Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Inorg Chem ; 60(15): 10909-10922, 2021 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-34292708

RESUMO

In recent years, development of new energetic compounds and formulations, suitable for ignition with relatively low-power lasers, is a highly active and competitive field of research. The main goal of these efforts is focused on achieving and providing much safer solutions for various detonator and initiator systems. In this work, we prepared, characterized, and studied thermal and ignition properties of a new laser-ignitable compound, based on the 5,6-bis(ethylnitroamino)-N'2,N'3-dihydroxypyrazine-2,3-bis(carboximidamide) (DS3) proligand. This new energetic proligand was prepared in three steps, starting with 5,6-bis(ethylamino)-pyrazine-2,3-dicarbonitrile. Crystallography studies of the DS3-derived Cu(II) complex (DS4) revealed a unique stacked antenna-type structure of the latter compound. DS4 has an exothermal temperature of 154.5 °C and was calculated to exhibit a velocity of detonation of 6.36 km·s-1 and a detonation pressure of 15.21 GPa. DS4 showed properties of a secondary explosive, having sensitivity to impact, friction, and electrostatic discharge of 8 J, 360 N, and 12 mJ, respectively. In order to study the mechanism of ignition by a laser (using a diode laser, 915 nm), we conducted a set of experiments that enabled us to characterize a photothermal ignition mechanism. Furthermore, we found that a single pulse, with a time duration of 1 ms and with a total energy of 4.6 mJ, was sufficient for achieving a consistent and full ignition of DS4. Dual-pulse experiments, with variable time intervals between the laser pulses, showed that DS4 undergoes ignition via a photothermal mechanism. Finally, calculating the chemical mechanism of the formation of the complex DS4 and modeling its anhydrous and hydrated crystal structures (density functional theory calculations using Gaussian and HASEM software) allowed us to pinpoint a more precise location of water molecules in experimental crystallographic data. These results suggest that DS4 has potential for further development to a higher technology readiness level and for integration into small-size safe detonator systems as for many civil, aerospace, and defense applications.

2.
ACS Cent Sci ; 6(1): 54-75, 2020 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-31989026

RESUMO

Extensive density functional theory (DFT) calculation and data analysis on molecular and crystal level features of 60 reported energetic materials (EMs) allowed us to define key descriptors that are characteristics of these compounds' thermostability. We see these descriptors as reminiscent of "Lipinski's rule of 5", which revolutionized the design of new orally active pharmaceutical molecules. The proposed descriptors for thermostable EMs are of a type of molecular design, location and type of the weakest bond in the energetic molecule, as well as specific ranges of oxygen balance, crystal packing coefficient, Hirshfeld surface hydrogen bonding, and crystal lattice energy. On this basis, we designed three new thermostable EMs containing bridged, 3,5-dinitropyrazole moieties, HL3, HL7, and HL9, which were synthesized, characterized, and evaluated in small-scale field detonation experiments. The best overall performing compound HL7 exhibited an onset decomposition temperature of 341 °C and has a density of 1.865 g cm-3, and the calculated velocity of detonation and maximum detonation pressure were 8517 m s-1 and 30.6 GPa, respectively. Considering HL7's impressive safety parameters [impact sensitivity (IS) = 22 J; friction sensitivity (FS) = 352; and electrostatic discharge sensitivity (ESD) = 1.05 J] and the results of small-scale field detonation experiments, the proposed guidelines should further promote the rational design of novel thermostable EMs, suitable for deep well drilling, space exploration, and other high-value defense and civil applications.

3.
Molecules ; 24(23)2019 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-31779257

RESUMO

Due to a significant and prolific activity in the field of design and synthesis of new energetic molecules, it becomes increasingly difficult to introduce new explosophore structures with attractive properties. In this work, we synthesized a trans-bimane-based energetic material-3,7-diamino-2,6-dinitro-1H,5H-pyrazolo-[1,2-a]pyrazole-1,5-dione (4), the structure of which was comprehensively analyzed by a variety of advanced spectroscopic methods and by X-ray crystallo-graphy (with density of 1.845 g·cm-3 at 173 K). Although obtained crystals of 4 contained solvent molecules in their structure, state-of-the-art density functional theory (DFT) computational techniques allowed us to predict that solvent-free crystals of this explosive would preserve a similar tightly packed planar layered molecular arrangement, with the same number of molecules of 4 per unit cell, but with a smaller unit cell volume and therefore higher energy density. Explosive 4 was found to be heat resistant, with an onset decomposition temperature of 328.8 °C, and was calculated to exhibit velocity of detonation in a range of 6.88-7.14 km·s-1 and detonation pressure in the range of 19.14-22.04 GPa, using for comparison both HASEM and the EXPLO 5 software. Our results indicate that the trans-bimane explosophore could be a viable platform for the development of new thermostable energetic materials.


Assuntos
Compostos Bicíclicos Heterocíclicos com Pontes/química , Substâncias Explosivas/química , Temperatura Alta , Pirazóis/química , Software , Solventes/química , Termodinâmica
4.
ACS Appl Mater Interfaces ; 8(33): 21674-82, 2016 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-27483139

RESUMO

A series of novel highly thermostable energetic coordination polymers (ECPs), with promising mechanical sensitivity properties, were prepared by an in situ oxidation-coordination reaction of triaminoguanidine hydrochloride with copper nitrate in aqueous solution. The molecular structures and properties of these ECPs could be tuned, by varying the ratios and concentrations of the starting materials. Our ECPs exhibit remarkable thermostability (>390 °C) and very low sensitivity to impact (Im > 98 J). The best-performing material (ECP-5) has a calculated detonation velocity of 8969 m·s(-1) and a decomposition peak temperature of 396.9 °C, demonstrating an outstanding balance between two inherently contradicting properties: high detonation performance and very low sensitivity.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA