Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
N Engl J Med ; 390(4): 357, 2024 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-38265647
3.
mBio ; 13(5): e0203922, 2022 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-35972147

RESUMO

Herpesviruses-ubiquitous pathogens that cause persistent infections-have some of the most complex cell entry mechanisms. Entry of the prototypical herpes simplex virus 1 (HSV-1) requires coordinated efforts of 4 glycoproteins, gB, gD, gH, and gL. The current model posits that the glycoproteins do not interact before receptor engagement and that binding of gD to its receptor causes a "cascade" of sequential pairwise interactions, first activating the gH/gL complex and subsequently activating gB, the viral fusogen. But how these glycoproteins interact remains unresolved. Here, using a quantitative split-luciferase approach, we show that pairwise HSV-1 glycoprotein complexes form before fusion, interact at a steady level throughout fusion, and do not depend on the presence of the cellular receptor. Based on our findings, we propose a revised "conformational cascade" model of HSV-1 entry. We hypothesize that all 4 glycoproteins assemble into a complex before fusion, with gH/gL positioned between gD and gB. Once gD binds to a cognate receptor, the proximity of the glycoproteins within this complex allows for efficient transmission of the activating signal from the receptor-activated gD to gH/gL to gB through sequential conformational changes, ultimately triggering the fusogenic refolding of gB. Our results also highlight previously unappreciated contributions of the transmembrane and cytoplasmic domains to glycoprotein interactions and fusion. Similar principles could be at play in other multicomponent viral entry systems, and the split-luciferase approach used here is a powerful tool for investigating protein-protein interactions in these and a variety of other systems. IMPORTANCE Herpes simplex virus 1 (HSV-1) infects the majority of humans for life and can cause diseases ranging from painful sores to deadly brain inflammation. No vaccines or curative treatments currently exist. HSV-1 infection of target cells requires coordinated efforts of four viral glycoproteins. But how these glycoproteins interact remains unclear. Using a quantitative protein interaction assay, we found that HSV-1 glycoproteins form receptor-independent complexes and interact at a steady level. We propose that the 4 proteins form a complex, which could facilitate transmission of the entry-triggering signal from the receptor-binding component to the membrane fusogen component through sequential conformational changes. Similar principles could be applicable across other multicomponent protein systems. A revised model of HSV-1 entry could facilitate the development of therapeutics targeting this process.


Assuntos
Herpes Simples , Herpesvirus Humano 1 , Humanos , Herpesvirus Humano 1/genética , Herpesvirus Humano 1/metabolismo , Fusão de Membrana , Proteínas do Envelope Viral/metabolismo , Internalização do Vírus , Glicoproteínas/genética , Glicoproteínas/metabolismo
4.
PLoS Pathog ; 18(6): e1010435, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35767585

RESUMO

Membrane fusion during the entry of herpesviruses is carried out by the viral fusogen gB that is activated by its partner protein gH in some manner. The fusogenic activity of gB is controlled by its cytoplasmic (or intraviral) domain (gBCTD) and, according to the current model, the gBCTD is a trimeric, inhibitory clamp that restrains gB in the prefusion conformation. But how the gBCTD clamp is released by gH is unclear. Here, we identified two new regulatory elements within gB and gH from the prototypical herpes simplex virus 1: a surface pocket within the gBCTD and residue V831 within the gH cytoplasmic tail. Mutagenesis and structural modeling suggest that gH V831 interacts with the gB pocket. The gB pocket is located above the interface between adjacent protomers, and we hypothesize that insertion of the gH V831 wedge into the pocket serves to push the protomers apart, which releases the inhibitory clamp. In this manner, gH activates the fusogenic activity of gB. Both gB and gH are conserved across all herpesviruses, and this activation mechanism could be used by other gB homologs. Our proposed mechanism emphasizes a central role for the cytoplasmic regions in regulating the activity of a viral fusogen.


Assuntos
Herpes Simples , Herpesvirus Humano 1 , Herpesvirus Humano 1/fisiologia , Humanos , Fusão de Membrana/fisiologia , Subunidades Proteicas/metabolismo , Proteínas do Envelope Viral/metabolismo , Internalização do Vírus
5.
Mol Microbiol ; 109(3): 306-326, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29781112

RESUMO

The protist parasite Trypanosoma brucei is an obligate extracellular pathogen that retains its highly polarized morphology during cell division and has evolved a novel cytokinetic process independent of non-muscle myosin II. The polo-like kinase homolog TbPLK is essential for transmission of cell polarity during division and for cytokinesis. We previously identified a putative TbPLK substrate named Tip of the Extending FAZ 1 (TOEFAZ1) as an essential kinetoplastid-specific component of the T. brucei cytokinetic machinery. We performed a proximity-dependent biotinylation identification (BioID) screen using TOEFAZ1 as a means to identify additional proteins that are involved in cytokinesis. Using quantitative proteomic methods, we identified nearly 500 TOEFAZ1-proximal proteins and characterized 59 in further detail. Among the candidates, we identified an essential putative phosphatase that regulates the expression level and localization of both TOEFAZ1 and TbPLK, a previously uncharacterized protein that is necessary for the assembly of a new cell posterior, and a microtubule plus-end directed orphan kinesin that is required for completing cleavage furrow ingression. The identification of these proteins provides new insight into T. brucei cytokinesis and establishes TOEFAZ1 as a key component of this essential and uniquely configured process in kinetoplastids.


Assuntos
Citocinese/fisiologia , Glicoproteínas de Membrana/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas de Protozoários/metabolismo , Trypanosoma brucei brucei/fisiologia , Divisão Celular , Linhagem Celular , Polaridade Celular , Flagelos/metabolismo , Glicoproteínas de Membrana/genética , Microtúbulos/metabolismo , Monoéster Fosfórico Hidrolases/genética , Monoéster Fosfórico Hidrolases/metabolismo , Proteínas Serina-Treonina Quinases/genética , Proteômica , Proteínas de Protozoários/genética , Trypanosoma brucei brucei/genética
6.
Proteomics Clin Appl ; 12(5): e1700142, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29687643

RESUMO

Exosomes are 30-100 nm extracellular vesicles secreted from late endosomes by various types of cells. Numerous studies have suggested that exosomes play significant roles in human immunodeficiency virus 1 (HIV-1) biogenesis. Proteomics coupled with exosome fractionation has been successfully used to identify various exosomal proteins and helped to uncover the interactions between exosomes and HIV-1. To inform the current progress in the intersection of exosome, proteomics, and HIV-1, this review is focused on: i) analyzing different exosome isolation, purification methods, and their implications in HIV-1 studies; ii) evaluating the roles of various proteomic techniques in defining exosomal contents; iii) discussing the research and clinical applications of proteomics and exosome in HIV-1 biology.


Assuntos
Exossomos/genética , Infecções por HIV/genética , HIV-1/genética , Proteômica , Exossomos/virologia , Infecções por HIV/virologia , HIV-1/patogenicidade , Humanos , Biossíntese de Proteínas/genética
7.
J Vis Exp ; (121)2017 03 03.
Artigo em Inglês | MEDLINE | ID: mdl-28287540

RESUMO

Proteomics is the large-scale analysis of proteins. Proteomic techniques, such as liquid chromatography tandem mass spectroscopy (LC-MS/MS), can characterize thousands of proteins at a time. These powerful techniques allow us to have a systemic understanding of cellular changes, especially when cells are subjected to various stimuli, such as infections, stresses, and specific test conditions. Even with recent developments, analyzing the exosomal proteome is time-consuming and often involves complex methodologies. In addition, the resultant large dataset often needs robust and streamlined analysis in order for researchers to perform further downstream studies. Here, we describe a SILAC-based protocol for characterizing the exosomal proteome when cells are infected with HIV-1. The method is based on simple isotope labeling, isolation of exosomes from differentially labeled cells, and mass spectrometry analysis. This is followed by detailed data mining and bioinformatics analysis of the proteomic hits. The resultant datasets and candidates are easy to understand and often offer a wealth of information that is useful for downstream analysis. This protocol is applicable to other subcellular compartments and a wide range of test conditions.


Assuntos
Cromatografia Líquida/métodos , Exossomos/química , HIV-1/metabolismo , Marcação por Isótopo/métodos , Proteoma/análise , Proteômica/métodos , Espectrometria de Massas em Tandem/métodos , Contagem de Células , Células Cultivadas , Humanos , Espectrometria de Massas/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA