Aromáticos/metabolismo , Fumar/metabolismo , Humanos
18.
J Pharmacol Exp Ther ; 317(2): 838-49, 2006 May.
Artigo em Inglês | MEDLINE | ID: mdl-16434566

RESUMO

Adolescent users of 3,4-methylenedioxymethamphetamine (MDMA, Ecstasy) may escalate their dose because of the development of tolerance. We examined the influence of intermittent adolescent MDMA exposure on the behavioral, physiological, and neurochemical responses to a subsequent MDMA "binge" or to a 5-hydroxytryptamine(1A) (5-HT(1A)) receptor challenge. Male Sprague-Dawley rats were given MDMA (10 mg/kg b.i.d.) or saline every 5th day on postnatal days (PDs) 35 to 60. One week later on PD 67, animals were challenged with either multiple doses of MDMA (four 5 or 10 mg/kg doses) or a single dose of the 5-HT(1A) agonist 8-hydroxy-2-(di-n-propylamino)tetralin (8-OH-DPAT) (0.1 or 0.5 mg/kg). Adolescent MDMA exposure partially attenuated the hyperthermic effects of the PD 67 MDMA challenge, completely blocked the locomotor hypoactivity otherwise observed on the day after the challenge, and also prevented MDMA-induced serotonin neurotoxicity assessed on PD 74 by measuring regional [(3)H]citalopram binding to the serotonin transporter (SERT). Adolescent MDMA-treated animals also showed a partial attenuation of the serotonin syndrome but not the hypothermic response to the high dose of 8-OH-DPAT. However, there was no effect of MDMA administration on regional [(3)H]N-[2-[4-(2-methoxyphenyl)-1-piperazinyl]ethyl]-N-(2-pyridinyl)cyclohexanecarboxamide trihydrochloride (WAY-100635) binding to 5-HT(1A) receptors in the brain or spinal cord. These results suggest that chronic, intermittent MDMA exposure during adolescence induces neuroadaptive changes that can protect against the adverse consequences of a subsequent dose escalation. On the other hand, the same exposure pattern appears to produce a partial 5-HT(1A) receptor desensitization, which may negatively influence the therapeutic responses of chronic MDMA users treated with serotonergic agents for various affective or anxiety disorders.


Assuntos
Comportamento Animal/efeitos dos fármacos , N-Metil-3,4-Metilenodioxianfetamina/toxicidade , Síndromes Neurotóxicas , Agonistas do Receptor 5-HT1 de Serotonina , 8-Hidroxi-2-(di-n-propilamino)tetralina/farmacologia , Envelhecimento/metabolismo , Animais , Comportamento Animal/fisiologia , Peso Corporal/efeitos dos fármacos , Relação Dose-Resposta a Droga , Masculino , Atividade Motora/efeitos dos fármacos , Síndromes Neurotóxicas/metabolismo , Síndromes Neurotóxicas/fisiopatologia , Síndromes Neurotóxicas/prevenção & controle , Piperazinas/farmacologia , Piridinas/farmacologia , Ratos , Ratos Sprague-Dawley
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA