Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
Hypertension ; 81(3): 636-647, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38174566

RESUMO

BACKGROUND: Hypertension is one of the main risk factors for dementia and cognitive impairment. METHODS: We used the model of transverse aortic constriction to induce chronic pressure overload in mice. We characterized brain injury by advanced translational applications of magnetic resonance imaging. In parallel, we analyzed peripheral target organ damage induced by chronic pressure overload by ultrasonography. Microscopical characterization of brain vasculature was performed as well, together with the analysis of immune and inflammatory markers. RESULTS: We identified a specific structural, microstructural, and functional brain injury. In particular, we highlighted a regional enlargement of the hypothalamus, microstructural damage in the white matter of the fimbria, and a reduction of the cerebral blood flow. A parallel analysis performed by confocal microscopy revealed a correspondent tissue damage evidenced by a reduction of cerebral capillary density, paired with loss of pericyte coverage. We assessed cognitive impairment and cardiac damage induced by hypertension to perform correlation analyses with the brain injury severity. At the mechanistic level, we found that CD8+T cells, producing interferon-γ, infiltrated the brain of hypertensive mice. By neutralizing this proinflammatory cytokine, we obtained a rescue of the phenotype, demonstrating their crucial role in establishing the microvascular damage. CONCLUSIONS: Overall, we have used translational tools to comprehensively characterize brain injury in a mouse model of hypertension induced by chronic pressure overload. We have identified early cerebrovascular damage in hypertensive mice, sustained by CD8+IFN-γ+T lymphocytes, which fuel neuroinflammation to establish the injury of brain capillaries.


Assuntos
Lesões Encefálicas , Hipertensão , Camundongos , Animais , Doenças Neuroinflamatórias , Encéfalo/patologia , Imageamento por Ressonância Magnética , Lesões Encefálicas/patologia
2.
Nat Cardiovasc Res ; 2(12): 1277-1290, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38344689

RESUMO

After myocardial infarction (MI), emergency hematopoiesis produces inflammatory myeloid cells that accelerate atherosclerosis and promote heart failure. Since the balance between glycolysis and mitochondrial metabolism regulates hematopoietic stem cell homeostasis, metabolic cues may influence emergency myelopoiesis. Here, we show in humans and female mice that hematopoietic progenitor cells increase fatty acid metabolism after MI. Blockade of fatty acid oxidation by deleting carnitine palmitoyltransferase (Cpt1A) in hematopoietic cells of Vav1Cre/+Cpt1Afl/fl mice limited hematopoietic progenitor proliferation and myeloid cell expansion after MI. We also observed reduced bone marrow adiposity in humans, pigs and mice following MI. Inhibiting lipolysis in adipocytes using AdipoqCreERT2Atglfl/fl mice or local depletion of bone marrow adipocytes in AdipoqCreERT2iDTR mice also curbed emergency hematopoiesis. Furthermore, systemic and regional sympathectomy prevented bone marrow adipocyte shrinkage after MI. These data establish a critical role for fatty acid metabolism in post-MI emergency hematopoiesis.

3.
Nature ; 605(7908): 152-159, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35477759

RESUMO

Atherosclerotic plaques develop in the inner intimal layer of arteries and can cause heart attacks and strokes1. As plaques lack innervation, the effects of neuronal control on atherosclerosis remain unclear. However, the immune system responds to plaques by forming leukocyte infiltrates in the outer connective tissue coat of arteries (the adventitia)2-6. Here, because the peripheral nervous system uses the adventitia as its principal conduit to reach distant targets7-9, we postulated that the peripheral nervous system may directly interact with diseased arteries. Unexpectedly, widespread neuroimmune cardiovascular interfaces (NICIs) arose in mouse and human atherosclerosis-diseased adventitia segments showed expanded axon networks, including growth cones at axon endings near immune cells and media smooth muscle cells. Mouse NICIs established a structural artery-brain circuit (ABC): abdominal adventitia nociceptive afferents10-14 entered the central nervous system through spinal cord T6-T13 dorsal root ganglia and were traced to higher brain regions, including the parabrachial and central amygdala neurons; and sympathetic efferent neurons projected from medullary and hypothalamic neurons to the adventitia through spinal intermediolateral neurons and both coeliac and sympathetic chain ganglia. Moreover, ABC peripheral nervous system components were activated: splenic sympathetic and coeliac vagus nerve activities increased in parallel to disease progression, whereas coeliac ganglionectomy led to the disintegration of adventitial NICIs, reduced disease progression and enhanced plaque stability. Thus, the peripheral nervous system uses NICIs to assemble a structural ABC, and therapeutic intervention in the ABC attenuates atherosclerosis.


Assuntos
Aterosclerose , Placa Aterosclerótica , Animais , Aterosclerose/prevenção & controle , Progressão da Doença , Gânglios Espinais , Gânglios Simpáticos , Camundongos , Neurônios/fisiologia , Placa Aterosclerótica/prevenção & controle
5.
Cell Rep ; 33(11): 108494, 2020 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-33326772

RESUMO

Angiotensin II (AngII) is a peptide hormone that affects the cardiovascular system, not only through typical effects on the vasculature, kidneys, and heart, but also through less understood roles mediated by the brain and the immune system. Here, we address the hard-wired neural connections within the autonomic nervous system that modulate splenic immunity. Chronic AngII infusion triggers burst firing of the vagus nerve celiac efferent, an effect correlated with noradrenergic activation in the spleen and T cell egress. Bioelectronic stimulation of the celiac vagus nerve, in the absence of other challenges and independently from afferent signals to the brain, evokes the noradrenergic splenic pathway to promote release of a growth factor mediating neuroimmune crosstalk, placental growth factor (PlGF), and egress of CD8 effector T cells. Our findings also indicate that the neuroimmune interface mediated by PlGF and necessary for transducing the neural signal into an effective immune response is dependent on α-adrenergic receptor signaling.


Assuntos
Angiotensina II/metabolismo , Linfócitos T CD8-Positivos/metabolismo , Estimulação do Nervo Vago/métodos , Nervo Vago/fisiologia , Animais , Humanos , Camundongos
6.
Arterioscler Thromb Vasc Biol ; 38(10): 2484-2497, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30354220

RESUMO

Objective- EMILIN-1 (elastin microfibrils interface located protein-1) protein inhibits pro-TGF-ß (transforming growth factor-ß) proteolysis and limits TGF-ß bioavailability in vascular extracellular matrix. Emilin1-/- null mice display increased vascular TGF-ß signaling and are hypertensive. Because EMILIN-1 is expressed in vessels from embryonic life to adulthood, we aimed at unravelling whether the hypertensive phenotype of Emilin1-/- null mice results from a developmental defect or lack of homeostatic role in the adult. Approach and Results- By using a conditional gene targeting inactivating EMILIN-1 in smooth muscle cells of adult mice, we show that increased blood pressure in mice with selective smooth muscle cell ablation of EMILIN-1 depends on enhanced myogenic tone. Mechanistically, we unveil that higher TGF-ß signaling in smooth muscle cells stimulates HB-EGF (heparin-binding epidermal growth factor) expression and subsequent transactivation of EGFR (epidermal growth factor receptor). With increasing intraluminal pressure in resistance arteries, the cross talk established by TGF-ß and EGFR signals recruits TRPC6 (TRP [transient receptor potential] classical type 6) and TRPM4 (TRP melastatin type 4) channels, lastly stimulating voltage-dependent calcium channels and potentiating myogenic tone. We found reduced EMILIN-1 and enhanced myogenic tone, dependent on increased TGF-ß-EGFR signaling, in resistance arteries from hypertensive patients. Conclusions- Taken together, our findings implicate an unexpected role of the TGF-ß-EGFR pathway in hypertension with current translational perspectives.


Assuntos
Receptores ErbB/metabolismo , Hipertensão/metabolismo , Glicoproteínas de Membrana/metabolismo , Artérias Mesentéricas/metabolismo , Fator de Crescimento Transformador beta1/metabolismo , Vasoconstrição , Animais , Pressão Sanguínea , Canais de Cálcio/metabolismo , Estudos de Casos e Controles , Células Cultivadas , Modelos Animais de Doenças , Feminino , Fator de Crescimento Semelhante a EGF de Ligação à Heparina/metabolismo , Humanos , Hipertensão/genética , Hipertensão/fisiopatologia , Masculino , Glicoproteínas de Membrana/deficiência , Glicoproteínas de Membrana/genética , Artérias Mesentéricas/efeitos dos fármacos , Artérias Mesentéricas/fisiopatologia , Camundongos Endogâmicos C57BL , Camundongos Knockout , Músculo Liso Vascular/metabolismo , Músculo Liso Vascular/fisiopatologia , Miócitos de Músculo Liso/metabolismo , Transdução de Sinais , Canais de Cátion TRPC/metabolismo , Canal de Cátion TRPC6 , Canais de Cátion TRPM/metabolismo , Fator de Crescimento Transformador beta1/farmacologia , Vasoconstrição/efeitos dos fármacos
7.
Cardiovasc Res ; 114(3): 456-467, 2018 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-29324984

RESUMO

AIMS: Chronic increase of mineralocorticoids obtained by administration of deoxycorticosterone acetate (DOCA) results in salt-dependent hypertension in animals. Despite the lack of a generalized sympathoexcitation, DOCA-salt hypertension has been also associated to overdrive of peripheral nervous system in organs typically targeted by blood pressure (BP), as kidneys and vasculature. Aim of this study was to explore whether DOCA-salt recruits immune system by overactivating sympathetic nervous system in lymphoid organs and whether this is relevant for hypertension. METHODS AND RESULTS: To evaluate the role of the neurosplenic sympathetic drive in DOCA-salt hypertension, we challenged splenectomized mice or mice with left coeliac ganglionectomy with DOCA-salt, observing that they were both unable to increase BP. Then, we evaluated by immunofluorescence and ELISA levels of the placental growth factor (PlGF) upon DOCA-salt challenge, which significantly increased the growth factor expression, but only in the presence of an intact neurosplenic sympathetic drive. When PlGF KO mice were subjected to DOCA-salt, they were significantly protected from the increased BP observed in WT mice under same experimental conditions. In addition, absence of PlGF hampered DOCA-salt mediated T cells co-stimulation and their consequent deployment towards kidneys where they infiltrated tissue and provoked end-organ damage. CONCLUSION: Overall, our study demonstrates that DOCA-salt requires an intact sympathetic drive to the spleen for priming of immunity and consequent BP increase. The coupling of nervous system and immune cells activation in the splenic marginal zone is established through a sympathetic-mediated PlGF release, suggesting that this pathway could be a valid therapeutic target for hypertension.


Assuntos
Pressão Sanguínea , Acetato de Desoxicorticosterona , Gânglios Simpáticos/fisiopatologia , Hipertensão/metabolismo , Ativação Linfocitária , Neuroimunomodulação , Fator de Crescimento Placentário/metabolismo , Baço/inervação , Baço/metabolismo , Linfócitos T/metabolismo , Animais , Modelos Animais de Doenças , Gânglios Simpáticos/cirurgia , Ganglionectomia , Hipertensão/induzido quimicamente , Hipertensão/imunologia , Hipertensão/fisiopatologia , Rim/imunologia , Rim/metabolismo , Camundongos da Linhagem 129 , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fator de Crescimento Placentário/deficiência , Fator de Crescimento Placentário/genética , Baço/imunologia , Esplenectomia , Linfócitos T/imunologia
8.
Rev Esp Cardiol (Engl Ed) ; 70(1): 16-24, 2017 Jan.
Artigo em Inglês, Espanhol | MEDLINE | ID: mdl-27422446

RESUMO

INTRODUCTION AND OBJECTIVES: Cardiovascular diseases, including cardiomyopathy, are the major complications in diabetes. A deeper understanding of the molecular mechanisms leading to cardiomyopathy is critical for developing novel therapies. We proposed phosphoinositide3-kinase gamma (PI3Kγ) as a molecular target against diabetic cardiomyopathy, given the role of PI3Kγ in cardiac remodeling to pressure overload. Given the availability of a pharmacological inhibitor of this molecular target GE21, we tested the validity of our hypothesis by inducing diabetes in mice with genetic ablation of PI3Kγ or knock-in for a catalytically inactive PI3Kγ. METHODS: Mice were made diabetic by streptozotocin. Cardiac function was assessed by serial echocardiographic analyses, while fibrosis and inflammation were evaluated by histological analysis. RESULTS: Diabetes induced cardiac dysfunction in wild-type mice. Systolic dysfunction was completely prevented, and diastolic dysfunction was partially blocked, in both PI3Kγ knock-out and kinase-dead mice. Cardiac dysfunction was similarly rescued by administration of the PI3Kγ inhibitor GE21 in a dose-dependent manner. These actions of genetic and pharmacological PI3Kγ inhibition were associated with a decrease in inflammation and fibrosis in diabetic hearts. CONCLUSIONS: Our study demonstrates a fundamental role of PI3Kγ in diabetic cardiomyopathy in mice and the beneficial effect of pharmacological PI3Kγ inhibition, highlighting its potential as a promising strategy for clinical treatment of cardiac complications of diabetic patients.


Assuntos
Cardiomiopatias Diabéticas/tratamento farmacológico , Inibidores de Fosfoinositídeo-3 Quinase , Animais , Classe Ib de Fosfatidilinositol 3-Quinase/metabolismo , Cardiomiopatias Diabéticas/diagnóstico , Cardiomiopatias Diabéticas/enzimologia , Cardiomiopatias Diabéticas/fisiopatologia , Modelos Animais de Doenças , Ecocardiografia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Miocárdio/enzimologia , Miocárdio/patologia
9.
Nat Commun ; 7: 13035, 2016 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-27676657

RESUMO

The crucial role of the immune system in hypertension is now widely recognized. We previously reported that hypertensive challenges couple the nervous drive with immune system activation, but the physiological and molecular mechanisms of this connection are unknown. Here, we show that hypertensive challenges activate splenic sympathetic nerve discharge to prime immune response. More specifically, a vagus-splenic nerve drive, mediated by nicotinic cholinergic receptors, links the brain and spleen. The sympathetic discharge induced by hypertensive stimuli was absent in both coeliac vagotomized mice and in mice lacking α7nAChR, a receptor typically expressed by peripheral ganglionic neurons. This cholinergic-sympathetic pathway is necessary for T cell activation and egression on hypertensive challenges. In addition, we show that selectively thermoablating the splenic nerve prevents T cell egression and protects against hypertension. This novel experimental procedure for selective splenic denervation suggests new clinical strategies for resistant hypertension.

10.
EMBO Mol Med ; 7(7): 904-17, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25882071

RESUMO

Although PI3Kγ has been extensively investigated in inflammatory and cardiovascular diseases, the exploration of its functions in the brain is just at dawning. It is known that PI3Kγ is present in neurons and that the lack of PI3Kγ in mice leads to impaired synaptic plasticity, suggestive of a role in behavioral flexibility. Several neuropsychiatric disorders, such as attention-deficit/hyperactivity disorder (ADHD), involve an impairment of behavioral flexibility. Here, we found a previously unreported expression of PI3Kγ throughout the noradrenergic neurons of the locus coeruleus (LC) in the brainstem, serving as a mechanism that regulates its activity of control on attention, locomotion and sociality. In particular, we show an unprecedented phenotype of PI3Kγ KO mice resembling ADHD symptoms. PI3Kγ KO mice exhibit deficits in the attentive and mnemonic domains, typical hyperactivity, as well as social dysfunctions. Moreover, we demonstrate that the ADHD phenotype depends on a dysregulation of CREB signaling exerted by a kinase-independent PI3Kγ-PDE4D interaction in the noradrenergic neurons of the locus coeruleus, thus uncovering new tools for mechanistic and therapeutic research in ADHD.


Assuntos
Neurônios Adrenérgicos/patologia , Transtorno do Deficit de Atenção com Hiperatividade/patologia , Classe Ib de Fosfatidilinositol 3-Quinase/metabolismo , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Nucleotídeo Cíclico Fosfodiesterase do Tipo 4/metabolismo , Locus Cerúleo/patologia , Transdução de Sinais , Animais , Transtorno do Deficit de Atenção com Hiperatividade/fisiopatologia , Modelos Animais de Doenças , Locus Cerúleo/fisiopatologia , Camundongos , Camundongos Knockout , Ligação Proteica
11.
Immunity ; 41(5): 737-52, 2014 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-25517614

RESUMO

Hypertension is a health problem affecting over 1 billion people worldwide. How the immune system gets activated under hypertensive stimuli to contribute to blood pressure elevation is a fascinating enigma. Here we showed a splenic role for placental growth factor (PlGF), which accounts for the onset of hypertension, through immune system modulation. PlGF repressed the expression of the protein Timp3 (tissue inhibitor of metalloproteinases 3), through the transcriptional Sirt1-p53 axis. Timp3 repression allowed costimulation of T cells and their deployment toward classical organs involved in hypertension. We showed that the spleen is an essential organ for the development of hypertension through a noradrenergic drive mediated by the celiac ganglion efferent. Overall, we demonstrate that PlGF mediates the neuroimmune interaction in the spleen, organizing a unique and nonredundant response that allows the onset of hypertension.


Assuntos
Pressão Sanguínea/imunologia , Hipertensão/imunologia , Proteínas da Gravidez/imunologia , Baço/imunologia , Angiotensina II/imunologia , Animais , Pressão Sanguínea/genética , Gânglios Simpáticos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Neuroimunomodulação , Fator de Crescimento Placentário , Proteínas da Gravidez/genética , Interferência de RNA , RNA Interferente Pequeno , Sirtuína 1/antagonistas & inibidores , Sirtuína 1/genética , Linfócitos T/imunologia , Inibidor Tecidual de Metaloproteinase-3/biossíntese , Inibidor Tecidual de Metaloproteinase-3/genética , Proteína Supressora de Tumor p53/genética
12.
Hypertension ; 60(1): 188-97, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22615109

RESUMO

Although epidemiological data associate hypertension with a strong predisposition to develop Alzheimer disease, no mechanistic explanation exists so far. We developed a model of hypertension, obtained by transverse aortic constriction, leading to alterations typical of Alzheimer disease, such as amyloid plaques, neuroinflammation, blood-brain barrier dysfunction, and cognitive impairment, shown here for the first time. The aim of this work was to investigate the mechanisms involved in Alzheimer disease of hypertensive mice. We focused on receptor for advanced glycation end products (RAGE) that critically regulates Aß transport at the blood-brain barrier and could be influenced by vascular factors. The hypertensive challenge had an early and sustained effect on RAGE upregulation in brain vessels of the cortex and hippocampus. Interestingly, RAGE inhibition protected from hypertension-induced Alzheimer pathology, as showed by rescue from cognitive impairment and parenchymal Aß deposition. The increased RAGE expression in transverse aortic coarctation mice was induced by increased circulating advanced glycation end products and sustained by their later deposition in brain vessels. Interestingly, a daily treatment with an advanced glycation end product inhibitor or antioxidant prevented the development of Alzheimer traits. So far, Alzheimer pathology in experimental animal models has been recognized using only transgenic mice overexpressing amyloid precursor. This is the first study demonstrating that a chronic vascular insult can activate brain vascular RAGE, favoring parenchymal Aß deposition and the onset of cognitive deterioration. Overall we demonstrate that RAGE activation in brain vessels is a crucial pathogenetic event in hypertension-induced Alzheimer disease, suggesting that inhibiting this target can limit the onset of vascular-related Alzheimer disease.


Assuntos
Peptídeos beta-Amiloides/metabolismo , Encéfalo/metabolismo , Transtornos Cognitivos/metabolismo , Hipertensão/metabolismo , Transtornos da Memória/metabolismo , Receptores Imunológicos/metabolismo , Sal Dissódico do Ácido 1,2-Di-Hidroxibenzeno-3,5 Dissulfônico/farmacologia , Doença de Alzheimer/genética , Doença de Alzheimer/metabolismo , Doença de Alzheimer/fisiopatologia , Animais , Coartação Aórtica/complicações , Vasos Sanguíneos/efeitos dos fármacos , Vasos Sanguíneos/metabolismo , Vasos Sanguíneos/fisiopatologia , Western Blotting , Encéfalo/irrigação sanguínea , Encéfalo/fisiopatologia , Transtornos Cognitivos/genética , Transtornos Cognitivos/fisiopatologia , Inibidores Enzimáticos/farmacologia , Expressão Gênica/efeitos dos fármacos , Produtos Finais de Glicação Avançada/metabolismo , Guanidinas/farmacologia , Hipertensão/etiologia , Hipertensão/genética , Aprendizagem em Labirinto/efeitos dos fármacos , Transtornos da Memória/genética , Transtornos da Memória/fisiopatologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Receptor para Produtos Finais de Glicação Avançada , Receptores Imunológicos/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA