Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Food Chem ; 456: 140040, 2024 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-38878539

RESUMO

The development of new sensors for on-site food toxin monitoring that combine extraction, analytes distinction and detection is important in resource-limited environments. Surface-enhanced Raman scattering (SERS)-based signal readout features fast response and high sensitivity, making it a powerful method for detecting mycotoxins. In this work, a SERS-based assay for the detection of multiple mycotoxins is presented that combines extraction and subsequent detection, achieving an analytically relevant detection limit (∼ 1 ng/mL), which is also tested in corn samples. This sensor consists of a magnetic-core and mycotoxin-absorbing polydopamine-shell, with SERS-active Au nanoparticles on the outer surface. The assay can concentrate multiple mycotoxins, which are identified through multiclass partite least squares analysis based on their SERS spectra. We developed a strategy for the analysis of multiple mycotoxins with minimal sample pretreatment, enabling in situ analytical extraction and subsequent detection, displaying the potential to rapidly identify lethal mycotoxin contamination on site.

2.
ACS Appl Mater Interfaces ; 16(22): 29029-29041, 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38771192

RESUMO

Upconverting nanoparticles (UCNPs) doped with Yb3+ and Tm3+ are near-infrared (NIR) to ultraviolet (UV) transducers that can be used for NIR-controlled drug delivery. However, due to the low quantum yield of upconversion, high laser powers and long irradiation times are required to trigger this drug release. In this work, we report the one-step synthesis of a nanocomposite consisting of a LiYbF4:Tm3+@LiYF4 UCNP coated with mesoporous UV-breakable organosilica shells of various thicknesses. We demonstrate that a thin shell accelerates the breakage of the shell at 1 W/cm2 NIR light exposure, a laser power up to 9 times lower than that of conventional systems. When the mesopores are loaded with hydrophobic vitamin D3 precursor 7-dehydrocholesterol (7-DH), shell breakage results in subsequent cargo release. Its minimal toxicity in HeLa cells and successful internalization into the cell cytoplasm demonstrate its biocompatibility and potential application in biological systems. The tunability of this system due to its simple, one-step synthesis process and its ability to operate at low laser powers opens up avenues in UCNP-powered NIR-triggered drug delivery toward a more scalable, flexible, and ultimately translational option.

3.
Sci Rep ; 14(1): 1249, 2024 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-38218940

RESUMO

Polyoxometalates (POM) are anionic oxoclusters of early transition metals that are of great interest for a variety of applications, including the development of sensors and catalysts. A crucial step in the use of POM in functional materials is the production of composites that can be further processed into complex materials, e.g. by printing on different substrates. In this work, we present an immobilization approach for POMs that involves two key processes: first, the stable encapsulation of POMs in the pores of mesoporous silica nanoparticles (MSPs) and, second, the formation of microstructured arrays with these POM-loaded nanoparticles. Specifically, we have developed a strategy that leads to water-stable, POM-loaded mesoporous silica that can be covalently linked to alkene-bearing surfaces by amine-Michael addition and patterned into microarrays by scanning probe lithography (SPL). The immobilization strategy presented facilitates the printing of hybrid POM-loaded nanomaterials onto different surfaces and provides a versatile method for the fabrication of POM-based composites. Importantly, POM-loaded MSPs are useful in applications such as microfluidic systems and sensors that require frequent washing. Overall, this method is a promising way to produce surface-printed POM arrays that can be used for a wide range of applications.

4.
J Am Chem Soc ; 145(42): 22903-22912, 2023 10 25.
Artigo em Inglês | MEDLINE | ID: mdl-37844092

RESUMO

Organosilica nanoparticles that contain responsive organic building blocks as constitutive components of the silica network offer promising opportunities for the development of innovative drug formulations, biomolecule delivery, and diagnostic tools. However, the synthetic challenges required to introduce dynamic and multifunctional building blocks have hindered the realization of biomimicking nanoparticles. In this study, capitalizing on our previous research on responsive nucleic acid-based organosilica nanoparticles, we combine the supramolecular programmability of nucleic acid (NA) interactions with sol-gel chemistry. This approach allows us to create dynamic supramolecular bridging units of nucleic acids in a silica-based scaffold. Two peptide nucleic acid-based monoalkoxysilane derivatives, which self-assemble into a supramolecular bis-alkoxysilane through direct base pairing, were chosen as the noncovalent units inserted into the silica network. In addition, a bridging functional NA aptamer leads to the specific recognition of ATP molecules. In a one-step bottom-up approach, the resulting supramolecular building blocks can be used to prepare responsive organosilica nanoparticles. The supramolecular Watson-Crick-Franklin interactions of the organosilica nanoparticles result in a programmable response to external physical (i.e., temperature) and biological (i.e., DNA and ATP) inputs and thus pave the way for the rational design of multifunctional silica materials with application from drug delivery to theranostics.


Assuntos
Nanopartículas , Ácidos Nucleicos , Sistemas de Liberação de Medicamentos , Nanopartículas/química , Dióxido de Silício/química , Trifosfato de Adenosina
5.
J Am Chem Soc ; 145(42): 22896-22902, 2023 10 25.
Artigo em Inglês | MEDLINE | ID: mdl-37734737

RESUMO

The development of smart nanoparticles (NPs) that encode responsive features in the structural framework promises to extend the applications of NP-based drugs, vaccines, and diagnostic tools. New nanocarriers would ideally consist of a minimal number of biocompatible components and exhibit multiresponsive behavior to specific biomolecules, but progress is limited by the difficulty of synthesizing suitable building blocks. Through a nature-inspired approach that combines the programmability of nucleic acid interactions and sol-gel chemistry, we report the incorporation of synthetic nucleic acids and analogs, as constitutive components, into organosilica NPs. We prepared different nanomaterials containing single-stranded nucleic acids that are covalently embedded in the silica network. Through the incorporation of functional nucleic acids into the organosilica framework, the particles respond to various biological, physical, and chemical inputs, resulting in detectable physicochemical changes. The one-step bottom-up approach used to prepare organosilica NPs provides multifunctional systems that combine the tunability of oligonucleotides with the stiffness, low cost, and biocompatibility of silica for different applications ranging from drug delivery to sensing.


Assuntos
Nanopartículas , Ácidos Nucleicos , Sistemas de Liberação de Medicamentos/métodos , Nanopartículas/química , Dióxido de Silício/química
6.
ACS Sens ; 8(7): 2525-2532, 2023 07 28.
Artigo em Inglês | MEDLINE | ID: mdl-37339775

RESUMO

Electrochemical detection methods are attractive for developing miniaturized, disposable, and portable sensors for molecular diagnostics. In this article, we present a cucurbit[7]uril-based chemosensor with an electrochemical signal readout for the micromolar detection of the muscle relaxant pancuronium bromide in buffer and human urine. This is possible through a competitive binding assay using a chemosensor ensemble consisting of cucurbit[7]uril as the host and an electrochemically active platinum(II) compound as the guest indicator. The electrochemical properties of the indicator are strongly modulated depending on the complexation state, a feature that is exploited to establish a functional chemosensor. Our design avoids cumbersome immobilization approaches on electrode surfaces, which are associated with practical and conceptual drawbacks. Moreover, it can be used with commercially available screen-printed electrodes that require minimal sample volume. The design principle presented here can be applied to other cucurbit[n]uril-based chemosensors, providing an alternative to fluorescence-based assays.


Assuntos
Hidrocarbonetos Aromáticos com Pontes , Imidazóis , Humanos , Hidrocarbonetos Aromáticos com Pontes/química , Imidazóis/química , Eletrodos , Técnicas Eletroquímicas
7.
Angew Chem Int Ed Engl ; 62(22): e202218000, 2023 05 22.
Artigo em Inglês | MEDLINE | ID: mdl-36847211

RESUMO

The discovery of the medicinal properties of gold complexes has fuelled the design and synthesis of new anticancer metallodrugs, which have received special attention due to their unique modes of action. Current research in the development of gold compounds with therapeutic properties is predominantly focused on the molecular design of drug leads with superior pharmacological activities, e.g., by introducing targeting features. Moreover, intensive research aims at improving the physicochemical properties of gold compounds, such as chemical stability and solubility in the physiological environment. In this regard, the encapsulation of gold compounds in nanocarriers or their chemical grafting onto targeted delivery vectors could lead to new nanomedicines that eventually reach clinical applications. Herein, we provide an overview of the state-of-the-art progress of gold anticancer compounds, andmore importantly we thoroughly revise the development of nanoparticle-based delivery systems for gold chemotherapeutics.


Assuntos
Antineoplásicos , Nanopartículas , Neoplasias , Humanos , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Antineoplásicos/química , Ouro/química , Nanomedicina , Preparações Farmacêuticas , Sistemas de Liberação de Medicamentos , Compostos de Ouro/química , Neoplasias/tratamento farmacológico
8.
ACS Sens ; 7(8): 2312-2319, 2022 08 26.
Artigo em Inglês | MEDLINE | ID: mdl-35895991

RESUMO

Chemiluminescence-based detection methods offer a superior signal-to-noise ratio and are commonly adopted for biosensors. This work presents the design and implementation of a supramolecular assay based on a chemiluminescent chemosensor. Specifically, an indicator displacement assay (IDA) with the supramolecular host-guest complex of chemiluminescent phenoxy 1,2-dioxetane and cucurbit[8]uril enables the low-micromolar detection of drugs in human urine and human serum samples. Cucurbit[8]uril thereby acts as a non-surfactant chemiluminescence enhancer and a synthetic receptor. Additionally, we show that adding an equimolar amount of cucurbit[8]uril to a commercially available dioxetane used in standard enzymatic chemiluminescence immunoassays enhances the chemiluminescence by more than 15 times. Finally, we demonstrate that a chemiluminescence resonance energy transfer between a unimolecular macrocyclic cucurbit[7]uril-dye conjugate and a phenoxy 1,2-dioxetane can be utilized to detect the herbicide paraquat at a micromolar concentration in aqueous media.


Assuntos
Herbicidas , Paraquat , Humanos , Água
9.
Chem Rev ; 122(3): 3459-3636, 2022 02 09.
Artigo em Inglês | MEDLINE | ID: mdl-34995461

RESUMO

Synthetic molecular probes, chemosensors, and nanosensors used in combination with innovative assay protocols hold great potential for the development of robust, low-cost, and fast-responding sensors that are applicable in biofluids (urine, blood, and saliva). Particularly, the development of sensors for metabolites, neurotransmitters, drugs, and inorganic ions is highly desirable due to a lack of suitable biosensors. In addition, the monitoring and analysis of metabolic and signaling networks in cells and organisms by optical probes and chemosensors is becoming increasingly important in molecular biology and medicine. Thus, new perspectives for personalized diagnostics, theranostics, and biochemical/medical research will be unlocked when standing limitations of artificial binders and receptors are overcome. In this review, we survey synthetic sensing systems that have promising (future) application potential for the detection of small molecules, cations, and anions in aqueous media and biofluids. Special attention was given to sensing systems that provide a readily measurable optical signal through dynamic covalent chemistry, supramolecular host-guest interactions, or nanoparticles featuring plasmonic effects. This review shall also enable the reader to evaluate the current performance of molecular probes, chemosensors, and nanosensors in terms of sensitivity and selectivity with respect to practical requirement, and thereby inspiring new ideas for the development of further advanced systems.


Assuntos
Técnicas Biossensoriais , Nanopartículas , Ânions , Cátions , Sondas Moleculares/química , Nanopartículas/química
10.
Molecules ; 26(24)2021 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-34946561

RESUMO

The current trend for ultra-high-field magnetic resonance imaging (MRI) technologies opens up new routes in clinical diagnostic imaging as well as in material imaging applications. MRI selectivity is further improved by using contrast agents (CAs), which enhance the image contrast and improve specificity by the paramagnetic relaxation enhancement (PRE) mechanism. Generally, the efficacy of a CA at a given magnetic field is measured by its longitudinal and transverse relaxivities r1 and r2, i.e., the longitudinal and transverse relaxation rates T1-1 and T2-1 normalized to CA concentration. However, even though basic NMR sensitivity and resolution become better in stronger fields, r1 of classic CA generally decreases, which often causes a reduction of the image contrast. In this regard, there is a growing interest in the development of new contrast agents that would be suitable to work at higher magnetic fields. One of the strategies to increase imaging contrast at high magnetic field is to inspect other paramagnetic ions than the commonly used Gd(III)-based CAs. For lanthanides, the magnetic moment can be higher than that of the isotropic Gd(III) ion. In addition, the symmetry of electronic ground state influences the PRE properties of a compound apart from diverse correlation times. In this work, PRE of water 1H has been investigated over a wide range of magnetic fields for aqueous solutions of the lanthanide containing polyoxometalates [DyIII(H2O)4GeW11O39]5- (Dy-W11), [ErIII(H2O)3GeW11O39]5- (Er-W11) and [{ErIII(H2O)(CH3COO)(P2W17O61)}2]16- (Er2-W34) over a wide range of frequencies from 20 MHz to 1.4 GHz. Their relaxivities r1 and r2 increase with increasing applied fields. These results indicate that the three chosen POM systems are potential candidates for contrast agents, especially at high magnetic fields.

11.
ACS Nano ; 15(6): 9701-9716, 2021 06 22.
Artigo em Inglês | MEDLINE | ID: mdl-34009950

RESUMO

Over the last years, advancements in the use of nanoparticles for biomedical applications have clearly showcased their potential for the preparation of improved imaging and drug-delivery systems. However, compared to the vast number of currently studied nanoparticles for such applications, only a few successfully translate into clinical practice. A common "barrier" that prevents nanoparticles from efficiently delivering their payload to the target site after administration is related to liver filtering, mainly due to nanoparticle uptake by macrophages. This work reports the physicochemical and biological investigation of disulfide-bridged organosilica nanoparticles with cage-like morphology, OSCs, assessing in detail their bioaccumulation in vivo. The fate of intravenously injected 20 nm OSCs was investigated in both healthy and tumor-bearing mice. Interestingly, OSCs exclusively colocalize with hepatic sinusoidal endothelial cells (LSECs) while avoiding Kupffer-cell uptake (less than 6%) under both physiological and pathological conditions. Our findings suggest that organosilica nanocages hold the potential to be used as nanotools for LSECs modulation, potentially impacting key biological processes such as tumor cell extravasation and hepatic immunity to invading metastatic cells or a tolerogenic state in intrahepatic immune cells in autoimmune diseases.


Assuntos
Células Endoteliais , Nanopartículas , Animais , Sistemas de Liberação de Medicamentos , Células de Kupffer , Fígado , Camundongos
12.
J Am Chem Soc ; 143(20): 7681-7687, 2021 05 26.
Artigo em Inglês | MEDLINE | ID: mdl-33891394

RESUMO

An important aspect in the field of supramolecular chemistry is the control of the composition and aggregation state of supramolecular polymers and the possibility of stabilizing out-of-equilibrium states. The ability to freeze metastable systems and release them on demand, under spatiotemporal control, to allow their thermodynamic evolution toward the most stable species is a very attractive concept. Such temporal blockage could be realized using stimuli-responsive "boxes" able to trap and redirect supramolecular polymers. In this work, we report the use of a redox responsive nanocontainer, an organosilica nanocage (OSCs), for controlling the dynamic self-assembly pathway of supramolecular aggregates of a luminescent platinum compound (PtAC). The aggregation of the complexes leads to different photoluminescent properties that allow visualization of the different assemblies and their evolution. We discovered that the nanocontainers can encapsulate kinetically trapped species characterized by an orange emission, preventing their evolution into the thermodynamically stable aggregation state characterized by blue-emitting fibers. Interestingly, the out-of-equilibrium trapped Pt species (PtAC@OSCs) can be released on demand by the redox-triggered degradation of OSCs, re-establishing their self-assembly toward the thermodynamically stable state. To demonstrate that control of the self-assembly pathway occurs also in complex media, we followed the evolution of the supramolecular aggregates inside living cells, where the destruction of the cages allows the intracellular release of PtAC aggregates, followed by the formation of microscopic blue emitting fibers. Our approach highlights the importance of "ondemand" confinement as a tool to temporally stabilize transient species which modulate complex self-assembly pathways in supramolecular polymerization.

13.
Nanomaterials (Basel) ; 10(6)2020 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-32575872

RESUMO

Cancer cells demonstrate elevated expression levels of the inhibitor of apoptosis proteins (IAPs), contributing to tumor cell survival, disease progression, chemo-resistance, and poor prognosis. Smac/DIABLO is a mitochondrial protein that promotes apoptosis by neutralizing members of the IAP family. Herein, we describe the preparation and in vitro validation of a synthetic mimic of Smac/DIABLO, based on fluorescent polyethylene glycol (PEG)-coated silica-core nanoparticles (NPs) carrying a Smac/DIABLO-derived pro-apoptotic peptide and a tumor-homing integrin peptide ligand. At low µM concentration, the NPs showed significant toxicity towards A549, U373, and HeLa cancer cells and modest toxicity towards other integrin-expressing cells, correlated with integrin-mediated cell uptake and consequent highly increased levels of apoptotic activity, without perturbing cells not expressing the α5 integrin subunit.

14.
Biopolymers ; 2017 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-29178262

RESUMO

Persistent accumulation of immune cells mediated by α4ß1 integrin (VLA-4) is a hallmark of the inflammatory diseases and of chronic inflammation observed in the affected tissues of autoimmune diseases. Aiming at exploring new methods for monitoring the course of the inflammatory processes, we designed the first peptide-functionalized nanostructured devices capable to mimic the high-density multivalency binding between the α4ß1 integrin-expressing cells and the ligands overexpressed on the endothelial surfaces, in the proximity of the sites of inflammation. Specifically, we describe the first examples of monolayers constituted by dye-loaded zeolite L crystals, coated with α4ß1 integrin peptide ligands, and we analyze the adhesion of model Jurkat cells in comparison to non-α4ß1 integrin-expressing cells. In particular, the peptidomimetic diphenylurea-Leu-Asp-Val-diamine allows significant and selective detection of α4ß1 integrin-expressing Jurkat cells, after very rapid incubation time, supporting the possible implementation in a diagnostic device capable to detect the desired cells from biological fluids, obtainable from patients in a noninvasive way.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA