Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
1.
Gut ; 2024 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-38857990

RESUMO

OBJECTIVE: Epigenetic mechanisms, including DNA methylation (DNAm), have been proposed to play a key role in Crohn's disease (CD) pathogenesis. However, the specific cell types and pathways affected as well as their potential impact on disease phenotype and outcome remain unknown. We set out to investigate the role of intestinal epithelial DNAm in CD pathogenesis. DESIGN: We generated 312 intestinal epithelial organoids (IEOs) from mucosal biopsies of 168 patients with CD (n=72), UC (n=23) and healthy controls (n=73). We performed genome-wide molecular profiling including DNAm, bulk as well as single-cell RNA sequencing. Organoids were subjected to gene editing and the functional consequences of DNAm changes evaluated using an organoid-lymphocyte coculture and a nucleotide-binding oligomerisation domain, leucine-rich repeat and CARD domain containing 5 (NLRC5) dextran sulphate sodium (DSS) colitis knock-out mouse model. RESULTS: We identified highly stable, CD-associated loss of DNAm at major histocompatibility complex (MHC) class 1 loci including NLRC5 and cognate gene upregulation. Single-cell RNA sequencing of primary mucosal tissue and IEOs confirmed the role of NLRC5 as transcriptional transactivator in the intestinal epithelium. Increased mucosal MHC-I and NLRC5 expression in adult and paediatric patients with CD was validated in additional cohorts and the functional role of MHC-I highlighted by demonstrating a relative protection from DSS-mediated mucosal inflammation in NLRC5-deficient mice. MHC-I DNAm in IEOs showed a significant correlation with CD disease phenotype and outcomes. Application of machine learning approaches enabled the development of a disease prognostic epigenetic molecular signature. CONCLUSIONS: Our study has identified epigenetically regulated intestinal epithelial MHC-I as a novel mechanism in CD pathogenesis.

2.
Dis Model Mech ; 16(10)2023 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-37772705

RESUMO

Organoids, combined with genetic editing strategies, have the potential to offer rapid and efficient investigation of gene function in many models of human disease. However, to date, the editing efficiency of organoids with the use of non-viral electroporation methods has only been up to 30%, with implications for the subsequent need for selection, including turnaround time and exhaustion or adaptation of the organoid population. Here, we describe an efficient method for intestinal organoid editing using a ribonucleoprotein-based CRISPR approach. Editing efficiencies of up to 98% in target genes were robustly achieved across different gut anatomical locations and developmental timepoints from multiple patient samples with no observed off-target editing. The method allowed us to study the effect of loss of the tumour suppressor gene PTEN in normal human intestinal cells. Analysis of PTEN-deficient organoids defined phenotypes that likely relate to its tumour suppressive function in vivo, such as a proliferative advantage and increased organoid budding. Transcriptional profiling revealed differential expression of genes in pathways commonly known to be associated with PTEN loss, including mTORC1 activation.


Assuntos
Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Ribonucleoproteínas , Humanos , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas/genética , Ribonucleoproteínas/metabolismo , Edição de Genes/métodos , Organoides/metabolismo , Sistemas CRISPR-Cas/genética
3.
Nat Rev Gastroenterol Hepatol ; 20(9): 597-614, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37258747

RESUMO

The number of studies investigating the human gastrointestinal tract using various single-cell profiling methods has increased substantially in the past few years. Although this increase provides a unique opportunity for the generation of the first comprehensive Human Gut Cell Atlas (HGCA), there remains a range of major challenges ahead. Above all, the ultimate success will largely depend on a structured and coordinated approach that aligns global efforts undertaken by a large number of research groups. In this Roadmap, we discuss a comprehensive forward-thinking direction for the generation of the HGCA on behalf of the Gut Biological Network of the Human Cell Atlas. Based on the consensus opinion of experts from across the globe, we outline the main requirements for the first complete HGCA by summarizing existing data sets and highlighting anatomical regions and/or tissues with limited coverage. We provide recommendations for future studies and discuss key methodologies and the importance of integrating the healthy gut atlas with related diseases and gut organoids. Importantly, we critically overview the computational tools available and provide recommendations to overcome key challenges.


Assuntos
Trato Gastrointestinal , Organoides , Humanos , Previsões
4.
Cell Mol Gastroenterol Hepatol ; 14(6): 1295-1310, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36038072

RESUMO

BACKGROUND & AIMS: Human intestinal epithelial organoids (IEOs) are a powerful tool to model major aspects of intestinal development, health, and diseases because patient-derived cultures retain many features found in vivo. A necessary aspect of the organoid model is the requirement to expand cultures in vitro through several rounds of passaging. This is of concern because the passaging of cells has been shown to affect cell morphology, ploidy, and function. METHODS: Here, we analyzed 173 human IEO lines derived from the small and large bowel and examined the effect of culture duration on DNA methylation (DNAm). Furthermore, we tested the potential impact of DNAm changes on gene expression and cellular function. RESULTS: Our analyses show a reproducible effect of culture duration on DNAm in a large discovery cohort as well as 2 publicly available validation cohorts generated in different laboratories. Although methylation changes were seen in only approximately 8% of tested cytosine-phosphate-guanine dinucleotides (CpGs) and global cellular function remained stable, a subset of methylation changes correlated with altered gene expression at baseline as well as in response to inflammatory cytokine exposure and withdrawal of Wnt agonists. Importantly, epigenetic changes were found to be enriched in genomic regions associated with colonic cancer and distant to the site of replication, indicating similarities to malignant transformation. CONCLUSIONS: Our study shows distinct culture-associated epigenetic changes in mucosa-derived human IEOs, some of which appear to impact gene transcriptomic and cellular function. These findings highlight the need for future studies in this area and the importance of considering passage number as a potentially confounding factor.


Assuntos
Metilação de DNA , Organoides , Humanos , Intestinos , Epigênese Genética , Mucosa Intestinal
5.
Cancers (Basel) ; 14(7)2022 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-35406401

RESUMO

BACKGROUND: For hepatocellular carcinoma (HCC), effective therapeutic approaches are lacking. As aberrant gene methylation is a major contributor to HCC development, demethylating drugs such as 5-azacytidine (5-Aza) have been proposed. As most 5-Aza mechanisms of action are unknown, we investigated its phenotypic/molecular effects. METHODS: 5-Aza effects were examined in the human HCC cell lines JHH-6/HuH-7 and in the rat cell-line N1-S1. We also employed a xenograft mouse model (HuH-7), a zebrafish model (JHH-6), and an orthotopic syngeneic rat model (N1-S1) of HCC. RESULTS: 5-Aza downregulated cell viability/growth/migration/adhesion by upregulating miR-139-5p, which in turn downregulated ROCK2/cyclin D1/E2F1 and increased p27kip1, resulting in G1/G0 cell accumulation. Moreover, a decrease in cyclin B1 and an increase in p27kip1 led to G2/M accumulation. Finally, we observed a decrease in MMP-2 levels, a stimulator of HCC cell migration. Aza effects were confirmed in the mouse model; in the zebrafish model, we also demonstrated the downregulation of tumor neo-angiogenesis, and in the orthotopic rat model, we observed impaired N1-S1 grafting in a healthy liver. CONCLUSION: We demonstrate for the first time that 5-Aza can impair HCC development via upregulation of miR-139-5p, which in turn impairs the ROCK2/cyclin D1/E2F1/cyclin B1 pro-proliferative pathway and the ROCK2/MMP-2 pro-migratory pathway. Thus, we provide novel information about 5-Aza mechanisms of action and deepen the knowledge about the crosstalk among ROCK2/cyclin D1/E2F1/cyclin B1/p27kip1/MMP-2 in HCC.

6.
Exp Mol Med ; 53(10): 1451-1458, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34663935

RESUMO

The development of human organoid culture models has led to unprecedented opportunities to generate self-organizing, three-dimensional miniature organs that closely mimic in vivo conditions. The ability to expand, culture, and bank such organoids now provide researchers with the opportunity to generate next-generation living biobanks, which will substantially contribute to translational research in a wide range of areas, including drug discovery and testing, regenerative medicine as well as the development of a personalized treatment approach. However, compared to traditional tissue repositories, the generation of a living organoid biobank requires a much higher level of coordination, additional resources, and scientific expertise. In this short review, we discuss the opportunities and challenges associated with the generation of a living organoid biobank. Focusing on human intestinal organoids, we highlight some of the key aspects that need to be considered and provide an outlook for future development in this exciting field.


Assuntos
Organoides , Pesquisa Translacional Biomédica , Bancos de Espécimes Biológicos , Descoberta de Drogas , Humanos , Medicina Regenerativa
7.
Elife ; 102021 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-34612202

RESUMO

Human organoid systems recapitulate key features of organs offering platforms for modelling developmental biology and disease. Tissue-derived organoids have been widely used to study the impact of extrinsic niche factors on stem cells. However, they are rarely used to study endogenous gene function due to the lack of efficient gene manipulation tools. Previously, we established a human foetal lung organoid system (Nikolic et al., 2017). Here, using this organoid system as an example, we have systematically developed and optimised a complete genetic toolbox for use in tissue-derived organoids. This includes 'Organoid Easytag', our efficient workflow for targeting all types of gene loci through CRISPR-mediated homologous recombination followed by flow cytometry for enriching correctly targeted cells. Our toolbox also incorporates conditional gene knockdown or overexpression using tightly inducible CRISPR interference and CRISPR activation which is the first efficient application of these techniques to tissue-derived organoids. These tools will facilitate gene perturbation studies in tissue-derived organoids facilitating human disease modelling and providing a functional counterpart to many ongoing descriptive studies, such as the Human Cell Atlas Project.


Assuntos
Sistemas CRISPR-Cas , Organoides , Técnicas de Silenciamento de Genes/métodos , Marcação de Genes/métodos , Humanos , Pulmão/citologia
8.
Nature ; 597(7875): 250-255, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34497389

RESUMO

The cellular landscape of the human intestinal tract is dynamic throughout life, developing in utero and changing in response to functional requirements and environmental exposures. Here, to comprehensively map cell lineages, we use single-cell RNA sequencing and antigen receptor analysis of almost half a million cells from up to 5 anatomical regions in the developing and up to 11 distinct anatomical regions in the healthy paediatric and adult human gut. This reveals the existence of transcriptionally distinct BEST4 epithelial cells throughout the human intestinal tract. Furthermore, we implicate IgG sensing as a function of intestinal tuft cells. We describe neural cell populations in the developing enteric nervous system, and predict cell-type-specific expression of genes associated with Hirschsprung's disease. Finally, using a systems approach, we identify key cell players that drive the formation of secondary lymphoid tissue in early human development. We show that these programs are adopted in inflammatory bowel disease to recruit and retain immune cells at the site of inflammation. This catalogue of intestinal cells will provide new insights into cellular programs in development, homeostasis and disease.


Assuntos
Envelhecimento , Sistema Nervoso Entérico/citologia , Feto/citologia , Saúde , Intestinos/citologia , Intestinos/crescimento & desenvolvimento , Linfonodos/citologia , Linfonodos/crescimento & desenvolvimento , Adulto , Animais , Criança , Doença de Crohn/patologia , Conjuntos de Dados como Assunto , Sistema Nervoso Entérico/anatomia & histologia , Sistema Nervoso Entérico/embriologia , Sistema Nervoso Entérico/crescimento & desenvolvimento , Células Epiteliais/citologia , Feminino , Feto/anatomia & histologia , Feto/embriologia , Humanos , Intestinos/embriologia , Intestinos/inervação , Linfonodos/embriologia , Linfonodos/patologia , Camundongos , Camundongos Endogâmicos C57BL , Organogênese , Receptores de IgG/metabolismo , Transdução de Sinais , Análise Espaço-Temporal , Fatores de Tempo
9.
STAR Protoc ; 2(2): 100597, 2021 06 18.
Artigo em Inglês | MEDLINE | ID: mdl-34169291

RESUMO

Here, we describe protocols for the preparation and dissociation of human fetal and pediatric intestinal tissue to a high-viability epithelial single-cell suspension. This epithelium-enriched single-cell suspension can then be used to generate single-cell RNA sequencing data as well as to create human intestinal organoids from both the fetal and pediatric intestine. Finally, this protocol details the dissociation of the intestinal organoids for use in single-cell analysis or passaging of organoids. For complete details on the use and execution of this protocol, please refer to Elmentaite et al. (2020).


Assuntos
Mucosa Intestinal/citologia , Organoides/citologia , Análise de Célula Única/métodos , Biópsia , Criança , Humanos
10.
J Control Release ; 330: 1132-1151, 2021 02 10.
Artigo em Inglês | MEDLINE | ID: mdl-33212117

RESUMO

Given the lack of effective treatments for Hepatocellular carcinoma (HCC), the development of novel therapeutic approaches is very urgent. Here, siRNAs were delivered to HCC cells by a synthetic polymer containing α,ß-poly-(N-2-hydroxyethyl)-D,L-aspartamide-(PHEA) derivatized with diethylene triamine (DETA) and bearing in the side chain galactose (GAL) linked via a polyethylene glycol (PEG) to obtain (PHEA-DETA-PEG-GAL, PDPG). The GAL residue allows the targeting to the asialo-glycoprotein receptor (ASGPR), overexpressed in HCC cells compared to normal hepatocytes. Uptake studies performed using a model siRNA or a siRNA targeted against the enhanced green fluorescence protein, demonstrated the PDPG specific delivery of siRNA to HuH7 cells, a human cellular model of HCC. GAL-free copolymer (PHEA-DETA-PEG-NH2, PDP) or the chemical block of ASGPR, impaired PDPG targeting effectiveness in vitro. The specificity of PDPG delivery was confirmed in vivo in a mouse dorsal skinfold window chamber assay. Functional studies using siRNAs targeting the mRNAs of HCC-related genes (eEF1A1, eEF1A2 and E2F1) delivered by PDPG, significantly decreased HuH7 vitality/number and down regulated the expression of the target genes. Only minor effectiveness was in contrast observed for PDP. In IHH, a human model of normal hepatocytes with reduced ASGPR expression, PDPG barely reduced cell vitality. In a subcutaneous xenograft mouse model of HCC, PDPG-siRNAs reduced HCC tumor growth compared to controls without significant toxic effects. In conclusion, our study demonstrates the valuable potentials of PDPG for the specific delivery of siRNAs targeting HCC-related genes.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Animais , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/terapia , Galactose , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/terapia , Camundongos , Polímeros , RNA Interferente Pequeno
11.
Pharmaceutics ; 11(10)2019 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-31652539

RESUMO

The unmet need for novel therapeutic options for ovarian cancer (OC) deserves further investigation. Among the different novel drugs, small interfering RNAs (siRNAs) are particularly attractive because of their specificity of action and efficacy, as documented in many experimental setups. However, the fragility of these molecules in the biological environment necessitates the use of delivery materials able to protect them and possibly target them to the cancer cells. Among the different delivery materials, those based on polymers and lipids are considered very interesting because of their biocompatibility and ability to carry/deliver siRNAs. Despite these features, polymers and lipids need to be engineered to optimize their delivery properties for OC. In this review, we concentrated on the description of the therapeutic potential of siRNAs and polymer-/lipid-based delivery systems for OC. After a brief description of OC and siRNA features, we summarized the strategies employed to minimize siRNA delivery problems, the targeting strategies to OC, and the preclinical models available. Finally, we discussed the most interesting works published in the last three years about polymer-/lipid-based materials for siRNA delivery.

12.
Sci Rep ; 9(1): 5668, 2019 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-30952937

RESUMO

Remarkable deregulation of microRNAs has been demonstrated in epithelial ovarian cancer (EOC). In particular, some of the let-7 miRNA family members have been proposed as tumor suppressors. Here, we explored the functional roles of let-7g in EOC. The ectopic overexpression of let-7g in OVCAR3 and HEY-A8 EOC cells induced i) a down-regulation of c-Myc and cyclin-D2 thus promoting cell cycle arrest, ii) a reduction of Vimentin, Snail and Slug thus counteracting the progression of epithelial to mesenchymal transition, iii) a chemosensitization to cis-platinum treatment. Next, analysis of human EOC tissues revealed that let-7g expression was significantly reduced in tumor tissue specimens of patients with EOC compared to their non-tumor counterparts (p = 0.0002). Notably, low let-7g tissue levels were significantly associated with acquired chemoresistance of patients with late-stage of EOC (n = 17, p = 0.03194). This finding was further validated in the serum samples collected from the same cohort of patients (n = 17, p = 0.003). To conclude, we demonstrate that let-7g acts as tumor suppressor and might be used to disable EOC tumor progression and chemoresistance to cis-platinum-based chemotherapy. Furthermore, we propose that decreased expression of let-7g could serve as a tissue and serum biomarker able to predict the chemo-resistant features of EOC patients.


Assuntos
Biomarcadores Tumorais/genética , Carcinoma Epitelial do Ovário/genética , Resistencia a Medicamentos Antineoplásicos/genética , Genes Supressores de Tumor/fisiologia , MicroRNAs/genética , Neoplasias Ovarianas/genética , Apoptose/genética , Linhagem Celular Tumoral , Proliferação de Células/genética , Regulação para Baixo/genética , Transição Epitelial-Mesenquimal/genética , Feminino , Regulação Neoplásica da Expressão Gênica/genética , Humanos , Pessoa de Meia-Idade , Neoplasias Epiteliais e Glandulares/genética
13.
Molecules ; 23(4)2018 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-29597300

RESUMO

Despite the advances in anticancer therapies, their effectiveness for many human tumors is still far from being optimal. Significant improvements in treatment efficacy can come from the enhancement of drug specificity. This goal may be achieved by combining the use of therapeutic molecules with tumor specific effects and delivery carriers with tumor targeting ability. In this regard, nucleic acid-based drug (NABD) and particularly small interfering RNAs (siRNAs), are attractive molecules due to the possibility to be engineered to target specific tumor genes. On the other hand, polymeric-based delivery systems are emerging as versatile carriers to generate tumor-targeted delivery systems. Here we will focus on the most recent findings in the selection of siRNA/polymeric targeted delivery systems for hepatocellular carcinoma (HCC), a human tumor for which currently available therapeutic approaches are poorly effective. In addition, we will discuss the most attracting and, in our opinion, promising siRNA-polymer combinations for HCC in relation to the biological features of HCC tissue. Attention will be also put on the mathematical description of the mechanisms ruling siRNA-carrier delivery, this being an important aspect to improve effectiveness reducing the experimental work.


Assuntos
Carcinoma Hepatocelular , Sistemas de Liberação de Medicamentos/métodos , Neoplasias Hepáticas , Modelos Biológicos , Polímeros , RNA Interferente Pequeno , Animais , Carcinoma Hepatocelular/tratamento farmacológico , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/patologia , Humanos , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patologia , Modelos Químicos , Polímeros/química , Polímeros/uso terapêutico , RNA Interferente Pequeno/química , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/uso terapêutico
14.
Materials (Basel) ; 10(8)2017 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-28825682

RESUMO

Because of its high biocompatibility, bio-degradability, low-cost and easy availability, cellulose finds application in disparate areas of research. Here we focus our attention on the most recent and attractive potential applications of cellulose in the biomedical field. We first describe the chemical/structural composition of cellulose fibers, the cellulose sources/features and cellulose chemical modifications employed to improve its properties. We then move to the description of cellulose potential applications in biomedicine. In this field, cellulose is most considered in recent research in the form of nano-sized particle, i.e., nanofiber cellulose (NFC) or cellulose nanocrystal (CNC). NFC is obtained from cellulose via chemical and mechanical methods. CNC can be obtained from macroscopic or microscopic forms of cellulose following strong acid hydrolysis. NFC and CNC are used for several reasons including the mechanical properties, the extended surface area and the low toxicity. Here we present some potential applications of nano-sized cellulose in the fields of wound healing, bone-cartilage regeneration, dental application and different human diseases including cancer. To witness the close proximity of nano-sized cellulose to the practical biomedical use, examples of recent clinical trials are also reported. Altogether, the described examples strongly support the enormous application potential of nano-sized cellulose in the biomedical field.

15.
Tumour Biol ; 39(6): 1010428317705746, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28618925

RESUMO

New reliable approaches to stratify patients with endometrial cancer into risk categories are highly needed. We have recently demonstrated that DJ-1 is overexpressed in endometrial cancer, showing significantly higher levels both in serum and tissue of patients with high-risk endometrial cancer compared with low-risk endometrial cancer. In this experimental study, we further extended our observation, evaluating the role of DJ-1 as an accurate serum biomarker for high-risk endometrial cancer. A total of 101 endometrial cancer patients and 44 healthy subjects were prospectively recruited. DJ-1 serum levels were evaluated comparing cases and controls and, among endometrial cancer patients, between high- and low-risk patients. The results demonstrate that DJ-1 levels are significantly higher in cases versus controls and in high- versus low-risk patients. The receiver operating characteristic curve analysis shows that DJ-1 has a very good diagnostic accuracy in discriminating endometrial cancer patients versus controls and an excellent accuracy in distinguishing, among endometrial cancer patients, low- from high-risk cases. DJ-1 sensitivity and specificity are the highest when high- and low-risk patients are compared, reaching the value of 95% and 99%, respectively. Moreover, DJ-1 serum levels seem to be correlated with worsening of the endometrial cancer grade and histotype, making it a reliable tool in the preoperative decision-making process.


Assuntos
Biomarcadores Tumorais/sangue , Neoplasias do Endométrio/sangue , Prognóstico , Proteína Desglicase DJ-1/sangue , Adulto , Idoso , Neoplasias do Endométrio/patologia , Feminino , Humanos , Pessoa de Meia-Idade
16.
Adv Colloid Interface Sci ; 249: 163-180, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28527520

RESUMO

Over the past ten years, the global biopharmaceutical market has remarkably grown, with ten over the top twenty worldwide high performance medical treatment sales being biologics. Thus, biotech R&D (research and development) sector is becoming a key leading branch, with expanding revenues. Biotechnology offers considerable advantages compared to traditional therapeutic approaches, such as reducing side effects, specific treatments, higher patient compliance and therefore more effective treatments leading to lower healthcare costs. Within this sector, smart nanotechnology and colloidal self-assembling systems represent pivotal tools able to modulate the delivery of therapeutics. A comprehensive understanding of the processes involved in the self-assembly of the colloidal structures discussed therein is essential for the development of relevant biomedical applications. In this review we report the most promising and best performing platforms for specific classes of bioactive molecules and related target, spanning from siRNAs, gene/plasmids, proteins/growth factors, small synthetic therapeutics and bioimaging probes.


Assuntos
Sistemas de Liberação de Medicamentos/métodos , Hidrogéis/química , Terapia de Alvo Molecular , Nanopartículas/química , Nanotecnologia/métodos , Animais , Anticorpos/farmacologia , Diagnóstico por Imagem/métodos , Humanos , Peptídeos e Proteínas de Sinalização Intercelular/genética , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Lipossomos/química , Lipossomos/metabolismo , Camundongos , Sondas Moleculares/síntese química , Nanopartículas/metabolismo , Plasmídeos/química , Plasmídeos/metabolismo , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Bibliotecas de Moléculas Pequenas/síntese química , Bibliotecas de Moléculas Pequenas/farmacologia , Transgenes
17.
Expert Opin Drug Deliv ; 14(6): 797-810, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-28266887

RESUMO

INTRODUCTION: hepatocellular carcinoma (hcc) is the predominant form of primary liver cancer and the second leading cause of cancer-associated mortality worldwide. available therapies for hcc have limited efficacy due to often late diagnosis and the general resistance of hcc to anti-cancer agents; therefore, the development of novel therapeutics is urgently required. small-interfering rna (sirna) molecules are short, double-stranded rnas that specifically recognize and bind the mrna of a target gene to inhibit gene expression. despite the great therapeutic potential of sirnas towards many human tumors including hcc, their use is limited by suboptimal delivery. Areas covered: In this review, we outline the current data regarding the therapeutic potential of siRNAs in HCC and describe the development of effective siRNA delivery systems. We detail the key problems associated with siRNA delivery and discuss the possible solutions. Finally, we provide examples of the various siRNA delivery strategies that have been employed in animal models of HCC and in human patients enrolled in clinical trials. Expert opinion: Despite the existing difficulties in siRNA delivery for HCC, the increasing scientific attention and breakthrough studies in this field is facilitating the design of novel and efficient technical solutions that may soon find practical applications.


Assuntos
Carcinoma Hepatocelular/terapia , Neoplasias Hepáticas/terapia , RNA Interferente Pequeno/administração & dosagem , Animais , Antineoplásicos/uso terapêutico , Carcinoma Hepatocelular/genética , Linhagem Celular , Humanos , Neoplasias Hepáticas/genética
18.
Int J Pharm ; 525(2): 367-376, 2017 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-28229942

RESUMO

Eukaryotic elongation factor 1A (eEF1A), a protein involved in protein synthesis, has two major isoforms, eEF1A1 and eEF1A2. Despite the evidences of their involvement in hepatocellular carcinoma (HCC), the quantitative contribution of each of the two isoforms to the disease is unknown. We depleted the two isoforms by means of siRNAs and studied the effects in three different HCC cell lines. Particular care was dedicated to select siRNAs able to target each of the two isoform without affecting the other one. This is not a trivial aspect due to the high sequence homology between eEF1A1 and eEF1A2. The selected siRNAs can specifically deplete either eEF1A1 or eEF1A2. This, in turn, results in an impairment of cell vitality, growth and arrest in the G1/G0 phase of the cell cycle. Notably, these effects are quantitatively superior following eEF1A1 than eEF1A2 depletion. Moreover, functional tests revealed that the G1/G0 block induced by eEF1A1 depletion depends on the down-regulation of the transcription factor E2F1, a known player in HCC. In conclusion, our data indicate that the independent targeting of the two eEF1A isoforms is effective in reducing HCC cell growth and that eEF1A1 depletion may result in a more evident effect.


Assuntos
Carcinoma Hepatocelular/metabolismo , Neoplasias Hepáticas/metabolismo , Fator 1 de Elongação de Peptídeos/metabolismo , RNA Interferente Pequeno/administração & dosagem , Linhagem Celular Tumoral , Humanos , Lipossomos/química , Isoformas de Proteínas
19.
Int J Pharm ; 525(2): 397-406, 2017 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-28119125

RESUMO

The limited efficacy of available treatments for hepatocellular carcinoma (HCC) requires the development of novel therapeutic approaches. We synthesized a novel cationic polymer based on α,ß-poly-(N-2-hydroxyethyl)-d,L-aspartamide (PHEA) for drug delivery to HCC cells. The copolymer was synthesized by subsequent derivatization of PHEA with diethylene triamine (DETA) and with a polyethylene glycol (PEG) derivative bearing galactose (GAL) molecules, obtaining the cationic derivative PHEA-DETA-PEG-GAL. PHEA-DETA-PEG-GAL has suitable chemical-physical characteristics for a potential systemic use and can effectively deliver a siRNA (siE2F1) targeted against the transcription factor E2F1, a gene product involved in HCC. The presence of GAL residues in the polyplexes allows the targeting of HCC cells that express the asialo-glycoprotein receptor (ASGP-R). In these cells, but not in ASGP-R non-expressing cells, PHEA-DETA-PEG-GAL/siE2F1 polyplexes induce the reduction of the mRNA and protein levels of E2F1 and of E2F1-regulated genes, all involved in the promotion of the G1/S phase transition. This results in a decrease of cell proliferation with a G1/G0 phase cells accumulation. Notably, removal of GAL residue almost completely abrogates the targeting capacity of the developed polyplexes. In conclusion, the generated polyplexes demonstrate the potential to effectively contributing to the development of novel anti-HCC therapeutic approaches via a siRNA-targeted delivery.


Assuntos
Carcinoma Hepatocelular/genética , Inativação Gênica , Neoplasias Hepáticas/genética , Peptídeos/química , RNA Interferente Pequeno/administração & dosagem , Carcinoma Hepatocelular/terapia , Linhagem Celular Tumoral , Fator de Transcrição E2F1/genética , Humanos , Neoplasias Hepáticas/terapia , Polímeros
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA