RESUMO
We study the impact of excitation energy on the photostability of methylammonium lead triiodide (CH3NH3PbI3 or MAPI) perovskite thin films. Light soaking leads to a transient increase of the photoluminescence efficiency at excitation wavelengths longer than 520 nm, whereas light-induced degradation occurs when exciting the films with wavelengths shorter than 520 nm. X-ray diffraction and extinction measurements reveal the light-induced decomposition of CH3NH3PbI3 to lead iodide (PbI2) for the high-energy excitation regime. We propose a model explaining the energy dependence of the photostability that involves the photoexcitation of residual PbI2 species in the perovskite triggering the decomposition of CH3NH3PbI3.
RESUMO
The high speed on-off performance of GaN-based light-emitting diodes (LEDs) grown in c-plane direction is limited by long carrier lifetimes caused by spontaneous and piezoelectric polarization. This work demonstrates that this limitation can be overcome by m-planar core-shell InGaN/GaN nanowire LEDs grown on Si(111). Time-resolved electroluminescence studies exhibit 90-10% rise- and fall-times of about 220 ps under GHz electrical excitation. The data underline the potential of these devices for optical data communication in polymer fibers and free space.