Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Med Chem ; 65(13): 8843-8854, 2022 07 14.
Artigo em Inglês | MEDLINE | ID: mdl-35729784

RESUMO

Protease-activated receptor 4 (PAR4) is a G-protein coupled receptor that is expressed on human platelets and activated by the coagulation enzyme thrombin. PAR4 plays a key role in blood coagulation, and its importance in pathological thrombosis has been increasingly recognized in recent years. Herein, we describe the optimization of a series of imidazothiadiazole PAR4 antagonists to a first-in-class clinical candidate, BMS-986120 (43), and a backup clinical candidate, BMS-986141 (49). Both compounds demonstrated excellent antithrombotic efficacy and minimal bleeding time prolongation in monkey models relative to the clinically important antiplatelet agent clopidogrel and provide a potential opportunity to improve the standard of care in the treatment of arterial thrombosis.


Assuntos
Agregação Plaquetária , Trombose , Benzofuranos , Plaquetas , Humanos , Imidazóis , Morfolinas , Receptor PAR-1 , Receptores de Trombina , Tiazóis , Trombina , Trombose/tratamento farmacológico
2.
J Med Chem ; 62(16): 7400-7416, 2019 08 22.
Artigo em Inglês | MEDLINE | ID: mdl-31246024

RESUMO

In an effort to identify novel antithrombotics, we have investigated protease-activated receptor 4 (PAR4) antagonism by developing and evaluating a tool compound, UDM-001651, in a monkey thrombosis model. Beginning with a high-throughput screening hit, we identified an imidazothiadiazole-based PAR4 antagonist chemotype. Detailed structure-activity relationship studies enabled optimization to a potent, selective, and orally bioavailable PAR4 antagonist, UDM-001651. UDM-001651 was evaluated in a monkey thrombosis model and shown to have robust antithrombotic efficacy and no prolongation of kidney bleeding time. This combination of excellent efficacy and safety margin strongly validates PAR4 antagonism as a promising antithrombotic mechanism.


Assuntos
Benzofuranos/farmacologia , Fibrinolíticos/farmacologia , Hemorragia/prevenção & controle , Receptores de Trombina/antagonistas & inibidores , Trombose/prevenção & controle , Animais , Benzofuranos/química , Benzofuranos/farmacocinética , Disponibilidade Biológica , Modelos Animais de Doenças , Fibrinolíticos/química , Fibrinolíticos/farmacocinética , Células HEK293 , Hemorragia/metabolismo , Humanos , Macaca fascicularis , Modelos Químicos , Estrutura Molecular , Agregação Plaquetária/efeitos dos fármacos , Receptores de Trombina/genética , Receptores de Trombina/metabolismo , Relação Estrutura-Atividade , Trombose/metabolismo
3.
J Biol Chem ; 282(43): 31186-96, 2007 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-17715137

RESUMO

Human immunodeficiency virus (HIV) integrase enzyme is required for the integration of viral DNA into the host cell chromosome. Integrase complex assembly and subsequent strand transfer catalysis are mediated by specific interactions between integrase and bases at the end of the viral long terminal repeat (LTR). The strand transfer reaction can be blocked by the action of small molecule inhibitors, thought to bind in the vicinity of the viral LTR termini. This study examines the contributions of the terminal four bases of the nonprocessed strand (G(2)T(1)C(-1)A(-2)) of the HIV LTR on complex assembly, specific strand transfer activity, and inhibitor binding. Base substitutions and abasic replacements at the LTR terminus provided a means to probe the importance of each nucleotide on the different functions. An approach is described wherein the specific strand transfer activity for each integrase/LTR variant is derived by normalizing strand transfer activity to the concentration of active sites. The key findings of this study are as follows. 1) The G(2):C(2) base pair is necessary for efficient assembly of the complex and for maintenance of an active site architecture, which has high affinity for strand transfer inhibitors. 2) Inhibitor-resistant enzymes exhibit greatly increased sensitivity to LTR changes. 3) The strand transfer and inhibitor binding defects of a Q148R mutant are due to a decreased affinity of the complex for magnesium. 4) Gln(148) interacts with G(2), T(1), and C(-1) at the 5' end of the viral LTR, with these four determinants playing important and overlapping roles in assembly, strand transfer catalysis and high affinity inhibitor binding.


Assuntos
DNA Viral/química , DNA Viral/metabolismo , Inibidores de Integrase de HIV/farmacologia , Integrase de HIV/metabolismo , Repetição Terminal Longa de HIV/genética , Adenosina/metabolismo , Substituição de Aminoácidos , Pareamento de Bases , Sequência de Bases , Sítios de Ligação , Catálise , Cátions Bivalentes , Citosina/metabolismo , DNA Viral/genética , Relação Dose-Resposta a Droga , Escherichia coli/genética , Guanosina/metabolismo , Integrase de HIV/genética , Integrase de HIV/isolamento & purificação , Humanos , Cinética , Magnésio/metabolismo , Dados de Sequência Molecular , Proteínas Recombinantes/metabolismo , Timina/metabolismo , Transformação Genética , Integração Viral/fisiologia
4.
Bioorg Med Chem Lett ; 17(17): 4886-90, 2007 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-17604626

RESUMO

Integrase is one of three enzymes expressed by HIV and represents a validated target for therapy. Previous reports have demonstrated that the diketoacid-based chemotype is a useful starting point for the design of inhibitors of this enzyme. In this study, one of the ketone groups is replaced by a benzylamide resulting in a new potent chemotype. A preliminary SAR study is carried out to investigate the substitution requirements on the phenyl ring and methylene group of the benzylamide.


Assuntos
Amidas/química , Fármacos Anti-HIV/farmacologia , Inibidores de Integrase de HIV/síntese química , Integrase de HIV/química , Cetoácidos/química , Fármacos Anti-HIV/química , Desenho de Fármacos , Elétrons , Inibidores Enzimáticos/farmacologia , Inibidores de Integrase de HIV/química , Concentração Inibidora 50 , Integrases/química , Modelos Químicos , Estrutura Molecular , Nitrogênio/química , Relação Estrutura-Atividade
5.
Bioorg Med Chem Lett ; 16(22): 5818-21, 2006 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-16971121

RESUMO

Integrase is one of three enzymes expressed by HIV and represents a validated target for therapy. A previous study of the diketoacid-based chemotype suggested that there are two aryl-binding domains on integrase. In this study, modifications to the indole-based diketoacid chemotype are explored. It is demonstrated that the indole group can be replaced with secondary but not tertiary (e.g., N-methyl) aniline-based amides without sacrificing in vitro inhibitory activity. The difference in activity between the secondary and tertiary amides is most likely due to the opposite conformational preferences of the amide bonds, s-trans for the secondary-amide and s-cis for the tertiary-amide. However, it was found that the conformational preference of the tertiary amide can be reversed by incorporating the amide nitrogen atom into an indoline heterocycle, resulting in very potent integrase inhibitors.


Assuntos
Anilidas/síntese química , Anilidas/farmacologia , Inibidores de Integrase de HIV/farmacologia , HIV-1/efeitos dos fármacos , Cetoácidos/síntese química , Cetoácidos/farmacologia , Amidas/química , Sítios de Ligação , Cátions , Desenho de Fármacos , Humanos , Magnésio/metabolismo , Estereoisomerismo , Relação Estrutura-Atividade
6.
Bioorg Med Chem Lett ; 16(11): 2920-4, 2006 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-16546383

RESUMO

Integrase is one of three enzymes expressed by HIV and represents a validated target for therapy. This study reports on the discovery of a new triketoacid-based chemotype that selectively inhibits the strand transfer reaction of HIV-integrase. SAR studies showed that the template binds to integrase in a manner similar to the diketoacid-based inhibitors. Moreover, comparison of the new chemotype to two different diketoacid templates led us to propose two aryl-binding domains in the inhibitor binding site. This information was used to design a new diketoacid template with improved activity against the enzyme.


Assuntos
Inibidores de Integrase de HIV/síntese química , Inibidores de Integrase de HIV/farmacologia , Integrase de HIV/química , Integrase de HIV/metabolismo , HIV-1/enzimologia , Cetoácidos/química , Cetoácidos/farmacologia , Inibidores de Integrase de HIV/química , HIV-1/efeitos dos fármacos , Cetoácidos/síntese química , Estrutura Molecular , Relação Estrutura-Atividade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA