Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
ACS Catal ; 14(18): 14219-14232, 2024 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-39324051

RESUMO

Water splitting has emerged as a promising route for generating hydrogen as an alternative to conventional production methods. Finding affordable and scalable catalysts for the anodic half-reaction, the oxygen evolution reaction (OER), could help with its industrial widespread implementation. Iron-containing Ni-based catalysts have a competitive performance for the use in commercial alkaline electrolyzers. Due to the complexity of studying the catalysts at working conditions, the active phase and the role that iron exerts in conjunction with Ni are still a matter of investigation. Here, we study this topic with NiO(001) and Ni0.75Fe0.25O x (001) thin film model electrocatalysts employing surface-sensitive techniques. We show that iron constrains the growth of the oxyhydroxide phase formed on top of the Ni or NiFe oxide, which is considered the active phase for the OER. Besides, operando Raman and grazing incidence X-ray absorption spectroscopy experiments reveal that the presence of iron affects both, the disorder level of the active phase and the oxidative charge around Ni during OER. The observed compositional, structural, and electronic properties of each system have been correlated with their electrochemical performance.

2.
Nat Commun ; 15(1): 6111, 2024 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-39030207

RESUMO

Copper and nitrogen co-doped carbon catalysts exhibit a remarkable behavior during the electrocatalytic CO2 reduction (CO2RR), namely, the formation of metal nanoparticles from Cu single atoms, and their subsequent reversible redispersion. Here we show that the switchable nature of these species holds the key for the on-demand control over the distribution of CO2RR products, a lack of which has thus far hindered the wide-spread practical adoption of CO2RR. By intermitting pulses of a working cathodic potential with pulses of anodic potential, we were able to achieve a controlled fragmentation of the Cu particles and partial regeneration of single atom sites. By tuning the pulse durations, and by tracking the catalyst's evolution using operando quick X-ray absorption spectroscopy, the speciation of the catalyst can be steered toward single atom sites, ultrasmall metal clusters or large metal nanoparticles, each exhibiting unique CO2RR functionalities.

3.
J Synchrotron Radiat ; 31(Pt 4): 741-750, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38917021

RESUMO

Transition-metal nitrogen-doped carbons (TM-N-C) are emerging as a highly promising catalyst class for several important electrocatalytic processes, including the electrocatalytic CO2 reduction reaction (CO2RR). The unique local environment around the singly dispersed metal site in TM-N-C catalysts is likely to be responsible for their catalytic properties, which differ significantly from those of bulk or nanostructured catalysts. However, the identification of the actual working structure of the main active units in TM-N-C remains a challenging task due to the fluctional, dynamic nature of these catalysts, and scarcity of experimental techniques that could probe the structure of these materials under realistic working conditions. This issue is addressed in this work and the local atomistic and electronic structure of the metal site in a Co-N-C catalyst for CO2RR is investigated by employing time-resolved operando X-ray absorption spectroscopy (XAS) combined with advanced data analysis techniques. This multi-step approach, based on principal component analysis, spectral decomposition and supervised machine learning methods, allows the contributions of several co-existing species in the working Co-N-C catalysts to be decoupled, and their XAS spectra deciphered, paving the way for understanding the CO2RR mechanisms in the Co-N-C catalysts, and further optimization of this class of electrocatalytic systems.

4.
Adv Mater ; 36(27): e2401133, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38619914

RESUMO

The electrochemical reduction of nitrates (NO3 -) enables a pathway for the carbon neutral synthesis of ammonia (NH3), via the nitrate reduction reaction (NO3RR), which has been demonstrated at high selectivity. However, to make NH3 synthesis cost-competitive with current technologies, high NH3 partial current densities (jNH3) must be achieved to reduce the levelized cost of NH3. Here, the high NO3RR activity of Fe-based materials is leveraged to synthesize a novel active particle-active support system with Fe2O3 nanoparticles supported on atomically dispersed Fe-N-C. The optimized 3×Fe2O3/Fe-N-C catalyst demonstrates an ultrahigh NO3RR activity, reaching a maximum jNH3 of 1.95 A cm-2 at a Faradaic efficiency (FE) for NH3 of 100% and an NH3 yield rate over 9 mmol hr-1 cm-2. Operando XANES and post-mortem XPS reveal the importance of a pre-reduction activation step, reducing the surface Fe2O3 (Fe3+) to highly active Fe0 sites, which are maintained during electrolysis. Durability studies demonstrate the robustness of both the Fe2O3 particles and Fe-Nx sites at highly cathodic potentials, maintaining a current of -1.3 A cm-2 over 24 hours. This work exhibits an effective and durable active particle-active support system enhancing the performance of the NO3RR, enabling industrially relevant current densities and near 100% selectivity.

5.
J Am Chem Soc ; 146(14): 9665-9678, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38557016

RESUMO

The electrochemical reduction of nitrate (NO3-) and nitrite (NO2-) enables sustainable, carbon-neutral, and decentralized routes to produce ammonia (NH3). Copper-based materials are promising electrocatalysts for NOx- conversion to NH3. However, the underlying reaction mechanisms and the role of different Cu species during the catalytic process are still poorly understood. Herein, by combining quasi in situ X-ray photoelectron spectroscopy (XPS) and operando X-ray absorption spectroscopy (XAS), we unveiled that Cu is mostly in metallic form during the highly selective reduction of NO3-/NO2- to NH3. On the contrary, Cu(I) species are predominant in a potential region where the two-electron reduction of NO3- to NO2- is the major reaction. Electrokinetic analysis and in situ Raman spectroscopy was also used to propose possible steps and intermediates leading to NO2- and NH3, respectively. This work establishes a correlation between the catalytic performance and the dynamic changes of the chemical state of Cu, and provides crucial mechanistic insights into the pathways for NO3-/NO2- electrocatalytic reduction.

6.
Energy Environ Sci ; 17(5): 2046-2058, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38449571

RESUMO

The production of green hydrogen through alkaline water electrolysis is the key technology for the future carbon-neutral industry. Nanocrystalline Co3O4 catalysts are highly promising electrocatalysts for the oxygen evolution reaction and their activity strongly benefits from Fe surface decoration. However, limited knowledge of decisive catalyst motifs at the atomic level during oxygen evolution prevents their knowledge-driven optimization. Here, we employ a variety of operando spectroscopic methods to unveil how Fe decoration increases the catalytic activity of Co3O4 nanocatalysts as well as steer the (near-surface) active state formation. Our study shows a link of the termination-dependent Fe decoration to the activity enhancement and a significantly stronger Co3O4 near-surface (structural) adaptation under the reaction conditions. The near-surface Fe- and Co-O species accumulate an oxidative charge and undergo a reversible bond contraction during the catalytic process. Moreover, our work demonstrates the importance of low coordination surface sites on the Co3O4 host to ensure an efficient Fe-induced activity enhancement, providing another puzzle piece to facilitate optimized catalyst design.

7.
EES Catal ; 2(1): 311-323, 2024 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-38222061

RESUMO

Electrochemical reduction of CO2 (CO2RR) is an attractive technology to reintegrate the anthropogenic CO2 back into the carbon cycle driven by a suitable catalyst. This study employs highly efficient multi-carbon (C2+) producing Cu2O nanocubes (NCs) decorated with CO-selective Au nanoparticles (NPs) to investigate the correlation between a high CO surface concentration microenvironment and the catalytic performance. Structure, morphology and near-surface composition are studied via operando X-ray absorption spectroscopy and surface-enhanced Raman spectroscopy, operando high-energy X-ray diffraction as well as quasi in situ X-ray photoelectron spectroscopy. These operando studies show the continuous evolution of the local structure and chemical environment of our catalysts during reaction conditions. Along with its alloy formation, a CO-rich microenvironment as well as weakened average CO binding on the catalyst surface during CO2RR is detected. Linking these findings to the catalytic function, a complex compositional interplay between Au and Cu is revealed in which higher Au loadings primarily facilitate CO formation. Nonetheless, the strongest improvement in C2+ formation appears for the lowest Au loadings, suggesting a beneficial role of the Au-Cu atomic interaction for the catalytic function in CO2RR. This study highlights the importance of site engineering and operando investigations to unveil the electrocatalyst's adaptations to the reaction conditions, which is a prerequisite to understand its catalytic behavior.

8.
Adv Mater ; 36(4): e2307809, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37994692

RESUMO

Electrochemical CO2 reduction (CO2 RR) is a rising technology, aiming to reduce the energy sector dependence on fossil fuels and to produce carbon-neutral raw materials. Metal-nitrogen-doped carbons (M-N-C) are emerging, cost-effective catalysts for this reaction; however, their long-term stability is a major issue. To overcome this, understanding their structural evolution is crucial, requiring systematic in-depth operando studies. Here a series of M-N-C catalysts (M = Fe, Sn, Cu, Co, Ni, Zn) is investigated using operando X-ray absorption spectroscopy. It is found that the Fe-N-C and Sn-N-C are prone to oxide clusters formation even before CO2 RR. In contrast, the respective metal cations are singly dispersed in the as-prepared Cu-N-C, Co-N-C, Ni-N-C, and (Zn)-N-C. During CO2 RR, metallic clusters/nanoparticles reversibly formed in all catalysts, except for the Ni-N-C. This phenomenon, previously observed only in Cu-N-C, thus is ubiquitous in M-N-C catalysts. The competition between M-O and M-N interactions is an important factor determining the mobility of metal species in M-N-C. Specifically, the strong interaction between the Ni centers and the N-functional groups of the carbon support results in higher stability of the Ni single-sites, leading to the excellent performance of Ni-N-C in the CO2 to CO conversion, in comparison to other transition metals.

9.
J Am Chem Soc ; 145(39): 21465-21474, 2023 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-37726200

RESUMO

The activity of Ni (hydr)oxides for the electrochemical evolution of oxygen (OER), a key component of the overall water splitting reaction, is known to be greatly enhanced by the incorporation of Fe. However, a complete understanding of the role of cationic Fe species and the nature of the catalyst surface under reaction conditions remains unclear. Here, using a combination of electrochemical cell and conventional transmission electron microscopy, we show how the surface of NiO electrocatalysts, with initially well-defined surface facets, restructures under applied potential and forms an active NiFe layered double (oxy)hydroxide (NiFe-LDH) when Fe3+ ions are present in the electrolyte. Continued OER under these conditions, however, leads to the creation of additional FeOx aggregates. Electrochemically, the NiFe-LDH formation correlates with a lower onset potential toward the OER, whereas the formation of the FeOx aggregates is accompanied by a gradual decrease in the OER activity. Complementary insight into the catalyst near-surface composition, structure, and chemical state is further extracted using X-ray photoelectron spectroscopy, operando Raman spectroscopy, and operando X-ray absorption spectroscopy together with measurements of Fe uptake by the electrocatalysts using time-resolved inductively coupled plasma mass spectrometry. Notably, we identified that the catalytic deactivation under stationary conditions is linked to the degradation of in situ-created NiFe-LDH. These insights exemplify the complexity of the active state formation and show how its structural and morphological evolution under different applied potentials can be directly linked to the catalyst activation and degradation.

10.
Nat Commun ; 14(1): 4554, 2023 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-37507382

RESUMO

Electrocatalytic reduction of waste nitrates (NO3-) enables the synthesis of ammonia (NH3) in a carbon neutral and decentralized manner. Atomically dispersed metal-nitrogen-carbon (M-N-C) catalysts demonstrate a high catalytic activity and uniquely favor mono-nitrogen products. However, the reaction fundamentals remain largely underexplored. Herein, we report a set of 14; 3d-, 4d-, 5d- and f-block M-N-C catalysts. The selectivity and activity of NO3- reduction to NH3 in neutral media, with a specific focus on deciphering the role of the NO2- intermediate in the reaction cascade, reveals strong correlations (R=0.9) between the NO2- reduction activity and NO3- reduction selectivity for NH3. Moreover, theoretical computations reveal the associative/dissociative adsorption pathways for NO2- evolution, over the normal M-N4 sites and their oxo-form (O-M-N4) for oxyphilic metals. This work provides a platform for designing multi-element NO3RR cascades with single-atom sites or their hybridization with extended catalytic surfaces.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA