Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 177
Filtrar
1.
Pathogens ; 13(7)2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-39057790

RESUMO

Cu is an antimicrobial that is commonly applied to premise (i.e., building) plumbing systems for Legionella control, but the precise mechanisms of inactivation are not well defined. Here, we applied a suite of viability assays and mass spectrometry-based proteomics to assess the mechanistic effects of Cu on L. pneumophila. Although a five- to six-log reduction in culturability was observed with 5 mg/L Cu2+ exposure, cell membrane integrity only indicated a <50% reduction. Whole-cell proteomic analysis revealed that AhpD, a protein related to oxidative stress, was elevated in Cu-exposed Legionella relative to culturable cells. Other proteins related to cell membrane synthesis and motility were also higher for the Cu-exposed cells relative to controls without Cu. While the proteins related to primary metabolism decreased for the Cu-exposed cells, no significant differences in the abundance of proteins related to virulence or infectivity were found, which was consistent with the ability of VBNC cells to cause infections. Whereas the cell-membrane integrity assay provided an upper-bound measurement of viability, an amoebae co-culture assay provided a lower-bound limit. The findings have important implications for assessing Legionella risk following its exposure to copper in engineered water systems.

2.
Water Res ; 262: 122091, 2024 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-39047455

RESUMO

Treatment trains that couple ozone (O3) with biologically active carbon (BAC) filtration are of interest as a lower cost, more sustainable, membrane-free approach to water reuse. However, little is known about the microbial communities that are the fundamental drivers of O3-BAC treatment. The objective of this study was to demonstrate microbial community profiling as a diagnostic tool for assessing the functionality, biological stability, and resilience of coupled physical, chemical, advanced oxidative and biological processes employed in water reuse treatment. We utilized 16S rRNA gene amplicon sequencing to profile the bacterial microbiota over time throughout a potable reuse train employing coagulation, flocculation, sedimentation, ozonation, BAC filtration, granular activated carbon (GAC) adsorption, and UV disinfection. A distinct baseline microbiota was associated with each stage of treatment (ANOSIM, p < 0.05, r-stat = 0.52), each undergoing succession with time and operational shifts. Ozonation resulted in the sharpest shifts (i.e., 83.3 % average change in Genus level relative abundances, when adjusted O3:TOC ratio > 1), and also variance, in microbial community composition. Adjustment in O3:TOC ratios, temperature, filter-aid polymer, monochloramine quenching agent, and empty-bed contact time also resulted in measurable changes in the baseline microbial community composition of individual processes, but to a lesser degree. Of these, supplementation of nitrogen and phosphorus resulted in the strongest bifurcation, especially in the microbial communities inhabiting the BAC (ANOSIM: p < 0.05, BAC5 r-stat = 0.32; BAC10 r-stat = 0.54) and GAC (ANOSIM: p < 0.05, GAC10 r-stat = 0.54; GAC20 r-stat = 0.63) units. Additionally, we found that the BAC microbial community was responsive to an inoculation of microbially active media, which resulted in improved TOC removal. The findings of this study improve understanding of bacterial dynamics occurring in advanced water treatment trains and can inform improved system design and operation.

4.
Nat Commun ; 15(1): 5412, 2024 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-38926391

RESUMO

Activated sludge is the centerpiece of biological wastewater treatment, as it facilitates removal of sewage-associated pollutants, fecal bacteria, and pathogens from wastewater through semi-controlled microbial ecology. It has been hypothesized that horizontal gene transfer facilitates the spread of antibiotic resistance genes within the wastewater treatment plant, in part because of the presence of residual antibiotics in sewage. However, there has been surprisingly little evidence to suggest that sewage-associated antibiotics select for resistance at wastewater treatment plants via horizontal gene transfer or otherwise. We addressed the role of sewage-associated antibiotics in promoting antibiotic resistance using lab-scale sequencing batch reactors fed field-collected wastewater, metagenomic sequencing, and our recently developed bioinformatic tool Kairos. Here, we found confirmatory evidence that fluctuating levels of antibiotics in sewage are associated with horizontal gene transfer of antibiotic resistance genes, microbial ecology, and microdiversity-level differences in resistance gene fate in activated sludge.


Assuntos
Antibacterianos , Bactérias , Transferência Genética Horizontal , Esgotos , Águas Residuárias , Esgotos/microbiologia , Águas Residuárias/microbiologia , Antibacterianos/farmacologia , Bactérias/genética , Bactérias/classificação , Bactérias/metabolismo , Purificação da Água/métodos , Metagenômica/métodos , Resistência Microbiana a Medicamentos/genética , Eliminação de Resíduos Líquidos/métodos , Farmacorresistência Bacteriana/genética , Seleção Genética
5.
ACS ES T Water ; 4(4): 1629-1636, 2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38633369

RESUMO

Wastewater-based surveillance (WBS) has gained attention as a strategy to monitor and provide an early warning for disease outbreaks. Here, we applied an isothermal gene amplification technique, reverse-transcription loop-mediated isothermal amplification (RT-LAMP), coupled with nanopore sequencing (LAMPore) as a means to detect SARS-CoV-2. Specifically, we combined barcoding using both an RT-LAMP primer and the nanopore rapid barcoding kit to achieve highly multiplexed detection of SARS-CoV-2 in wastewater. RT-LAMP targeting the SARS-CoV-2 N region was conducted on 96 reactions including wastewater RNA extracts and positive and no-target controls. The resulting amplicons were pooled and subjected to nanopore sequencing, followed by demultiplexing based on barcodes that differentiate the source of each SARS-CoV-2 N amplicon derived from the 96 RT-LAMP products. The criteria developed and applied to establish whether SARS-CoV-2 was detected by the LAMPore assay indicated high consistency with polymerase chain reaction-based detection of the SARS-CoV-2 N gene, with a sensitivity of 89% and a specificity of 83%. We further profiled sequence variations on the SARS-CoV-2 N amplicons, revealing a number of mutations on a sample collected after viral variants had emerged. The results demonstrate the potential of the LAMPore assay to facilitate WBS for SARS-CoV-2 and the emergence of viral variants in wastewater.

6.
Glob Chang Biol ; 30(5): e17293, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38687495

RESUMO

Polar regions are relatively isolated from human activity and thus could offer insight into anthropogenic and ecological drivers of the spread of antibiotic resistance. Plasmids are of particular interest in this context given the central role that they are thought to play in the dissemination of antibiotic resistance genes (ARGs). However, plasmidomes are challenging to profile in environmental samples. The objective of this study was to compare various aspects of the plasmidome associated with glacial ice and adjacent aquatic environments across the high Arctic archipelago of Svalbard, representing a gradient of anthropogenic inputs and specific treated and untreated wastewater outflows to the sea. We accessed plasmidomes by applying enrichment cultures, plasmid isolation and shotgun Illumina sequencing of environmental samples. We examined the abundance and diversity of ARGs and other stress-response genes that might be co/cross-selected or co-transported in these environments, including biocide resistance genes (BRGs), metal resistance genes (MRGs), virulence genes (VGs) and integrons. We found striking differences between glacial ice and aquatic environments in terms of the ARGs carried by plasmids. We found a strong correlation between MRGs and ARGs in plasmids in the wastewaters and fjords. Alternatively, in glacial ice, VGs and BRGs genes were dominant, suggesting that glacial ice may be a repository of pathogenic strains. Moreover, ARGs were not found within the cassettes of integrons carried by the plasmids, which is suggestive of unique adaptive features of the microbial communities to their extreme environment. This study provides insight into the role of plasmids in facilitating bacterial adaptation to Arctic ecosystems as well as in shaping corresponding resistomes. Increasing human activity, warming of Arctic regions and associated increases in the meltwater run-off from glaciers could contribute to the release and spread of plasmid-related genes from Svalbard to the broader pool of ARGs in the Arctic Ocean.


Assuntos
Plasmídeos , Plasmídeos/genética , Regiões Árticas , Farmacorresistência Bacteriana/genética , Svalbard , Resistência Microbiana a Medicamentos/genética , Virulência/genética , Águas Residuárias/microbiologia , Camada de Gelo/microbiologia , Genes Bacterianos
7.
Appl Environ Microbiol ; 90(5): e0212823, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38572968

RESUMO

Escherichia coli is a promising subject for globally coordinated surveillance of antimicrobial resistance (AMR) in water environments due to its clinical relevance and widespread use as an indicator of fecal contamination. Cefotaxime-resistant E. coli was recently evaluated favorably for this purpose by the World Health Organization TriCycle Protocol, which specifies tryptone bile x-glucuronide (TBX) medium and incubation at 35°C. We assessed comparability with the U.S. Environmental Protection Agency-approved method for E. coli quantification, which uses membrane-thermotolerant E. coli (mTEC) agar and incubation at 44.5°C, in terms of recovery of E. coli and cefotaxime-resistant E. coli from wastewater influent and surface waters. Total E. coli concentrations in wastewater influent were 106-108 CFU/100 mL, while cefotaxime-resistant E. coli were ~100-fold lower. Total E. coli in surface waters were ~102 CFU/100 mL, and cefotaxime-resistant isolates were near the limit of detection (0.4 CFU/100 mL). Total and putative cefotaxime-resistant E. coli concentrations did not differ significantly between media or by incubation method; however, colonies isolated on mTEC were more frequently confirmed to species (97.1%) compared to those from TBX (92.5%). Incubation in a water bath at 44.5°C significantly decreased non-specific background growth and improved confirmation frequency on both media (97.4%) compared to incubation at 35°C (92.3%). This study helps to advance globally coordinated AMR in water environments and suggests that the TriCycle Protocol is adaptable to other standard methods that may be required in different locales, while also offering a means to improve specificity by decreasing the frequency of false-positive identification of cefotaxime-resistant E. coli by modifying incubation conditions.IMPORTANCEAs antibiotic-resistant bacteria in water environments are increasingly recognized as contributors to the global antibiotic resistance crisis, the need for a monitoring subject that captures antibiotic resistance trends on a global scale increases. The World Health Organization TriCycle Protocol proposes the use of cefotaxime-resistant Escherichia coli isolated on tryptone bile x-glucuronide agar. The U.S. Environmental Protection Agency (USEPA) criteria for safe recreational waters also use E. coli as an indicator but specify the use of mTEC agar at a higher incubation temperature (44.5°C vs 35°C). We assessed the comparability of these methods for isolating total and cefotaxime-resistant E. coli, finding overall good agreement and performance, but significantly higher specificity toward E. coli selection with the use of the USEPA incubation protocol and mTEC agar. This study is the first to directly compare these methods and provides evidence that the methods may be used interchangeably for global surveillance of antibiotic resistance in the environment.


Assuntos
Antibacterianos , Cefotaxima , Escherichia coli , Escherichia coli/efeitos dos fármacos , Escherichia coli/isolamento & purificação , Escherichia coli/genética , Cefotaxima/farmacologia , Antibacterianos/farmacologia , Microbiologia da Água , Monitoramento Ambiental/métodos , Farmacorresistência Bacteriana , Águas Residuárias/microbiologia , Meios de Cultura/química
8.
Water Res ; 254: 121425, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38492480

RESUMO

Water reuse is an essential strategy for reducing water demand from conventional sources, alleviating water stress, and promoting sustainability, but understanding the effectiveness of associated treatment processes as barriers to the spread of antibiotic resistance is an important consideration to protecting human health. We comprehensively evaluated the reduction of antibiotic resistance genes (ARGs) and antibiotic-resistant bacteria (ARB) in two field-operational water reuse systems with distinct treatment trains, one producing water for indirect potable reuse (ozone/biologically-active carbon/granular activated carbon) and the other for non-potable reuse (denitrification-filtration/chlorination) using metagenomic sequencing and culture. Relative abundances of total ARGs/clinically-relevant ARGs and cultured ARB were reduced by several logs during primary and secondary stages of wastewater treatment, but to a lesser extent during the tertiary water reuse treatments. In particular, ozonation tended to enrich multi-drug ARGs. The effect of chlorination was facility-dependent, increasing the relative abundance of ARGs when following biologically-active carbon filters, but generally providing a benefit in reduced bacterial numbers and ecological and human health resistome risk scores. Relative abundances of total ARGs and resistome risk scores were lowest in aquifer samples, although resistant Escherichia coli and Klebsiella pneumoniae were occasionally detected in the monitoring well 3-days downgradient from injection, but not 6-months downgradient. Resistant E. coli and Pseudomonas aeruginosa were occasionally detected in the nonpotable reuse distribution system, along with increased levels of multidrug, sulfonamide, phenicol, and aminoglycoside ARGs. This study illuminates specific vulnerabilities of water reuse systems to persistence, selection, and growth of ARGs and ARB and emphasizes the role of multiple treatment barriers, including aquifers and distribution systems.


Assuntos
Águas Residuárias , Purificação da Água , Humanos , Escherichia coli , Antagonistas de Receptores de Angiotensina/farmacologia , Inibidores da Enzima Conversora de Angiotensina/farmacologia , Resistência Microbiana a Medicamentos/genética , Antibacterianos/farmacologia , Genes Bacterianos
9.
Water Res ; 250: 121095, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38181645

RESUMO

The sampling and analysis of sewage for pathogens and other biomarkers offers a powerful tool for monitoring and understanding community health trends and potentially predicting disease outbreaks. Since the early months of the COVID-19 pandemic, the use of wastewater-based testing for public health surveillance has increased markedly. However, these efforts have focused on urban and peri­urban areas. In most rural regions of the world, healthcare service access is more limited than in urban areas, and rural public health agencies typically have less disease outcome surveillance data than their urban counterparts. The potential public health benefits of wastewater-based surveillance for rural communities are therefore substantial - though so too are the methodological and ethical challenges. For many rural communities, population dynamics and insufficient, aging, and inadequately maintained wastewater collection and treatment infrastructure present obstacles to the reliable and responsible implementation of wastewater-based surveillance. Practitioner observations and research findings indicate that for many rural systems, typical implementation approaches for wastewater-based surveillance will not yield sufficiently reliable or actionable results. We discuss key challenges and potential strategies to address them. However, to support and expand the implementation of responsible, reliable, and ethical wastewater-based surveillance for rural communities, best practice guidelines and standards are needed.


Assuntos
COVID-19 , Vigilância Epidemiológica Baseada em Águas Residuárias , Humanos , Águas Residuárias , População Rural , Pandemias , COVID-19/epidemiologia
10.
Environ Sci Technol ; 57(50): 21382-21394, 2023 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-38071676

RESUMO

In-building disinfectants are commonly applied to control the growth of pathogens in plumbing, particularly in facilities such as hospitals that house vulnerable populations. However, their application has not been well optimized, especially with respect to interactive effects with pipe materials and potential unintended effects, such as enrichment of antibiotic resistance genes (ARGs) across the microbial community. Here, we used triplicate convectively mixed pipe reactors consisting of three pipe materials (PVC, copper, and iron) for replicated simulation of the distal reaches of premise plumbing and evaluated the effects of incrementally increased doses of chlorine, chloramine, chlorine dioxide, and copper-silver disinfectants. We used shotgun metagenomic sequencing to characterize the resulting succession of the corresponding microbiomes over the course of 37 weeks. We found that both disinfectants and pipe material affected ARG and microbial community taxonomic composition both independently and interactively. Water quality and total bacterial numbers were not found to be predictive of pathogenic species markers. One result of particular concern was the tendency of disinfectants, especially monochloramine, to enrich ARGs. Metagenome assembly indicated that many ARGs were enriched specifically among the pathogenic species. Functional gene analysis was indicative of a response of the microbes to oxidative stress, which is known to co/cross-select for antibiotic resistance. These findings emphasize the need for a holistic evaluation of pathogen control strategies for plumbing.


Assuntos
Desinfetantes , Água Potável , Engenharia Sanitária , Desinfetantes/farmacologia , Abastecimento de Água , Antibacterianos/farmacologia , Cobre , Proliferação de Células
11.
Water Res X ; 21: 100189, 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-38098877

RESUMO

A framework is needed to account for interactive effects of plumbing materials and disinfectants on opportunistic pathogens (OPs) in building water systems. Here we evaluated free chlorine, monochloramine, chlorine dioxide, and copper-silver ionization (CSI) for controlling Pseudomonas aeruginosa and Acinetobacter baumannii as two representative OPs that colonize hot water plumbing, in tests using polyvinylchloride (PVC), copper-PVC, and iron-PVC convectively-mixed pipe reactors (CMPRs). Pipe materials vulnerable to corrosion (i.e., iron and copper) altered the pH, dissolved oxygen, and disinfectant levels in a manner that influenced growth trends of the two OPs and total bacteria. P. aeruginosa grew well in PVC CMPRs, poorly in iron-PVC CMPRs, and was best controlled by CSI disinfection, whereas A. baumannii showed the opposite trend for pipe material and was better controlled by chlorine and chlorine dioxide. Various scenarios were identified in which pipe material and disinfectant can interact to either hinder or accelerate growth of OPs, illustrating the difficulties of controlling OPs in portions of plumbing systems experiencing warm, stagnant water.

13.
Front Genet ; 14: 1219297, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37811141

RESUMO

Antibiotic resistance is of crucial interest to both human and animal medicine. It has been recognized that increased environmental monitoring of antibiotic resistance is needed. Metagenomic DNA sequencing is becoming an attractive method to profile antibiotic resistance genes (ARGs), including a special focus on pathogens. A number of computational pipelines are available and under development to support environmental ARG monitoring; the pipeline we present here is promising for general adoption for the purpose of harmonized global monitoring. Specifically, ARGem is a user-friendly pipeline that provides full-service analysis, from the initial DNA short reads to the final visualization of results. The capture of extensive metadata is also facilitated to support comparability across projects and broader monitoring goals. The ARGem pipeline offers efficient analysis of a modest number of samples along with affordable computational components, though the throughput could be increased through cloud resources, based on the user's configuration. The pipeline components were carefully assessed and selected to satisfy tradeoffs, balancing efficiency and flexibility. It was essential to provide a step to perform short read assembly in a reasonable time frame to ensure accurate annotation of identified ARGs. Comprehensive ARG and mobile genetic element databases are included in ARGem for annotation support. ARGem further includes an expandable set of analysis tools that include statistical and network analysis and supports various useful visualization techniques, including Cytoscape visualization of co-occurrence and correlation networks. The performance and flexibility of the ARGem pipeline is demonstrated with analysis of aquatic metagenomes. The pipeline is freely available at https://github.com/xlxlxlx/ARGem.

14.
Environ Sci Technol ; 57(36): 13612-13624, 2023 09 12.
Artigo em Inglês | MEDLINE | ID: mdl-37643149

RESUMO

Hot water building plumbing systems are vulnerable to the proliferation of opportunistic pathogens (OPs), including Legionella pneumophila and Mycobacterium avium. Implementation of copper as a disinfectant could help reduce OPs, but a mechanistic understanding of the effects on the microbial community under real-world plumbing conditions is lacking. Here, we carried out a controlled pilot-scale study of hot water systems and applied shotgun metagenomic sequencing to examine the effects of copper dose (0-2 mg/L), orthophosphate corrosion control agent, and water heater anode materials (aluminum vs magnesium vs powered anode) on the bulk water and biofilm microbiome composition. Metagenomic analysis revealed that, even though a copper dose of 1.2 mg/L was required to reduce Legionella and Mycobacterium numbers, lower doses (e.g., ≤0.6 mg/L) measurably impacted the broader microbial community, indicating that the OP strains colonizing these systems were highly copper tolerant. Orthophosphate addition reduced bioavailability of copper, both to OPs and to the broader microbiome. Functional gene analysis indicated that both membrane damage and interruption of nucleic acid replication are likely at play in copper inactivation mechanisms. This study identifies key factors (e.g., orthophosphate, copper resistance, and anode materials) that can confound the efficacy of copper for controlling OPs in hot water plumbing.


Assuntos
Microbiota , Água , Cobre , Metagenômica , Engenharia Sanitária , Eletrodos , Fosfatos
15.
Antibiotics (Basel) ; 12(8)2023 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-37627672

RESUMO

Awareness of the need for surveillance of antimicrobial resistance (AMR) in water environments is growing, but there is uncertainty regarding appropriate monitoring targets. Adapting culture-based fecal indicator monitoring to include antibiotics in the media provides a potentially low-tech and accessible option, while quantitative polymerase chain reaction (qPCR) targeting key genes of interest provides a broad, quantitative measure across the microbial community. The purpose of this study was to compare findings obtained from the culture of cefotaxime-resistant (cefR) Escherichia coli with two qPCR methods for quantification of antibiotic resistance genes across wastewater, recycled water, and surface waters. The culture method was a modification of US EPA Method 1603 for E. coli, in which cefotaxime is included in the medium to capture cefR strains, while qPCR methods quantified sul1 and intI1. A common standard operating procedure for each target was applied to samples collected by six water utilities across the United States and processed by two laboratories. The methods performed consistently, and all three measures reflected the same overarching trends across water types. The qPCR detection of sul1 yielded the widest dynamic range of measurement as an AMR indicator (7-log versus 3.5-log for cefR E. coli), while intI1 was the most frequently detected target (99% versus 96.5% and 50.8% for sul1 and cefR E. coli, respectively). All methods produced comparable measurements between labs (p < 0.05, Kruskal-Wallis). Further study is needed to consider how relevant each measure is to capturing hot spots for the evolution and dissemination of AMR in the environment and as indicators of AMR-associated human health risk.

16.
Water Res ; 242: 120178, 2023 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-37307684

RESUMO

Copper (Cu) is sometimes applied as an antimicrobial for controlling Legionella in hot water plumbing systems, but its efficacy is inconsistent. Here we examined the effects of Cu (0 - 2 mg/L), orthophosphate corrosion inhibitor (0 or 3 mg/L as phosphate), and water heater anodes (aluminum, magnesium, and powered anodes) on both bulk water and biofilm-associated L. pneumophila in pilot-scale water heater systems. Soluble, but not total, Cu was a good predictor of antimicrobial capacity of Cu. Even after months of exposure to very high Cu levels (>1.2 mg/L) and low pH (<7), which increases solubility and enhances bioavailability of Cu, culturable L. pneumophila was only reduced by ∼1-log. Cu antimicrobial capacity was shown to be limited by various factors, including binding of Cu ions by aluminum hydroxide precipitates released from corrosion of aluminum anodes, higher pH due to magnesium anode corrosion, and high Cu tolerance of the outbreak-associated L. pneumophila strain that was inoculated into the systems. L. pneumophila numbers were also higher in several instances when Cu was dosed together with orthophosphate (e.g., with an Al anode), revealing at least one scenario where high levels of total Cu appeared to stimulate Legionella. The controlled, pilot-scale nature of this study provides new understanding of the limitations of Cu as an antimicrobial in real-world plumbing systems.


Assuntos
Anti-Infecciosos , Legionella pneumophila , Legionella , Cobre , Abastecimento de Água , Alumínio , Magnésio , Água , Eletrodos , Microbiologia da Água
17.
Environ Sci Technol ; 57(26): 9713-9721, 2023 07 04.
Artigo em Inglês | MEDLINE | ID: mdl-37310875

RESUMO

Surveillance of antibiotic resistance genes (ARGs) has been increasingly conducted in environmental sectors to complement the surveys in human and animal sectors under the "One-Health" framework. However, there are substantial challenges in comparing and synthesizing the results of multiple studies that employ different test methods and approaches in bioinformatic analysis. In this article, we consider the commonly used quantification units (ARG copy per cell, ARG copy per genome, ARG density, ARG copy per 16S rRNA gene, RPKM, coverage, PPM, etc.) for profiling ARGs and suggest a universal unit (ARG copy per cell) for reporting such biological measurements of samples and improving the comparability of different surveillance efforts.


Assuntos
Antibacterianos , Genes Bacterianos , Animais , Humanos , Antibacterianos/farmacologia , RNA Ribossômico 16S/genética , Resistência Microbiana a Medicamentos/genética , Metagenômica/métodos
18.
Curr Environ Health Rep ; 10(2): 154-171, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36821031

RESUMO

PURPOSE OF REVIEW: Mounting evidence indicates that habitats such as wastewater and environmental waters are pathways for the spread of antibiotic-resistant bacteria (ARB) and mobile antibiotic resistance genes (ARGs). We identified antibiotic-resistant members of the genera Acinetobacter, Aeromonas, and Pseudomonas as key opportunistic pathogens that grow or persist in built (e.g., wastewater) or natural aquatic environments. Effective methods for monitoring these ARB in the environment are needed to understand their influence on dissemination of ARB and ARGs, but standard methods have not been developed. This systematic review considers peer-reviewed papers where the ARB above were cultured from wastewater or surface water, focusing on the accuracy of current methodologies. RECENT FINDINGS: Recent studies suggest that many clinically important ARGs were originally acquired from environmental microorganisms. Acinetobacter, Aeromonas, and Pseudomonas species are of interest because their ability to persist and grow in the environment provides opportunities to engage in horizontal gene transfer with other environmental bacteria. Pathogenic strains of these organisms resistant to multiple, clinically relevant drug classes have been identified as an urgent threat. However, culture methods for these bacteria were generally developed for clinical samples and are not well-vetted for environmental samples. The search criteria yielded 60 peer-reviewed articles over the past 20 years, which reported a wide variety of methods for isolation, confirmation, and antibiotic resistance assays. Based on a systematic comparison of the reported methods, we suggest a path forward for standardizing methodologies for monitoring antibiotic resistant strains of these bacteria in water environments.


Assuntos
Aeromonas , Águas Residuárias , Humanos , Genes Bacterianos , Aeromonas/genética , Pseudomonas/genética , Antagonistas de Receptores de Angiotensina , Inibidores da Enzima Conversora de Angiotensina , Antibacterianos/farmacologia
19.
Water Res X ; 17: 100161, 2022 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-36466738

RESUMO

Antibiotic resistance is a major 21st century One Health (humans, animals, environment) challenge whose spread limits options to treat bacterial infections. There is growing interest in monitoring water environments, including surface water and wastewater, which have been identified as key recipients, pathways, and sources of antibiotic resistant bacteria (ARB). Aquatic environments also facilitate the transmission and amplification of ARB. Enterococcus spp. often carry clinically-important antibiotic resistance genes and are of interest as environmental monitoring targets. Enterococcus spp. are Gram-positive bacteria that are typically of fecal origin; however, they are also found in relevant environmental niches, with various species and strains that are opportunistic human pathogens. Although the value of environmental monitoring of antibiotic-resistant Enterococcus has been recognized by both national and international organizations, lack of procedural standardization has hindered generation of comparable data needed to implement integrated surveillance programs. Here we provide a comprehensive methodological review to assess the techniques used for the culturing and characterization of antibiotic-resistant Enterococcus across water matrices for the purpose of environmental monitoring. We analyzed 117 peer-reviewed articles from 33 countries across six continents. The goal of this review is to provide a critical analysis of (i) the various methods applied globally for isolation, confirmation, and speciation of Enterococcus isolates, (ii) the different methods for profiling antibiotic resistance among enterococci, and (iii) the current prevalence of resistance to clinically-relevant antibiotics among Enterococcus spp. isolated from various environments. Finally, we provide advice regarding a path forward for standardizing culturing of Enterococcus spp. for the purpose of antibiotic resistance monitoring in wastewater and wastewater-influenced waters within a global surveillance framework.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA