Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 84
Filtrar
1.
Cell Rep ; 43(5): 114199, 2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38728138

RESUMO

Implantable electrode arrays are powerful tools for directly interrogating neural circuitry in the brain, but implementing this technology in the spinal cord in behaving animals has been challenging due to the spinal cord's significant motion with respect to the vertebral column during behavior. Consequently, the individual and ensemble activity of spinal neurons processing motor commands remains poorly understood. Here, we demonstrate that custom ultraflexible 1-µm-thick polyimide nanoelectronic threads can conduct laminar recordings of many neuronal units within the lumbar spinal cord of unrestrained, freely moving mice. The extracellular action potentials have high signal-to-noise ratio, exhibit well-isolated feature clusters, and reveal diverse patterns of activity during locomotion. Furthermore, chronic recordings demonstrate the stable tracking of single units and their functional tuning over multiple days. This technology provides a path for elucidating how spinal circuits compute motor actions.


Assuntos
Eletrodos Implantados , Medula Espinal , Animais , Medula Espinal/fisiologia , Camundongos , Potenciais de Ação/fisiologia , Atividade Motora/fisiologia , Neurônios/fisiologia , Locomoção/fisiologia , Camundongos Endogâmicos C57BL , Masculino
2.
Cell Rep ; 42(11): 113282, 2023 11 28.
Artigo em Inglês | MEDLINE | ID: mdl-38007688

RESUMO

Schwann cells respond to acute axon damage by transiently transdifferentiating into specialized repair cells that restore sensorimotor function. However, the molecular systems controlling repair cell formation and function are not well defined, and consequently, it is unclear whether this form of cellular plasticity has a role in peripheral neuropathies. Here, we identify Mitf as a transcriptional sensor of axon damage under the control of Nrg-ErbB-PI3K-PI5K-mTorc2 signaling. Mitf regulates a core transcriptional program for generating functional repair Schwann cells following injury and during peripheral neuropathies caused by CMT4J and CMT4D. In the absence of Mitf, core genes for epithelial-to-mesenchymal transition, metabolism, and dedifferentiation are misexpressed, and nerve repair is disrupted. Our findings demonstrate that Schwann cells monitor axonal health using a phosphoinositide signaling system that controls Mitf nuclear localization, which is critical for activating cellular plasticity and counteracting neural disease.


Assuntos
Traumatismos dos Nervos Periféricos , Doenças do Sistema Nervoso Periférico , Humanos , Doenças do Sistema Nervoso Periférico/metabolismo , Células de Schwann/metabolismo , Axônios/metabolismo , Transdução de Sinais/fisiologia , Plasticidade Celular , Regeneração Nervosa/fisiologia , Traumatismos dos Nervos Periféricos/genética , Traumatismos dos Nervos Periféricos/metabolismo , Nervo Isquiático/metabolismo
3.
Cell Transplant ; 32: 9636897221107009, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37088987

RESUMO

One of the challenges in clinical translation of cell-replacement therapies is the definition of optimal cell generation and storage/recovery protocols which would permit a rapid preparation of cell-treatment products for patient administration. Besides, the availability of injection devices that are simple to use is critical for potential future dissemination of any spinally targeted cell-replacement therapy into general medical practice. Here, we compared the engraftment properties of established human-induced pluripotent stem cells (hiPSCs)-derived neural precursor cell (NPCs) line once cells were harvested fresh from the cell culture or previously frozen and then grafted into striata or spinal cord of the immunodeficient rat. A newly developed human spinal injection device equipped with a spinal cord pulsation-cancelation magnetic needle was also tested for its safety in an adult immunosuppressed pig. Previously frozen NPCs showed similar post-grafting survival and differentiation profile as was seen for freshly harvested cells. Testing of human injection device showed acceptable safety with no detectable surgical procedure or spinal NPCs injection-related side effects.


Assuntos
Reprogramação Celular , Células-Tronco Pluripotentes Induzidas , Injeções Espinhais , Células-Tronco Neurais , Transplante de Células-Tronco , Adulto , Animais , Humanos , Ratos , Diferenciação Celular/fisiologia , Reprogramação Celular/genética , Reprogramação Celular/fisiologia , Vetores Genéticos/genética , Sobrevivência de Enxerto/fisiologia , Células-Tronco Pluripotentes Induzidas/fisiologia , Células-Tronco Pluripotentes Induzidas/transplante , Injeções Espinhais/efeitos adversos , Injeções Espinhais/instrumentação , Injeções Espinhais/métodos , Células-Tronco Neurais/fisiologia , Células-Tronco Neurais/transplante , Vírus Sendai , Manejo de Espécimes/métodos , Transplante de Células-Tronco/efeitos adversos , Transplante de Células-Tronco/instrumentação , Transplante de Células-Tronco/métodos , Suínos , Coleta de Tecidos e Órgãos/métodos , Resultado do Tratamento , Encéfalo , Medula Espinal
4.
bioRxiv ; 2023 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-36993220

RESUMO

Innate and goal-directed movements require a high-degree of trunk and appendicular muscle coordination to preserve body stability while ensuring the correct execution of the motor action. The spinal neural circuits underlying motor execution and postural stability are finely modulated by propriospinal, sensory and descending feedback, yet how distinct spinal neuron populations cooperate to control body stability and limb coordination remains unclear. Here, we identified a spinal microcircuit composed of V2 lineage-derived excitatory (V2a) and inhibitory (V2b) neurons that together coordinate ipsilateral body movements during locomotion. Inactivation of the entire V2 neuron lineage does not impair intralimb coordination but destabilizes body balance and ipsilateral limb coupling, causing mice to adopt a compensatory festinating gait and be unable to execute skilled locomotor tasks. Taken together our data suggest that during locomotion the excitatory V2a and inhibitory V2b neurons act antagonistically to control intralimb coordination, and synergistically to coordinate forelimb and hindlimb movements. Thus, we suggest a new circuit architecture, by which neurons with distinct neurotransmitter identities employ a dual-mode of operation, exerting either synergistic or opposing functions to control different facets of the same motor behavior.

5.
Elife ; 112022 12 13.
Artigo em Inglês | MEDLINE | ID: mdl-36512397

RESUMO

Elaborate behaviours are produced by tightly controlled flexor-extensor motor neuron activation patterns. Motor neurons are regulated by a network of interneurons within the spinal cord, but the computational processes involved in motor control are not fully understood. The neuroanatomical arrangement of motor and premotor neurons into topographic patterns related to their controlled muscles is thought to facilitate how information is processed by spinal circuits. Rabies retrograde monosynaptic tracing has been used to label premotor interneurons innervating specific motor neuron pools, with previous studies reporting topographic mediolateral positional biases in flexor and extensor premotor interneurons. To more precisely define how premotor interneurons contacting specific motor pools are organized, we used multiple complementary viral-tracing approaches in mice to minimize systematic biases associated with each method. Contrary to expectations, we found that premotor interneurons contacting motor pools controlling flexion and extension of the ankle are highly intermingled rather than segregated into specific domains like motor neurons. Thus, premotor spinal neurons controlling different muscles process motor instructions in the absence of clear spatial patterns among the flexor-extensor circuit components.


The spinal cord contains circuits of nerve cells that control how the body moves. Within these networks are interneurons that project to motor neurons, which innervate different types of muscle to contract: flexors (such as the biceps), which bend, or 'flex', the body's joints, and extensors (such as the triceps), which lead to joint extension. These motor signals must be carefully coordinated to allow precise and stable control of the body's movements. Previous studies suggest that where interneurons are placed in the spinal cord depends on whether they activate the motor neurons responsible for flexion or extension. To test if these findings were reproducible, Ronzano, Skarlatou, Barriga, Bannatyne, Bhumbra et al. studied interneurons which flex and extend the ankle joint in mice. In collaboration with several laboratories, the team used a combination of techniques to trace how interneurons and motor neurons were connected in the mouse spinal cord. This revealed that regardless of the method used or the laboratory in which the experiments were performed, the distribution of interneurons associated with flexion and extension overlapped one another. This finding contradicts previously published results and suggests that interneurons in the spinal cord are not segregated based on their outputs. Instead, they may be positioned based on the signals they receive, similar to motor neurons. Understanding where interneurons in the spinal cord are placed will provide new insights on how movement is controlled and how it is impacted by injuries and disease. In the future, this knowledge could benefit work on how neural circuits in the spinal cord are formed and how they can be regenerated.


Assuntos
Interneurônios , Músculos , Medula Espinal , Animais , Camundongos , Interneurônios/fisiologia , Neurônios Motores/fisiologia , Raiva , Medula Espinal/fisiologia
6.
Neuron ; 110(24): 4090-4107.e11, 2022 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-36240771

RESUMO

The nervous system requires metabolites and oxygen supplied by the neurovascular network, but this necessitates close apposition of neurons and endothelial cells. We find motor neurons attract vessels with long-range VEGF signaling, but endothelial cells in the axonal pathway are an obstacle for establishing connections with muscles. It is unclear how this paradoxical interference from heterotypic neurovascular contacts is averted. Through a mouse mutagenesis screen, we show that Plexin-D1 receptor is required in endothelial cells for development of neuromuscular connectivity. Motor neurons release Sema3C to elicit short-range repulsion via Plexin-D1, thus displacing endothelial cells that obstruct axon growth. When this signaling pathway is disrupted, epaxial motor neurons are blocked from reaching their muscle targets and concomitantly vascular patterning in the spinal cord is altered. Thus, an integrative system of opposing push-pull cues ensures detrimental axon-endothelial encounters are avoided while enabling vascularization within the nervous system and along peripheral nerves.


Assuntos
Semaforinas , Remodelação Vascular , Animais , Camundongos , Células Endoteliais/metabolismo , Neurônios Motores/metabolismo , Axônios/metabolismo , Medula Espinal/metabolismo , Semaforinas/metabolismo
7.
Mol Ther ; 30(8): 2722-2745, 2022 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-35524407

RESUMO

Second-order spinal cord excitatory neurons play a key role in spinal processing and transmission of pain signals to the brain. Exogenously induced change in developmentally imprinted excitatory neurotransmitter phenotypes of these neurons to inhibitory has not yet been achieved. Here, we use a subpial dorsal horn-targeted delivery of AAV (adeno-associated virus) vector(s) encoding GABA (gamma-aminobutyric acid) synthesizing-releasing inhibitory machinery in mice with neuropathic pain. Treated animals showed a progressive and complete reversal of neuropathic pain (tactile and brush-evoked pain behavior) that persisted for a minimum of 2.5 months post-treatment. The mechanism of this treatment effect results from the switch of excitatory to preferential inhibitory neurotransmitter phenotype in dorsal horn nociceptive neurons and a resulting increase in inhibitory activity in regional spinal circuitry after peripheral nociceptive stimulation. No detectable side effects (e.g., sedation, motor weakness, loss of normal sensation) were seen between 2 and 13 months post-treatment in naive adult mice, pigs, and non-human primates. The use of this treatment approach may represent a potent and safe treatment modality in patients suffering from spinal cord or peripheral nerve injury-induced neuropathic pain.


Assuntos
Neuralgia , Nociceptores , Animais , Técnicas de Transferência de Genes , Camundongos , Neuralgia/etiologia , Neuralgia/terapia , Células do Corno Posterior , Medula Espinal , Corno Dorsal da Medula Espinal , Suínos
8.
STAR Protoc ; 3(1): 101130, 2022 03 18.
Artigo em Inglês | MEDLINE | ID: mdl-35146446

RESUMO

microRNAs (miRNAs) have unique gene regulatory effects in different neuronal subpopulations. Here, we describe a protocol to identify neuronal subtype-specific effects of a miRNA in murine motor neuron subpopulations. We detail the preparation of primary mouse spinal tissue for single cell RNA sequencing and bioinformatics analyses of pseudobulk expression data. This protocol applies differential gene expression testing approaches to identify miRNA target networks in heterogeneous neuronal subpopulations that cannot otherwise be captured by bulk RNA sequencing approaches. For complete details on the use and execution of this protocol, please refer to Amin et al. (2021).


Assuntos
MicroRNAs , Animais , Biologia Computacional/métodos , Regulação da Expressão Gênica , Camundongos , MicroRNAs/genética , Neurônios , Análise de Sequência de RNA
9.
Neuron ; 109(20): 3252-3267.e6, 2021 10 20.
Artigo em Inglês | MEDLINE | ID: mdl-34450025

RESUMO

Disruption of homeostatic microRNA (miRNA) expression levels is known to cause human neuropathology. However, the gene regulatory and phenotypic effects of altering a miRNA's in vivo abundance (rather than its binary gain or loss) are not well understood. By genetic combination, we generated an allelic series of mice expressing varying levels of miR-218, a motor neuron-selective gene regulator associated with motor neuron disease. Titration of miR-218 cellular dose unexpectedly revealed complex, non-ratiometric target mRNA dose responses and distinct gene network outputs. A non-linearly responsive regulon exhibited a steep miR-218 dose-dependent threshold in repression that, when crossed, resulted in severe motor neuron synaptic failure and death. This work demonstrates that a miRNA can govern distinct gene network outputs at different expression levels and that miRNA-dependent phenotypes emerge at particular dose ranges because of hidden regulatory inflection points of their underlying gene networks.


Assuntos
Dosagem de Genes , Redes Reguladoras de Genes/genética , MicroRNAs/genética , Doença dos Neurônios Motores/genética , Neurônios Motores/metabolismo , Animais , Camundongos , Camundongos Knockout , Análise de Sequência de RNA , Análise de Célula Única
10.
Science ; 372(6540): 385-393, 2021 04 23.
Artigo em Inglês | MEDLINE | ID: mdl-33888637

RESUMO

Motor and sensory functions of the spinal cord are mediated by populations of cardinal neurons arising from separate progenitor lineages. However, each cardinal class is composed of multiple neuronal types with distinct molecular, anatomical, and physiological features, and there is not a unifying logic that systematically accounts for this diversity. We reasoned that the expansion of new neuronal types occurred in a stepwise manner analogous to animal speciation, and we explored this by defining transcriptomic relationships using a top-down approach. We uncovered orderly genetic tiers that sequentially divide groups of neurons by their motor-sensory, local-long range, and excitatory-inhibitory features. The genetic signatures defining neuronal projections were tied to neuronal birth date and conserved across cardinal classes. Thus, the intersection of cardinal class with projection markers provides a unifying taxonomic solution for systematically identifying distinct functional subsets.


Assuntos
Vias Neurais , Neurônios/fisiologia , Medula Espinal/citologia , Transcriptoma , Animais , Medula Cervical/citologia , Feminino , Masculino , Camundongos , Neurônios Motores/fisiologia , Propriocepção , RNA-Seq , Células Receptoras Sensoriais/fisiologia , Análise de Célula Única , Análise Espacial , Medula Espinal/embriologia , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
11.
Nat Med ; 26(1): 118-130, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31873312

RESUMO

Gene silencing with virally delivered shRNA represents a promising approach for treatment of inherited neurodegenerative disorders. In the present study we develop a subpial technique, which we show in adult animals successfully delivers adeno-associated virus (AAV) throughout the cervical, thoracic and lumbar spinal cord, as well as brain motor centers. One-time injection at cervical and lumbar levels just before disease onset in mice expressing a familial amyotrophic lateral sclerosis (ALS)-causing mutant SOD1 produces long-term suppression of motoneuron disease, including near-complete preservation of spinal α-motoneurons and muscle innervation. Treatment after disease onset potently blocks progression of disease and further α-motoneuron degeneration. A single subpial AAV9 injection in adult pigs or non-human primates using a newly designed device produces homogeneous delivery throughout the cervical spinal cord white and gray matter and brain motor centers. Thus, spinal subpial delivery in adult animals is highly effective for AAV-mediated gene delivery throughout the spinal cord and supraspinal motor centers.


Assuntos
Esclerose Lateral Amiotrófica/terapia , Dependovirus/metabolismo , Inativação Gênica , Técnicas de Transferência de Genes , Neurônios Motores/patologia , Degeneração Neural/terapia , Pia-Máter/patologia , Medula Espinal/patologia , Esclerose Lateral Amiotrófica/genética , Esclerose Lateral Amiotrófica/fisiopatologia , Animais , Atrofia , Progressão da Doença , Potencial Evocado Motor , Feminino , Regulação da Expressão Gênica , Humanos , Inflamação/patologia , Interneurônios/patologia , Masculino , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Desenvolvimento Muscular , Degeneração Neural/genética , Degeneração Neural/fisiopatologia , Pia-Máter/fisiopatologia , Primatas , Dobramento de Proteína , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , RNA Interferente Pequeno/administração & dosagem , Medula Espinal/diagnóstico por imagem , Medula Espinal/fisiopatologia , Superóxido Dismutase-1/genética , Superóxido Dismutase-1/metabolismo , Suínos
12.
Sci Transl Med ; 11(523)2019 12 18.
Artigo em Inglês | MEDLINE | ID: mdl-31852800

RESUMO

Motor neuron-specific microRNA-218 (miR-218) has recently received attention because of its roles in mouse development. However, miR-218 relevance to human motor neuron disease was not yet explored. Here, we demonstrate by neuropathology that miR-218 is abundant in healthy human motor neurons. However, in amyotrophic lateral sclerosis (ALS) motor neurons, miR-218 is down-regulated and its mRNA targets are reciprocally up-regulated (derepressed). We further identify the potassium channel Kv10.1 as a new miR-218 direct target that controls neuronal activity. In addition, we screened thousands of ALS genomes and identified six rare variants in the human miR-218-2 sequence. miR-218 gene variants fail to regulate neuron activity, suggesting the importance of this small endogenous RNA for neuronal robustness. The underlying mechanisms involve inhibition of miR-218 biogenesis and reduced processing by DICER. Therefore, miR-218 activity in motor neurons may be susceptible to failure in human ALS, suggesting that miR-218 may be a potential therapeutic target in motor neuron disease.


Assuntos
Esclerose Lateral Amiotrófica/metabolismo , MicroRNAs/metabolismo , Neuropatologia/métodos , Esclerose Lateral Amiotrófica/genética , Animais , Canais de Potássio Éter-A-Go-Go/genética , Canais de Potássio Éter-A-Go-Go/metabolismo , Humanos , Camundongos , MicroRNAs/genética , Neurônios Motores/metabolismo , Neurônios/metabolismo
13.
Curr Opin Neurobiol ; 56: 175-184, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30954861

RESUMO

The spinal cord contains an extraordinarily diverse population of interconnected neurons to process somatosensory information and execute movement. Studies of the embryonic spinal cord have elucidated basic principles underlying the specification of spinal cord neurons, while adult and postnatal studies have provided insight into cell type function and circuitry. However, the overarching principles that bridge molecularly defined subtypes with their connectivity, physiology, and function remain unclear. This review consolidates recent work in spinal neuron characterization, examining how molecular and spatial features of individual spinal neuron types relate to the reference points of connectivity and function. This review will focus on how spinal neuron subtypes are organized to control movement in the mouse.


Assuntos
Neurônios , Medula Espinal , Animais , Movimento
14.
Stem Cell Res Ther ; 10(1): 83, 2019 03 12.
Artigo em Inglês | MEDLINE | ID: mdl-30867054

RESUMO

BACKGROUND: A well-characterized method has not yet been established to reproducibly, efficiently, and safely isolate large numbers of clinical-grade multipotent human neural stem cells (hNSCs) from embryonic stem cells (hESCs). Consequently, the transplantation of neurogenic/gliogenic precursors into the CNS for the purpose of cell replacement or neuroprotection in humans with injury or disease has not achieved widespread testing and implementation. METHODS: Here, we establish an approach for the in vitro isolation of a highly expandable population of hNSCs using the manual selection of neural precursors based on their colony morphology (CoMo-NSC). The purity and NSC properties of established and extensively expanded CoMo-NSC were validated by expression of NSC markers (flow cytometry, mRNA sequencing), lack of pluripotent markers and by their tumorigenic/differentiation profile after in vivo spinal grafting in three different animal models, including (i) immunodeficient rats, (ii) immunosuppressed ALS rats (SOD1G93A), or (iii) spinally injured immunosuppressed minipigs. RESULTS: In vitro analysis of established CoMo-NSCs showed a consistent expression of NSC markers (Sox1, Sox2, Nestin, CD24) with lack of pluripotent markers (Nanog) and stable karyotype for more than 15 passages. Gene profiling and histology revealed that spinally grafted CoMo-NSCs differentiate into neurons, astrocytes, and oligodendrocytes over a 2-6-month period in vivo without forming neoplastic derivatives or abnormal structures. Moreover, transplanted CoMo-NSCs formed neurons with synaptic contacts and glia in a variety of host environments including immunodeficient rats, immunosuppressed ALS rats (SOD1G93A), or spinally injured minipigs, indicating these cells have favorable safety and differentiation characteristics. CONCLUSIONS: These data demonstrate that manually selected CoMo-NSCs represent a safe and expandable NSC population which can effectively be used in prospective human clinical cell replacement trials for the treatment of a variety of neurodegenerative disorders, including ALS, stroke, spinal traumatic, or spinal ischemic injury.


Assuntos
Citometria de Fluxo , Células-Tronco Multipotentes/citologia , Células-Tronco Neurais/citologia , Linhagem Celular , Humanos
15.
Neuron ; 102(3): 602-620.e9, 2019 05 08.
Artigo em Inglês | MEDLINE | ID: mdl-30902550

RESUMO

The rich functional diversity of the nervous system is founded in the specific connectivity of the underlying neural circuitry. Neurons are often preprogrammed to respond to multiple axon guidance signals because they use sequential guideposts along their pathways, but this necessitates a strict spatiotemporal regulation of intracellular signaling to ensure the cues are detected in the correct order. We performed a mouse mutagenesis screen and identified the Rho GTPase antagonist p190RhoGAP as a critical regulator of motor axon guidance. Rather than acting as a compulsory signal relay, p190RhoGAP uses a non-conventional GAP-independent mode to transiently suppress attraction to Netrin-1 while motor axons exit the spinal cord. Once in the periphery, a subset of axons requires p190RhoGAP-mediated inhibition of Rho signaling to target specific muscles. Thus, the multifunctional activity of p190RhoGAP emerges from its modular design. Our findings reveal a cell-intrinsic gate that filters conflicting signals, establishing temporal windows of signal detection.


Assuntos
Orientação de Axônios/genética , Receptor DCC/metabolismo , Proteínas Ativadoras de GTPase/genética , Neurônios Motores/metabolismo , Músculo Esquelético/inervação , Netrina-1/metabolismo , Proteínas Repressoras/genética , Animais , Células do Corno Anterior/metabolismo , Camundongos , Células-Tronco Embrionárias Murinas , Mutação
16.
Sci Transl Med ; 10(440)2018 05 09.
Artigo em Inglês | MEDLINE | ID: mdl-29743351

RESUMO

The use of autologous (or syngeneic) cells derived from induced pluripotent stem cells (iPSCs) holds great promise for future clinical use in a wide range of diseases and injuries. It is expected that cell replacement therapies using autologous cells would forego the need for immunosuppression, otherwise required in allogeneic transplantations. However, recent studies have shown the unexpected immune rejection of undifferentiated autologous mouse iPSCs after transplantation. Whether similar immunogenic properties are maintained in iPSC-derived lineage-committed cells (such as neural precursors) is relatively unknown. We demonstrate that syngeneic porcine iPSC-derived neural precursor cell (NPC) transplantation to the spinal cord in the absence of immunosuppression is associated with long-term survival and neuronal and glial differentiation. No tumor formation was noted. Similar cell engraftment and differentiation were shown in spinally injured transiently immunosuppressed swine leukocyte antigen (SLA)-mismatched allogeneic pigs. These data demonstrate that iPSC-NPCs can be grafted into syngeneic recipients in the absence of immunosuppression and that temporary immunosuppression is sufficient to induce long-term immune tolerance after NPC engraftment into spinally injured allogeneic recipients. Collectively, our results show that iPSC-NPCs represent an alternative source of transplantable NPCs for the treatment of a variety of disorders affecting the spinal cord, including trauma, ischemia, or amyotrophic lateral sclerosis.


Assuntos
Células-Tronco Pluripotentes Induzidas/citologia , Células-Tronco Neurais/transplante , Medula Espinal/transplante , Envelhecimento , Animais , Diferenciação Celular , Reprogramação Celular , Doença Crônica , Fibroblastos/citologia , Regulação da Expressão Gênica , Tolerância Imunológica , Imunidade Humoral , Terapia de Imunossupressão , Neostriado/patologia , Células-Tronco Neurais/citologia , Neurônios/citologia , Ratos , Pele/citologia , Traumatismos da Medula Espinal/patologia , Traumatismos da Medula Espinal/terapia , Análise de Sobrevida , Suínos , Porco Miniatura , Transplante Homólogo , Transplante Isogênico
17.
Nat Commun ; 9(1): 1007, 2018 03 08.
Artigo em Inglês | MEDLINE | ID: mdl-29520015

RESUMO

Dominant mutations in glycyl-tRNA synthetase (GlyRS) cause a subtype of Charcot-Marie-Tooth neuropathy (CMT2D). Although previous studies have shown that GlyRS mutants aberrantly interact with Nrp1, giving insight into the disease's specific effects on motor neurons, these cannot explain length-dependent axonal degeneration. Here, we report that GlyRS mutants interact aberrantly with HDAC6 and stimulate its deacetylase activity on α-tubulin. A decrease in α-tubulin acetylation and deficits in axonal transport are observed in mice peripheral nerves prior to disease onset. An HDAC6 inhibitor used to restore α-tubulin acetylation rescues axonal transport deficits and improves motor functions of CMT2D mice. These results link the aberrant GlyRS-HDAC6 interaction to CMT2D pathology and suggest HDAC6 as an effective therapeutic target. Moreover, the HDAC6 interaction differs from Nrp1 interaction among GlyRS mutants and correlates with divergent clinical presentations, indicating the existence of multiple and different mechanisms in CMT2D.


Assuntos
Transporte Axonal/genética , Axônios/metabolismo , Doença de Charcot-Marie-Tooth/patologia , Glicina-tRNA Ligase/metabolismo , Desacetilase 6 de Histona/metabolismo , Neurônios Motores/metabolismo , Acetilação , Animais , Transporte Axonal/efeitos dos fármacos , Doença de Charcot-Marie-Tooth/genética , Modelos Animais de Doenças , Feminino , Glicina-tRNA Ligase/genética , Células HEK293 , Desacetilase 6 de Histona/antagonistas & inibidores , Humanos , Ácidos Hidroxâmicos/farmacologia , Indóis/farmacologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Mutação , Proteínas do Tecido Nervoso/metabolismo , Neuropilina-1/metabolismo , Nervos Periféricos/metabolismo , Tubulina (Proteína)/metabolismo
18.
Neuron ; 97(4): 869-884.e5, 2018 02 21.
Artigo em Inglês | MEDLINE | ID: mdl-29398364

RESUMO

The spinal cord contains neural networks that enable regionally distinct motor outputs along the body axis. Nevertheless, it remains unclear how segment-specific motor computations are processed because the cardinal interneuron classes that control motor neurons appear uniform at each level of the spinal cord. V2a interneurons are essential to both forelimb and hindlimb movements, and here we identify two major types that emerge during development: type I neurons marked by high Chx10 form recurrent networks with neighboring spinal neurons and type II neurons that downregulate Chx10 and project to supraspinal structures. Types I and II V2a interneurons are arrayed in counter-gradients, and this network activates different patterns of motor output at cervical and lumbar levels. Single-cell RNA sequencing (RNA-seq) revealed type I and II V2a neurons are each comprised of multiple subtypes. Our findings uncover a molecular and anatomical organization of V2a interneurons reminiscent of the orderly way motor neurons are divided into columns and pools.


Assuntos
Membro Anterior/fisiologia , Membro Posterior/fisiologia , Interneurônios/fisiologia , Neurônios Motores/fisiologia , Movimento , Medula Espinal/fisiologia , Animais , Medula Cervical/fisiologia , Feminino , Proteínas de Homeodomínio/metabolismo , Interneurônios/metabolismo , Região Lombossacral , Masculino , Camundongos Endogâmicos C57BL , Vias Neurais/fisiologia , Medula Espinal/embriologia , Fatores de Transcrição/metabolismo
19.
Elife ; 62017 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-28195039

RESUMO

Flexible neural networks, such as the interconnected spinal neurons that control distinct motor actions, can switch their activity to produce different behaviors. Both excitatory (E) and inhibitory (I) spinal neurons are necessary for motor behavior, but the influence of recruiting different ratios of E-to-I cells remains unclear. We constructed synthetic microphysical neural networks, called circuitoids, using precise combinations of spinal neuron subtypes derived from mouse stem cells. Circuitoids of purified excitatory interneurons were sufficient to generate oscillatory bursts with properties similar to in vivo central pattern generators. Inhibitory V1 neurons provided dual layers of regulation within excitatory rhythmogenic networks - they increased the rhythmic burst frequency of excitatory V3 neurons, and segmented excitatory motor neuron activity into sub-networks. Accordingly, the speed and pattern of spinal circuits that underlie complex motor behaviors may be regulated by quantitatively gating the intra-network cellular activity ratio of E-to-I neurons.


Assuntos
Interneurônios/fisiologia , Atividade Motora , Neurônios Motores/fisiologia , Rede Nervosa/fisiologia , Medula Espinal/fisiologia , Animais , Células Cultivadas , Células-Tronco Embrionárias/fisiologia , Camundongos
20.
Neuron ; 91(4): 763-776, 2016 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-27478017

RESUMO

Motor behaviors such as walking or withdrawing the limb from a painful stimulus rely upon integrative multimodal sensory circuitry to generate appropriate muscle activation patterns. Both the cellular components and the molecular mechanisms that instruct the assembly of the spinal sensorimotor system are poorly understood. Here we characterize the connectivity pattern of a sub-population of lamina V inhibitory sensory relay neurons marked during development by the nuclear matrix and DNA binding factor Satb2 (ISR(Satb2)). ISR(Satb2) neurons receive inputs from multiple streams of sensory information and relay their outputs to motor command layers of the spinal cord. Deletion of the Satb2 transcription factor from ISR(Satb2) neurons perturbs their cellular position, molecular profile, and pre- and post-synaptic connectivity. These alterations are accompanied by abnormal limb hyperflexion responses to mechanical and thermal stimuli and during walking. Thus, Satb2 is a genetic determinant that mediates proper circuit development in a core sensory-to-motor spinal network.


Assuntos
Extremidades/fisiologia , Proteínas de Ligação à Região de Interação com a Matriz/fisiologia , Vias Neurais/fisiologia , Dor/fisiopatologia , Células Receptoras Sensoriais/fisiologia , Medula Espinal/fisiologia , Fatores de Transcrição/fisiologia , Caminhada/fisiologia , Animais , Interneurônios/fisiologia , Proteínas de Ligação à Região de Interação com a Matriz/genética , Camundongos , Camundongos Knockout , Mutação , Reflexo/fisiologia , Fatores de Transcrição/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA