Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 96
Filtrar
1.
Artigo em Inglês | MEDLINE | ID: mdl-39236115

RESUMO

Altitude training is a cornerstone for endurance athletes for improving blood variables and performance with optimal effects observed at ⁓2300-2500 meters above sea level (m.a.s.l.). However, elite cyclists face challenges such as limited access to such altitudes, inadequate training facilities, and high expenses. To address these issues, a novel method involving daily exposure to carbon monoxide (CO) has been proposed to amplify altitude training adaptations at suboptimal altitudes. Thirty-one male cyclists were assigned to three groups: Live-High and Train-High with CO inhalation (LHTHCO), Live-High Train-High (LHTH), and Live-Low Train-Low (LLTL). The LHTHCO group underwent CO inhalation twice daily in the afternoon/evening to elevate carboxyhemoglobin concentration to ⁓10%. Hematological variables, in-vivo muscle oxidative capacity, and physiological indicators of cycling performance were assessed before and after a 3-week altitude training camp at 2100 m.a.s.l. LHTHCO demonstrated a larger increase in hemoglobin mass (Hbmass) compared to both LHTH and LLTL. While there were no statistical differences between LHTHCO and LHTH in submaximal and maximal performance measures, LHTHCO displayed greater improvements in 1-min maximal power output during incremental testing (Wmax), power output at lactate threshold, and maximal oxygen consumption (VO2max) compared to LLTL. LHTH demonstrated a larger improvement than LLTL in Wmax andVO2maxwith no group differences in Hbmass or submaximal measures. Muscle oxidative capacity did not differ between groups. These findings suggest that combining moderate altitude training with daily CO inhalation promotes hematological adaptations more effectively than moderate altitude alone and enhances cycling performance metrics in cyclists more than sea-level training.

2.
J Strength Cond Res ; 38(9): 1584-1595, 2024 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-39179241

RESUMO

ABSTRACT: Øfsteng, SF, Hammarström, D, Knox, S, Jøsok, Ø, Helkala, K, Koll, L, Hanestadhaugen, M, Raastad, T, Rønnestad, BR, and Ellefsen, S. Superiority of high-load vs. low-load resistance training in military cadets. J Strength Cond Res 38(9): 1584-1595, 2024-Muscle strength and power are important determinants of soldiers' performance in modern warfare. Here, we compare the efficacy of 22 weeks of whole-body resistance training with high load (HL, 10 repetitions maximum/RM) and low load (LL, 30RM) for developing maximal muscle strength and power, performance, and muscle mass in moderately trained cadets (20 ± 1 year, f; n = 5, m; n = 22). Outcome measures were assessed at baseline and at week 22, in addition to a mid-intervention assessment at week 10. Twenty-two weeks of HL led to greater increases in muscle strength (upper limb, Δ 10%, 95% CI [2.8, 17.1], p = 0.01; lower limb, Δ 9.9%, CI [1.1, 18.6], p = 0.029), jump height (Δ 5.5%, CI [1.4, 9.6], p = 0.011), and upper limb lean mass (Δ 5.2%, CI [1, 9.4], p = 0.018) compared with LL. HL and LL led to similar changes in agility, muscle endurance performance, lower limb muscle mass, and cross-sectional area in m. vastus lateralis. For all variables, training-associated changes occurred primarily during the initial 10 weeks of the intervention, including the differential responses to HL and LL. In conclusion, although 22 weeks of HL led to greater increases in lower and upper limb muscle strength, power, and upper limb lean mass than LL, the 2 load conditions led to similar improvements in agility performance and lower limb muscle mass. Our results thus indicate that both loading regimes elicit multifaceted physiological improvements important for military readiness.


Assuntos
Militares , Força Muscular , Treinamento Resistido , Humanos , Treinamento Resistido/métodos , Força Muscular/fisiologia , Adulto Jovem , Masculino , Feminino , Músculo Esquelético/fisiologia , Extremidade Superior/fisiologia , Extremidade Inferior/fisiologia , Adolescente
3.
Med Sci Sports Exerc ; 2024 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-39160765

RESUMO

PURPOSE: Altitude training is a common strategy used with the intent to increase hemoglobin mass (Hbmass) in athletes. However, if the Hbmass is increased during altitude camps it seems to decline rapidly upon returning to sea level. This study aimed to examine the efficacy of three weekly heat training sessions over a 3.5-week period following a 3-week altitude camp, on the maintenance of Hbmass in elite cyclists. METHODS: Eighteen male cyclists (maximal oxygen consumption: 76 ± 5 mL·min-1·kg-1) underwent a 3-week altitude training camp at ~2100 m above sea level. After the camp, participants were divided into one group performing three weekly heat sessions that was subtracted from their usual training (HEAT) while the other continuing usual training (CON). Training characteristics were recorded during the intervention, while hematological measurements were recorded before the camp as well as two days and 3.5-weeks after the altitude camp. RESULTS: The 3-week altitude camp led to an overall increase in total Hbmass of 4.1%. Afterwards, HEAT maintained Hbmass (0.2%, p = 0.738), while CON group experienced a significant reduction (-3.3%, p < 0.001) (ΔHEAT vs. ΔCON, p < 0.001). Moreover, HEAT increased plasma volume (PV) by 11.6% (p = 0.007) and blood volume (BV) by 5.8% (p = 0.007), whereas CON only showed an increase in PV (5.5%, p = 0.041). Exercise intensity and training load were not different between groups during the maintenance period. CONCLUSIONS: This study suggests that incorporating three weekly heat training sessions into the usual training routine preserves a moderately increased Hbmass in elite cyclists following an altitude camp.

4.
Appl Physiol Nutr Metab ; 49(7): 1008-1013, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38564798

RESUMO

Interval training is considered an essential training component in endurance athletes. Recently, there has been a focus on optimization of interval training characteristics to sustain a high fraction of maximal oxygen consumption (≥90% VO2max) to improve physiological adaptations and performance. Herein, we present a synopsis of the latest research exploring both acute and chronic studies in endurance athletes. Further, a decision flowchart was created for athletes and coaches to select the most appropriate interval training regime for specific individualized goals.


Assuntos
Atletas , Treinamento Intervalado de Alta Intensidade , Consumo de Oxigênio , Resistência Física , Humanos , Resistência Física/fisiologia , Consumo de Oxigênio/fisiologia , Treinamento Intervalado de Alta Intensidade/métodos , Adaptação Fisiológica/fisiologia , Desempenho Atlético/fisiologia
5.
Am J Hematol ; 99(1): 88-98, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38032792

RESUMO

Blood volume (BV) is an important clinical parameter and is usually reported per kg of body mass (BM). When fat mass is elevated, this underestimates BV/BM. One aim was to study if differences in BV/BM related to sex, age, and fitness would decrease if normalized to lean body mass (LBM). The analysis included 263 women and 319 men (age: 10-93 years, body mass index: 14-41 kg/m2 ) and 107 athletes who underwent assessment of BV and hemoglobin mass (Hbmass ), body composition, and cardiorespiratory fitness. BV/BM was 25% lower (70.3 ± 11.3 and 80.3 ± 10.8 mL/kgBM ) in women than men, respectively, whereas BV/LBM was 6% higher in women (110.9 ± 12.5 and 105.3 ± 11.2 mL/kgLBM ). Hbmass /BM was 34% lower (8.9 ± 1.4 and 11.5 ± 11.2 g/kgBM ) in women than in men, respectively, but only 6% lower (14.0 ± 1.5 and 14.9 ± 1.5 g/kgLBM )/LBM. Age did not affect BV. Athlete's BV/BM was 17.2% higher than non-athletes, but decreased to only 2.5% when normalized to LBM. Of the variables analyzed, LBM was the strongest predictor for BV (R2 = .72, p < .001) and Hbmass (R2 = .81, p < .001). These data may only be valid for BV/Hbmass when assessed by CO re-breathing. Hbmass /LBM could be considered a valuable clinical matrix in medical care aiming to normalize blood homeostasis.


Assuntos
Exercício Físico , Hemoglobinas , Masculino , Humanos , Feminino , Criança , Adolescente , Adulto Jovem , Adulto , Pessoa de Meia-Idade , Idoso , Idoso de 80 Anos ou mais , Valores de Referência , Índice de Massa Corporal , Hemoglobinas/análise , Volume Sanguíneo
6.
J Appl Physiol (1985) ; 135(1): 217-226, 2023 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-37262101

RESUMO

Heat exercise training may increase exercise performance in athletes. The underlying mechanisms remain partly unresolved, and it is unknown if female and male athletes may experience comparable gains. The aims were to investigate whether heat training (HEAT) increases hemoglobin mass (Hbmass), skeletal muscle fiber characteristics, and thermoneutral exercise performance in elite female and male endurance athletes. Female (n = 20; V̇o2max = 58.2 ± 6.7 mL·min-1·kg-1) and male (n = 27; V̇o2max = 76.4 ± 7.8 mL·min-1·kg-1) cyclists were studied before and after 5 wk of randomized control or HEAT consisting of five weekly sessions each of 50 min duration, which were included in their normal training regimes. Overall, the observed relative responses to HEAT were largely similar in female and male study participants. HEAT increased (P < 0.05) Hbmass in females from 650 ± 77 to 675 ± 76 g (4.0 ± 1.6%) and from 1,008 ± 155 to 1,041 ± 147 g (3.5 ± 2.3%) in males. In contrast, skeletal muscle citrate synthase activity, fiber type distribution, and capillary density remained unchanged with HEAT. Lactate threshold, V̇o2max, and mean power output during 15-min all-out testing were all enhanced (P < 0.05) following HEAT in female and male study participants. In conclusion, 5 wk of HEAT increases Hbmass in female and male elite cyclists and improves exercise performance in a thermoneutral environment. Based on this, heat training may be recommended to elite female and male athletes aiming to perform in a thermoneutral environment.NEW & NOTEWORTHY We demonstrate in elite female and male cyclists that heat exercise training (5 × 50 min sessions/wk for 5 wk) facilities Hbmass and other hematological parameters more than control exercise training, whereas skeletal muscle properties remain unaltered. Collectively, this coincided with improvements in lactate threshold, V̇o2max, and 15-min all-out cycling performance.


Assuntos
Temperatura Alta , Consumo de Oxigênio , Feminino , Humanos , Masculino , Ciclismo/fisiologia , Exercício Físico , Hemoglobinas/metabolismo , Ácido Láctico , Fibras Musculares Esqueléticas/fisiologia , Músculo Esquelético/metabolismo , Resistência Física/fisiologia
7.
Med Sci Sports Exerc ; 55(11): 2053-2063, 2023 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-37259247

RESUMO

AIM: This study investigated the development of power profiles and performance-related measures from the junior level (<19 yr) via U23 (19-23 yr) to senior level (>23 yr) in 19 female and 100 male Norwegian national team cyclists. METHODS: A total of 285 tests were performed in a 3-d laboratory-standardized testing regime. The tests included power profiles with shorter duration (6-60 s) and longer durations (12-30 min) together with performance-related measures: critical power (CP), work capacity above CP (W'), power output at 4 and 2 mmol·L -1 [BLa - ] (L 4 and L 2 ), maximal aerobic power (W max ), and maximal oxygen uptake (V̇O 2max ), gross efficiency (GE), and pedaling efficiency. RESULTS: Females and males evolve similarly when maturing from junior via U23 to senior categories (all P > 0.07), except for V̇O 2max , which increased in females (but not males) from junior to senior level (534 ± 436 mL·min -1 , P = 0.013). In general, only performances of longer durations improved with age (12 and 30 min, P = 0.028 and P = 0.042, respectively). Performance-related measures like W max , V̇O 2max , CP, L 4 , L 2 , and pedaling efficiency in the fresh state improved with age (all P ≤ 0.025). Importantly, performance in the semifatigued state during a 5-min maximal test was also improved with age ( P = 0.045) despite a higher external energy expenditure before the test ( P = 0.026). CONCLUSIONS: Junior cyclists show highly developed sprint abilities, and the primary improvements of absolute power outputs and performance-related measures are seen for durations >60 s when maturing to U23 and senior categories. However, the durability, i.e., the capacity to maintain performance in a semifatigued state, is improved with age.


Assuntos
Teste de Esforço , Consumo de Oxigênio , Humanos , Masculino , Feminino , Ciclismo , Fatores de Tempo , Metabolismo Energético
8.
Front Sports Act Living ; 4: 948127, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36439620

RESUMO

Purpose: The aim of this study was to compare the effects of a 6-day high-intensity interval (HIT) block [BLOCK, n = 12, maximal oxygen uptake (V̇O2max = 69. 6 ± 4.3 mL·min-1·kg-1)] with a time-matched period with usual training (CON, n = 12, V̇O2max = 69.2 ± 4.2 mL·min-1·kg-1) in well-trained cross-country (XC) skiers on physiological determinants and indicators of endurance performance. Furthermore, the study aimed to investigate the acute physiological responses, including time ≥90% of V̇O2max, and its associated reliability during repeated HIT sessions in the HIT microcycle. Methods: Before the 6-day HIT block and following 5 days of recovery after the HIT block, both groups were tested on indicators of endurance performance. To quantify time ≥90% of V̇O2max during interval sessions in the HIT block, V̇O2 measurements were performed on the 1st, 2nd, and last HIT session in BLOCK. Results: BLOCK had a larger improvement than CON in maximal 1-min velocity achieved during the V̇O2max test (3.1 ± 3.1% vs. 1.2 ± 1.6%, respectively; p = 0.010) and velocity corresponding to 4 mmol·L-1 blood lactate (3.2 ± 2.9% vs. 0.6 ± 2.1%, respectively; p = 0.024). During submaximal exercise, BLOCK displayed a larger reduction in respiratory exchange ratio, blood lactate concentration, heart rate, and rate of perceived exertion (p < 0.05) and a tendency towards less energy expenditure compared to CON (p = 0.073). The ICC of time ≥90% V̇O2max in the present study was 0.57, which indicates moderate reliability. Conclusions: In well-trained XC skiers, BLOCK induced superior changes in indicators of endurance performance compared with CON, while time ≥90% of V̇O2max during the HIT sessions in the 6-day block had a moderate reliability.

9.
Int J Sports Physiol Perform ; 17(11): 1565-1573, 2022 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-35926845

RESUMO

PURPOSE: Previous research suggests that the percentage of maximal oxygen uptake attained and the time it is sustained close to maximal oxygen uptake (eg, >90%) can serve as a good criterion to judge the effectiveness of a training stimulus. The aim of this study was to investigate the acute effects of adding vibration during varied high-intensity interval training (HIIT) sessions on physiological and neuromuscular responses. METHODS: Twelve well-trained cyclists completed a counterbalanced crossover protocol, wherein 2 identical varied HIIT cycling sessions were performed with and without intermittent vibration to the lower-intensity workloads of the work intervals (6 × 5-min work intervals and 2.5-min active recovery). Each 5-minute work interval consisted of 3 blocks of 40 seconds performed at 100% of maximal aerobic power interspersed with 60-second workload performed at a lower power output, equal to the lactate threshold plus 20% of the difference between lactate threshold and maximal aerobic power. Oxygen uptake and electromyographic activity of lower and upper limbs were recorded during all 5-minute work intervals. RESULTS: Adding vibration induced a longer time ≥90% maximal oxygen uptake (11.14 [7.63] vs 8.82 [6.90] min, d = 0.64, P = .048) and an increase in electromyographic activity of lower and upper limbs during the lower-intensity workloads by 20% (16%) and 34% (43%) (d = 1.09 and 0.83; P = .03 and .015), respectively. CONCLUSION: Adding vibration during a varied HIIT session increases the physiological demand of the cardiovascular and neuromuscular systems, indicating that this approach can be used to optimize the training stimulus of well-trained cyclists.


Assuntos
Treinamento Intervalado de Alta Intensidade , Vibração , Humanos , Consumo de Oxigênio/fisiologia , Treinamento Intervalado de Alta Intensidade/métodos , Ácido Láctico , Oxigênio
10.
Front Sports Act Living ; 4: 860685, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35548458

RESUMO

Sprint performance is critical for endurance performance in sports characterized by multiple accelerations like a cross-country Olympic mountain bike (XCO MTB) race. There are indications that 10-25 weeks of heavy strength training (HST) can improve cycling sprint power in cyclists. However, there is a lack of data on the effect of continuing HST across several seasons. In the first part of this case report, two elite cyclists performed HST across two preparatory periods (i.e., 1.5 years), while two others continued with endurance training only. HST induced a mean increase in leg press force and cycling sprint power of 16% after the first preparatory period (November to April), which was maintained during the competition period. After the next preparatory period a further increase from the first test was achieved (22 and 19%, respectively). The two cyclists with no HST had no changes in leg press force and cycling sprint power. The second part contains data from two of the cyclists from the first part. One of them continued with HST for 2 more years and achieved a continuous increase in leg press force during all four preparatory periods, ending up with a total increase of 44% after 3.5 years, while the development of cycling sprint power had more variation with an apparent plateau from the third to fourth preparatory periods, ending up with an improvement of 25%. The other cyclist did not perform HST in the first part but started with HST and performed this across the last two preparatory periods. After two preparatory periods with HST (i.e., 1.5 years), the increased leg press force and cycling sprint power were 24 and 22%, respectively, which was in the same range as the improvement observed after 1.5 years of HST in the first part of this case report. The present data extend previous short-term studies indicating that HST can give reasonable muscle strength improvements in elite cyclists across multiple preparatory periods. Furthermore, the present data indicate that HST adaptations can be maintained across multiple competition periods. Cycling sprint power seems to approximately follow the development of leg press performance.

11.
Med Sci Sports Exerc ; 54(9): 1515-1526, 2022 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-35394464

RESUMO

PURPOSE AND METHODS: To test whether heat training performed as 5 × 50-min sessions per week for 5 wk in a heat chamber (CHAMBER) or while wearing a heat suit (SUIT), in temperate conditions, increases hemoglobin mass (Hb mass ) and endurance performance in elite cyclists, compared with a control group (CON-1). Furthermore, after the 5-wk intervention, we tested whether three sessions per week for 3 wk with heat suit (SUIT main ) would maintain Hb mass elevated compared with athletes who returned to normal training (HEAT stop ) or who continued to be the control group (CON-2). RESULTS: During the initial 5 wk, SUIT and CHAMBER increased Hb mass (2.6% and 2.4%) to a greater extent than CON-1 (-0.7%; both P < 0.01). The power output at 4 mmol·L -1 blood lactate and 1-min power output ( Wmax ) improved more in SUIT (3.6% and 7.3%, respectively) than CON-1 (-0.6%, P < 0.05; 0.2%, P < 0.01), whereas this was not the case for CHAMBER (1.4%, P = 0.24; 3.4%, P = 0.29). However, when SUIT and CHAMBER were pooled this revealed a greater improvement in a performance index (composed of power output at 4 mmol·L -1 blood lactate, Wmax , and 15-min power output) than CON-1 (4.9% ± 3.2% vs 1.7% ± 1.1%, respectively; P < 0.05). During the 3-wk maintenance period, SUIT main induced a larger increase in Hb mass than HEAT stop (3.3% vs 0.8%; P < 0.05), which was not different from the control (CON-2; 1.6%; P = 0.19), with no differences between HEAT stop and CON-2 ( P = 0.52). CONCLUSIONS: Both SUIT and CHAMBER can increase Hb mass , and pooling SUIT and CHAMBER demonstrates that heat training can increase performance. Furthermore, compared with cessation of heat training, a sustained increase in Hb mass was observed during a subsequent 3-wk maintenance period, although the number of weekly heat training sessions was reduced to 3.


Assuntos
Desempenho Atlético , Ciclismo , Hemoglobinas , Temperatura Alta , Humanos , Lactatos , Consumo de Oxigênio , Resistência Física
12.
Scand J Med Sci Sports ; 32(7): 1089-1098, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35305278

RESUMO

PURPOSE: The primary purpose was to test the effect of heat suit training on hemoglobin mass (Hbmass ) in elite cross-country (XC) skiers. METHODS: Twenty-five male XC-skiers were divided into a group that added 5 × 50 min weekly heat suit training sessions to their regular training (HEAT; n = 13, 23 ± 5 years, 73.9 ± 5.2 kg, 180 ± 6 cm, 76.8 ± 4.6 ml·min-1 ·kg-1 ) or to a control group matched for training volume and intensity distribution (CON; n = 12, 23 ± 4 years, 78.4 ± 5.8 kg, 184 ± 4 cm, 75.2 ± 3.4 ml·min-1 ·kg-1 ) during the five-week intervention period. Hbmass , endurance performance and factors determining endurance performance were assessed before and after the intervention. RESULTS: HEAT led to 30 g greater Hbmass (95% CI: [8.5, 51.7], p = 0.009) and 157 ml greater red blood cell volume ([29, 285], p = 0.018) post-intervention, compared to CON when adjusted for baseline values. In contrast, no group differences were observed for changes in work economy, running velocity, and fractional utilization of maximal oxygen uptake (V̇O2max ) at 4 mmol·L-1 blood lactate, V̇O2max or 15-min running distance performance trial during the intervention. CONCLUSION: HEAT induced a larger increase in Hbmass and red blood cell volume after five weeks with five weekly heat suit training sessions than CON, but with no detectable group differences on physiological determinants of endurance performance or actual endurance performance in elite CX skiers.


Assuntos
Consumo de Oxigênio , Corrida , Volume de Eritrócitos , Hemoglobinas/análise , Temperatura Alta , Humanos , Masculino , Consumo de Oxigênio/fisiologia , Resistência Física/fisiologia
13.
Front Physiol ; 13: 837634, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35299664

RESUMO

The purpose of this study was to compare the effects of 12 weeks load-matched block periodization (BP, n = 14), using weekly concentration of high- (HIT), moderate- (MIT), and low- (LIT) intensity training, with traditional periodization (TP, n = 16) using a weekly, cyclic progressive increase in training load of HIT-, MIT-, and LIT-sessions in trained cyclists (peak oxygen uptake: 58 ± 8 ml·kg-1·min-1). Red blood cell volume increased 10 ± 16% (p = 0.029) more in BP compared to TP, while capillaries around type I fibers increased 20 ± 12% (p = 0.002) more in TP compared to BP from Pre to Post12. No other group differences were found in time-trial (TT) performances or muscular-, or hematological adaptations. However, both groups improved 5 and 40-min TT power by 9 ± 9% (p < 0.001) and 8 ± 9% (p < 0.001), maximal aerobic power (Wmax) and power output (PO) at 4 mmol·L-1 blood lactate (W4mmol), by 6 ± 7 (p = 0.001) and 10 ± 12% (p = 0.001), and gross efficiency (GE) in a semi-fatigued state by 0.5 ± 1.1%-points (p = 0.026). In contrast, GE in fresh state and VO2peak were unaltered in both groups. The muscle protein content of ß-hydroxyacyl (HAD) increased by 55 ± 58% in TP only, while both TP and BP increased the content of cytochrome c oxidase subunit IV (COXIV) by 72 ± 34%. Muscle enzyme activities of citrate synthase (CS) and phosphofructokinase (PFK) were unaltered. TP increased capillary-to-fiber ratio and capillary around fiber (CAF) type I by 36 ± 15% (p < 0.001) and 17 ± 8% (p = 0.025), respectively, while BP increased capillary density (CD) by 28 ± 24% (p = 0.048) from Pre to Post12. The present study shows no difference in performance between BP and "best practice"-TP of endurance training intensities using a cyclic, progressively increasing training load in trained cyclists. However, hematological and muscle capillary adaptations may differ.

14.
Artigo em Inglês | MEDLINE | ID: mdl-35270686

RESUMO

Low-intensity aerobic training combined with blood flow restriction (LI + BFR) has resulted in increases in aerobic and neuromuscular capacities in untrained individuals. This strategy may help cyclists incapable of training with high intensity bouts or during a rehabilitation program. However, there is a lack of evidence about the use of LI + BFR in injured trained cyclists. Thus, we investigated the effects of LI + BFR on aerobic capacity, maximal isometric strength, cross-sectional area of vastus lateralis (CSAVL), time to exhaustion test (TTE), and 20 km cycling time-trial performance (TT20 km) in a male cyclist with knee osteoarthritis (OA). After a 4-week control period, a 9-week (2 days/week) intervention period started. Pre- and post-intervention TT20 km, peak oxygen consumption (VO2peak), power output of the 1st and 2nd ventilatory thresholds (1st WVT and 2nd WVT), maximum power output (Wmax), TTE, muscle strength and CSAVL of both legs were measured. Training intensity was fixed at 30% of Wmax while the duration was progressively increased from 12 min to 24 min. There was a reduction in time to complete TT20 km (-1%) with increases in TT20 km mean power output (3.9%), VO2peak (11.4%), 2nd WVT (8.3%), Wmax (3.8%), TTE (15.5%), right and left legs maximal strength (1.3% and 8.5%, respectively) and CSAVL (3.3% and 3.7%, respectively). There was no alteration in 1st WVT. Based on the results, we suggest that LI + BFR may be a promising training strategy to improve the performance of knee-injured cyclists with knee OA.


Assuntos
Ciclismo , Força Muscular , Ciclismo/fisiologia , Humanos , Perna (Membro) , Masculino , Força Muscular/fisiologia , Músculo Quadríceps/fisiologia , Fluxo Sanguíneo Regional/fisiologia
15.
Acta Physiol (Oxf) ; 235(1): e13806, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35213791

RESUMO

AIM: To describe ribosome biogenesis during resistance training, its relation to training volume and muscle growth. METHODS: A training group (n = 11) performed 12 sessions (3-4 sessions per week) of unilateral knee extension with constant and variable volume (6 and 3-9 sets per session respectively) allocated to either leg. Ribosome abundance and biogenesis markers were assessed from vastus lateralis biopsies obtained at baseline, 48 hours after sessions 1, 4, 5, 8, 9 and 12, and after eight days of de-training, and from a control group (n = 8). Muscle thickness was measured before and after the intervention. RESULTS: Training led to muscle growth (3.9% over baseline values, 95% CrI: [0.2, 7.5] vs. control) with concomitant increases in total RNA, ribosomal RNA, upstream binding factor (UBF) and ribosomal protein S6 with no differences between volume conditions. Total RNA increased rapidly in response to the first four sessions (8.6% [5.6, 11.7] per session), followed by a plateau and peak values after session 8 (49.5% [34.5, 66.5] above baseline). Total RNA abundance was associated with UBF protein levels (5.0% [0.2, 10.2] per unit UBF), and the rate of increase in total RNA levels predicted hypertrophy (0.3 mm [0.1, 0.4] per %-point increase in total RNA per session). After de-training, total RNA decreased (-19.3% [-29.0, -8.1]) without muscle mass changes indicating halted biosynthesis of ribosomes. CONCLUSION: Ribosomes accumulate in the initial phase of resistance training with abundances sensitive to training cessation and associated with UBF protein levels. The average accumulation rate predicts muscle training-induced hypertrophy.


Assuntos
Treinamento Resistido , Humanos , Hipertrofia/metabolismo , Músculo Esquelético/metabolismo , RNA/metabolismo , Ribossomos/metabolismo
16.
Int J Sports Physiol Perform ; 17(1): 115-119, 2022 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-34271548

RESUMO

PURPOSE: The present case report aimed to investigate the effects of exercise training in temperate ambient conditions while wearing a heat suit on hemoglobin mass (Hbmass). METHODS: As part of their training regimens, 5 national-team members of endurance sports (3 males) performed ∼5 weekly heat suit exercise training sessions each lasting 50 minutes for a duration of ∼8 weeks. Two other male athletes acted as controls. After the initial 8-week period, 3 of the athletes continued for 2 to 4 months with ∼3 weekly heat sessions in an attempt to maintain acquired adaptations at a lower cost. Hbmass was assessed in duplicate before and after intervention and maintenance period based on automated carbon monoxide rebreathing. RESULTS: Heat suit exercise training increased rectal temperature to a median value of 38.7°C (range 38.6°C-39.0°C), and during the initial ∼8 weeks of heat suit training, there was a median increase of 5% (range 1.4%-12.9%) in Hbmass, while the changes in the 2 control athletes were a decrease of 1.7% and an increase of 3.2%, respectively. Furthermore, during the maintenance period, the 3 athletes who continued with a reduced number of heat suit sessions experienced a change of 0.7%, 2.8%, and -1.1%, indicating that it is possible to maintain initial increases in Hbmass despite reducing the weekly number of heat suit sessions. CONCLUSIONS: The present case report illustrates that heat suit exercise training acutely raises rectal temperature and that following 8 weeks of such training Hbmass may increase in elite endurance athletes.


Assuntos
Atletas , Vestuário , Hemoglobinas , Temperatura Alta , Condicionamento Físico Humano , Hemoglobinas/análise , Humanos , Masculino
17.
Sports Med ; 52(3): 601-612, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34757594

RESUMO

BACKGROUND: Both athletes and recreational exercisers often perform relatively high volumes of aerobic and strength training simultaneously. However, the compatibility of these two distinct training modes remains unclear. OBJECTIVE: This systematic review assessed the compatibility of concurrent aerobic and strength training compared with strength training alone, in terms of adaptations in muscle function (maximal and explosive strength) and muscle mass. Subgroup analyses were conducted to examine the influence of training modality, training type, exercise order, training frequency, age, and training status. METHODS: A systematic literature search was conducted according to the PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) guidelines. PubMed/MEDLINE, ISI Web of Science, Embase, CINAHL, SPORTDiscus, and Scopus were systematically searched (12 August 2020, updated on 15 March 2021). Eligibility criteria were as follows. POPULATION: healthy adults of any sex and age; Intervention: supervised concurrent aerobic and strength training for at least 4 weeks; Comparison: identical strength training prescription, with no aerobic training; Outcome: maximal strength, explosive strength, and muscle hypertrophy. RESULTS: A total of 43 studies were included. The estimated standardised mean differences (SMD) based on the random-effects model were - 0.06 (95% confidence interval [CI] - 0.20 to 0.09; p = 0.446), - 0.28 (95% CI - 0.48 to - 0.08; p = 0.007), and - 0.01 (95% CI - 0.16 to 0.18; p = 0.919) for maximal strength, explosive strength, and muscle hypertrophy, respectively. Attenuation of explosive strength was more pronounced when concurrent training was performed within the same session (p = 0.043) than when sessions were separated by at least 3 h (p > 0.05). No significant effects were found for the other moderators, i.e. type of aerobic training (cycling vs. running), frequency of concurrent training (> 5 vs. < 5 weekly sessions), training status (untrained vs. active), and mean age (< 40 vs. > 40 years). CONCLUSION: Concurrent aerobic and strength training does not compromise muscle hypertrophy and maximal strength development. However, explosive strength gains may be attenuated, especially when aerobic and strength training are performed in the same session. These results appeared to be independent of the type of aerobic training, frequency of concurrent training, training status, and age. PROSPERO: CRD42020203777.


Assuntos
Treinamento Resistido , Adaptação Fisiológica , Adulto , Exercício Físico , Humanos , Lactente , Recém-Nascido , Força Muscular/fisiologia , Músculo Esquelético , Treinamento Resistido/métodos
18.
Int J Sports Physiol Perform ; 17(3): 384-390, 2022 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-34814113

RESUMO

PURPOSE: Accumulated time at a high percentage of peak oxygen consumption (VO2peak) is important for improving performance in endurance athletes. The present study compared the acute physiological and perceived effects of performing high-intensity intervals with roller ski double poling containing work intervals with (1) fast start followed by decreasing speed (DEC), (2) systematic variation in exercise intensity (VAR), and (3) constant speed (CON). METHODS: Ten well-trained cross-country skiers (double-poling VO2peak 69.6 [3.5] mL·min-1·kg-1) performed speed- and duration-matched DEC, VAR, and CON on 3 separate days in a randomized order (5 × 5-min work intervals and 3-min recovery). RESULTS: DEC and VAR led to longer time ≥90% VO2peak (P = .016 and P = .033, respectively) and higher mean %VO2peak (P = .036, and P = .009) compared with CON, with no differences between DEC and VAR (P = .930 and P = .759, respectively). VAR, DEC, and CON led to similar time ≥90% of peak heart rate (HRpeak), mean HR, mean breathing frequency, mean ventilation, and mean blood lactate concentration ([La-]). Furthermore, no differences between sessions were observed for perceptual responses, such as mean rate of perceived exertion, session rate of perceived exertion or pain score (all Ps > .147). CONCLUSIONS: In well-trained XC skiers, DEC and VAR led to longer time ≥90% of VO2peak compared with CON, without excessive perceptual effort, indicating that these intervals can be a good alternative for accumulating more time at a high percentage of VO2peak and at the same time mimicking the pronounced variation in exercise intensities experienced during XC-skiing competitions.


Assuntos
Consumo de Oxigênio , Esqui , Teste de Esforço , Humanos , Ácido Láctico , Oxigênio , Consumo de Oxigênio/fisiologia , Esqui/fisiologia
19.
Scand J Med Sci Sports ; 31(12): 2198-2210, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34473848

RESUMO

The present study aimed to examine the effectiveness of an individualized training program based on force-velocity (FV) profiling on jumping, sprinting, strength, and power in athletes. Forty national level team sport athletes (20 ± 4years, 83 ± 13 kg) from ice-hockey, handball, and soccer completed a 10-week training intervention. A theoretical optimal squat jump (SJ)-FV-profile was calculated from SJ with five different loads (0, 20, 40, 60, and 80 kg). Based on their initial FV-profile, athletes were randomized to train toward, away, or irrespective (balanced training) of their initial theoretical optimal FV-profile. The training content was matched between groups in terms of set x repetitions but varied in relative loading to target the different aspects of the FV-profile. The athletes performed 10 and 30 m sprints, SJ and countermovement jump (CMJ), 1 repetition maximum (1RM) squat, and a leg-press power test before and after the intervention. There were no significant group differences for any of the performance measures. Trivial to small changes in 1RM squat (2.9%, 4.6%, and 6.5%), 10 m sprint time (1.0%, -0.9%, and -1.7%), 30 m sprint time (0.9%, -0.6%, and -0.4%), CMJ height (4.3%, 3.1%, and 5.7%), SJ height (4.8%, 3.7%, and 5.7%), and leg-press power (6.7%, 4.2%, and 2.9%) were observed in the groups training toward, away, or irrespective of their initial theoretical optimal FV-profile, respectively. Changes toward the optimal SJ-FV-profile were negatively correlated with changes in SJ height (r = -0.49, p < 0.001). Changes in SJ-power were positively related to changes in SJ-height (r = 0.88, p < 0.001) and CMJ-height (r = 0.32, p = 0.044), but unrelated to changes in 10 m (r = -0.02, p = 0.921) and 30 m sprint time (r = -0.01, p = 0.974). The results from this study do not support the efficacy of individualized training based on SJ-FV profiling.


Assuntos
Desempenho Atlético/fisiologia , Condicionamento Físico Humano/métodos , Teste de Esforço , Humanos , Perna (Membro)/fisiologia , Masculino , Força Muscular , Corrida/fisiologia , Adulto Jovem
20.
J Strength Cond Res ; 35(Suppl 2): S76-S80, 2021 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-34334774

RESUMO

ABSTRACT: Rønnestad, BR, Haugen, OC, and Dæhlin, TE. Superior on-ice performance after short-interval vs long-interval training in well-trained adolescent ice hockey players. J Strength Cond Res 35(12S): S76-S80, 2021-The purpose of this study was to compare the effects of 9 weeks with 3 weekly sessions of short intervals (SIs) against long intervals (LIs) on endurance performance in well-trained adolescent ice hockey players. Eighteen male adolescent ice hockey players volunteered to participate and were randomly allocated to perform SIs (n = 9; 3 series with 13 × 30 seconds work intervals) or LIs (n = 7; 4 series of 5 minutes work intervals). Subjects completed a skating multistage aerobic test (SMAT), maximal oxygen consumption, maximal power output, and maximal isokinetic knee-extensor strength tests before and after the intervention, and changes in performance were assessed using analysis of variance (p ≤ 0.05). Short intervals improved SMAT performance more from pretest to post-test than LIs (13.9 ± 8.1% vs. 3.7 ± 5.2%, respectively; p = 0.030, effect size [ES] = 1.48). No significant differences were observed between SIs and LIs in change of maximal oxygen uptake (SI: 3.8 ± 6.1% vs. LI: -0.4 ± 10.2%; p = 0.30) or 60 seconds maximal power output (SI: 1.0 ± 4.9% vs. LI: -3.7 ± 4.1%; p = 0.053). However, ESs were moderate (ES = 0.55) and large (ES = 1.07), respectively, in favor of SI for these dependent variables. There were no changes in isokinetic knee-extension strength (p > 0.05). The present SI protocol induced superior improvements in on-ice endurance performance compared with the LI protocol. Practitioners seeking to improve ice hockey players' on-ice endurance performance should consider including SI in their conditioning protocol.


Assuntos
Desempenho Atlético , Hóquei , Patinação , Adolescente , Humanos , Masculino , Consumo de Oxigênio
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA