Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 70
Filtrar
1.
Microbiol Spectr ; 12(10): e0132524, 2024 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-39248473

RESUMO

Loss of the flagellum marks the pathoadaptation of Pseudomonas aeruginosa to the cystic fibrosis (CF) airway environment during lung disease. Losing the flagellum is advantageous to the bacterium as the flagellum can be recognized by immune cells. The primary purpose of the flagellum is, however, to provide motility to the bacterium. Our goal was to determine whether the loss of flagellar motility or the loss of flagellum expression contributes to P. aeruginosa lung infection in CF. To address this, wild-type and gut-corrected FABP-human cystic fibrosis transmembrane conductance regulator (hCFTR) mice deficient in the murine Cftr gene were infected intratracheally with lethal doses of wild-type or flagellum-deficient P. aeruginosa. While there was no significant difference in the survival of wild-type mice after infection with either of the bacterial strains, a significantly higher mortality was observed in FABP-hCFTR mice infected with flagellum-deficient P. aeruginosa, compared to mice infected with their flagellated counterparts. When FABP-hCFTR mice were infected with isogenic, motility-deficient flagellated mutants, animal survival and lung bacterial titers were similar to those observed in mice infected with the wild-type bacterium. Airway levels of neutrophils and the amount neutrophil elastase were similar in mice infected with either the wild-type bacteria or the flagellum-deficient P. aeruginosa. Our results show that FABP-hCFTR mice have a different response to flagellum loss in P. aeruginosa compared to wild-type animals. The loss of flagellum expression, rather than the loss of motility, is the main driver behind the increased virulence of flagellum-deficient P. aeruginosa in CF. These observations provide new insight into P. aeruginosa virulence in CF.IMPORTANCEPseudomonas aeruginosa, a major respiratory pathogen in cystic fibrosis, is known to lose its flagellum during the course of infection in the airways. Here, we show that the loss of flagellum leads to a more enhanced virulence in Cftr-deficient cystic fibrosis mice than in control animals. Loss of flagellum expression, rather than the loss of flagellar swimming motility, represents the main driver behind this increased virulence suggesting that this appendage plays a specific role in P. aeruginosa virulence in cystic fibrosis airways.


Assuntos
Regulador de Condutância Transmembrana em Fibrose Cística , Fibrose Cística , Modelos Animais de Doenças , Flagelos , Infecções por Pseudomonas , Pseudomonas aeruginosa , Animais , Fibrose Cística/microbiologia , Pseudomonas aeruginosa/genética , Pseudomonas aeruginosa/patogenicidade , Camundongos , Infecções por Pseudomonas/microbiologia , Flagelos/genética , Virulência , Regulador de Condutância Transmembrana em Fibrose Cística/genética , Regulador de Condutância Transmembrana em Fibrose Cística/deficiência , Humanos , Pulmão/microbiologia , Pulmão/patologia , Mutação , Feminino
2.
Free Radic Biol Med ; 219: 104-111, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38608822

RESUMO

Hypothiocyanous acid (HOSCN) is an endogenous oxidant produced by peroxidase oxidation of thiocyanate (SCN-), an ubiquitous sulfur-containing pseudohalide synthesized from cyanide. HOSCN serves as a potent microbicidal agent against pathogenic bacteria, viruses, and fungi, functioning through thiol-targeting mechanisms, independent of currently approved antimicrobials. Additionally, SCN- reacts with hypochlorous acid (HOCl), a highly reactive oxidant produced by myeloperoxidase (MPO) at sites of inflammation, also producing HOSCN. This imparts both antioxidant and antimicrobial potential to SCN-. In this review, we discuss roles of HOSCN/SCN- in immunity and potential therapeutic implications for combating infections.


Assuntos
Anti-Infecciosos , Tiocianatos , Animais , Humanos , Anti-Infecciosos/farmacologia , Anti-Infecciosos/uso terapêutico , Anti-Infecciosos/química , Antioxidantes/farmacologia , Antioxidantes/uso terapêutico , Ácido Hipocloroso/metabolismo , Ácido Hipocloroso/uso terapêutico , Ácido Hipocloroso/química , Oxirredução , Peroxidase/metabolismo , Infecções Respiratórias/tratamento farmacológico , Infecções Respiratórias/microbiologia , Tiocianatos/uso terapêutico , Tiocianatos/química , Tiocianatos/farmacologia , Tiocianatos/metabolismo
3.
Sci Rep ; 14(1): 3986, 2024 02 17.
Artigo em Inglês | MEDLINE | ID: mdl-38368463

RESUMO

Bone marrow stromal cells (BMSCs) have immunomodulatory activities in numerous species and have been used in clinical trials. BMSCs also make antibacterial agents. Since hepcidin is known to have antimicrobial effects in fish, we wondered if it might also be used as an antimicrobial agent by mammalian BMSCs. In the present study, we show hepcidin expression in both mouse (mBMSC) and human BMSCs (hBMSC). We observed a hBMSC hepcidin-dependent degradation of ferroportin in HEK-293 reporter cells in vitro. In human and mouse bone marrows (BM) we detected hepcidin-positive BMSCs in close proximity to hematopoietic progenitors. The conditioned culture medium of hBMSCs significantly reduced bacterial proliferation that was partially blocked by a hepcidin-neutralizing antibody. Similarly, medium in which hepcidin-deficient (Hamp-/-) mouse BMSCs had been grown was significantly less effective in reducing bacterial counts than the medium of wild-type cells. In a zymosan-induced peritonitis mouse model we found that mBMSC-derived hepcidin reduced the number of invading polymorphonuclear (PMN) cells in the peritoneal cavity. Our results show that BMSC-derived hepcidin has antimicrobial properties in vitro and also reduces inflammation in vivo. We conclude that hepcidin should be added to the expanding arsenal of agents available to BMSCs to fight infections and inflammation.


Assuntos
Anti-Infecciosos , Células-Tronco Mesenquimais , Humanos , Camundongos , Animais , Hepcidinas/metabolismo , Células HEK293 , Anti-Infecciosos/farmacologia , Inflamação/metabolismo , Células da Medula Óssea , Mamíferos
4.
Front Immunol ; 14: 1255003, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37908356

RESUMO

Introduction: Severe forms of COVID-19, the disease caused by SARS-CoV-2, are characterized by acute respiratory distress syndrome, robust lung inflammation and death in some patients. Strong evidence has been accumulating that polymorphonuclear neutrophilic granulocytes (PMN) play an important role in the pathophysiology of severe COVID-19. SARS-CoV-2 directly induces in vitro PMN activation, mainly the release of neutrophil extracellular traps (NETs). However, the viral components inducing this PMN response remain unclear. Methods: In this work human PMN responses were assessed in vitro in response to the spike (S) protein of two different SARS-CoV-2 variants, anti-S IgG1 antibodies or immune complexes formed by them. Production of reactive oxygen species (ROS) was measured by Diogenes-based chemiluminescence. Release of myeloperoxidase (MPO) was assessed by ELISA while secretion of a list of cytokines and growth factors was determined by high-performance multiplex cytokine assay. Results and discussion: We show that the SARS-CoV-2 Omicron variant S protein and anti-spike IgG1, either alone or together, stimulate ROS production in human PMNs. We also observed that the SARS-CoV-2 Wuhan S protein and anti-S IgG1 antibody together trigger MPO release from PMNs. Based on the relevance of SARS-CoV-2 and influenza co-infections, we have also investigated the impact of influenza virus infection on the previous PMN responses to S proteins or anti-S antibodies. We did not detect any significant effect of influenza co-infection on ROS generation in PMNs. Our data also show that PMN stimulation by S proteins induced the release of different chemokines, growth factors, regulatory and proinflammatory cytokines. Overall, our findings show that the SARS-CoV-2 S protein, an anti-spike IgG1 antibody or their immune complex, promote oxidative responses of PMNs in a variant-dependent manner, contributing to a better understanding of the role of PMN responses during SARS-CoV-2 infection.


Assuntos
COVID-19 , Influenza Humana , Humanos , Glicoproteína da Espícula de Coronavírus , Neutrófilos , SARS-CoV-2 , COVID-19/metabolismo , Citocinas/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Influenza Humana/metabolismo , Estresse Oxidativo , Imunoglobulina G
5.
Pathogens ; 12(9)2023 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-37764956

RESUMO

Cystic fibrosis (CF) airway disease is characterized by chronic polymicrobial infections and an infiltration of neutrophils (PMNs). Staphylococcus aureus has been the most prevalent respiratory pathogen in CF. In particular, methicillin-resistant S. aureus (MRSA) represents a huge clinical burden in CF due to its association with lung disease and increased resistance to antibiotics. In CF, PMNs are unable to kill and clear MRSA. The reason for this remains largely unknown. Our study found that CF PMNs are as equally capable of killing MRSA as healthy PMNs. We show that the CF sputum, however, significantly impairs the ability of human PMNs to kill CF MRSA isolates. In the absence of CF sputum, PMNs kill MRSA via intracellular mechanisms mediated by phagocytosis, rather than extracellular mechanisms via NET formation. CF sputum does not affect the phagocytosis of MRSA via healthy or CF PMNs. Our results demonstrate that CF sputum exposure impairs phagosomal levels of reactive oxygen species (ROS) in MRSA-phagocytosing PMNs. While phagosomal co-localizations of MRSA with primary granule markers, myeloperoxidase and cathepsin D, were significantly reduced upon CF sputum exposure, that of a third azurophilic granule marker, neutrophil elastase, remained unaffected. This suggests that CF sputum does not compromise the fusion of primary granules with phagosomes but diminishes phagosomal ROS levels via another, likely more specific, mechanism. Overall, we identified the airway environment as an important factor that restricts neutrophils' oxidative microbicidal activities in CF against MRSA. These results deliver new details of the complex host-pathogen interactions present in the CF lung.

6.
Front Immunol ; 14: 1151422, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37767091

RESUMO

Introduction: While cystic fibrosis (CF) lung disease is characterized by persistent inflammation and infections and chronic inflammatory diseases are often accompanied by autoimmunity, autoimmune reactivity in CF has not been studied in depth. Methods: In this work we undertook an unbiased approach to explore the systemic autoantibody repertoire in CF using autoantibody microarrays. Results and discussion: Our results show higher levels of several new autoantibodies in the blood of people with CF (PwCF) compared to control subjects. Some of these are IgA autoantibodies targeting neutrophil components or autoantigens linked to neutrophil-mediated tissue damage in CF. We also found that people with CF with higher systemic IgM autoantibody levels have lower prevalence of S. aureus infection. On the other hand, IgM autoantibody levels in S. aureus-infected PwCF correlate with lung disease severity. Diabetic PwCF have significantly higher levels of IgA autoantibodies in their circulation compared to nondiabetic PwCF and several of their IgM autoantibodies associate with worse lung disease. In contrast, in nondiabetic PwCF blood levels of IgA autoantibodies correlate with lung disease. We have also identified other autoantibodies in CF that associate with P. aeruginosa airway infection. In summary, we have identified several new autoantibodies and associations of autoantibody signatures with specific clinical features in CF.


Assuntos
Fibrose Cística , Cistos , Diabetes Mellitus , Humanos , Fibrose Cística/complicações , Staphylococcus aureus , Autoanticorpos , Pulmão , Imunoglobulina A , Imunoglobulina M
7.
J Cyst Fibros ; 22(4): 756-762, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37211502

RESUMO

Short chain fatty acids (SCFA) are produced by anaerobic bacteria. The most common SCFAs are acetate, propionate and butyrate. SCFAs have been implicated in several inflammatory diseases including cystic fibrosis (CF) where they are present in the airways at millimolar concentrations. Staphylococcus aureus is one of the main respiratory pathogens in CF. Polymorphonuclear neutrophil granulocytes (PMN) represent the most important immune defense the host uses against S. aureus. However, the reason why PMNs are unable to clear S. aureus in CF remains largely unclear. We hypothesized that SCFAs impair effector functions of PMNs in response to S. aureus. To test this, human PMNs were exposed to CF clinical isolates of S. aureus in vitro in the presence or absence of SCFAs and effector functions of PMNs were assessed. Our data show that SCFAs do not affect the viability of PMNs and do not stimulate the release of neutrophil extracellular traps (NET) from human PMNs. Production of reactive oxygen species (ROS), another important antimicrobial function of PMNs, on the other hand, was significantly inhibited by SCFAs in response to the bacterium. SCFAs did not compromise the ability of PMNs to kill CF isolates of S. aureus in vitro. Overall, our results provide new knowledge into the interactions between SCFAs and the immune system, and indicate that SCFAs produced by anaerobic bacteria in the CF lung could interfere with reactive oxidant production of PMNs in response to S. aureus, one of the prominent respiratory pathogens in this disease.


Assuntos
Fibrose Cística , Infecções Estafilocócicas , Humanos , Neutrófilos , Fibrose Cística/microbiologia , Staphylococcus aureus , Explosão Respiratória , Ácidos Graxos Voláteis , Infecções Estafilocócicas/microbiologia
8.
Front Immunol ; 14: 1044703, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36936954

RESUMO

Introduction: Mycobacterium tuberculosis (Mtb) is the primary cause of human tuberculosis (TB) and is currently the second most common cause of death due to a singleinfectious agent. The first line of defense against airborne pathogens, including Mtb, is the respiratory epithelium. One of the innate defenses used by respiratory epithelial cells to prevent microbial infection is an oxidative antimicrobial system consisting of the proteins, lactoperoxidase (LPO) and Dual oxidase 1 (Duox1), the thiocyanate anion (SCN-) and hydrogen peroxide (H2O2), which together lead to the generation of antimicrobial hypothiocyanite (OSCN-) in the airway lumen. OSCN- kills bacteria and viruses in vitro, but the role of this Duox1-based system in bacterial infections in vivo remains largely unknown. The goal of this study was to assess whether Duox1 contributes to the immune response against the unique respiratory pathogen, Mtb. Methods: Duox1-deficient (Duox1 KO) and wild-type (WT) mice were infected with Mtb aerosols and bacterial titers, lung pathology, cytokines and immune cell recruitment were assessed. Results and discussion: Mtb titers in the lung, spleen and liver were not different 30 days after infection between WT and Duox1 KO mice. Duox1 did not affect lung histology assessed at days 0, 30, and 90 post-Mtb infection. Mtb-infected Duox1 KO animals exhibited enhanced production of certain cytokines and chemokines in the airway; however, this response was not associated with significantly higher numbers of macrophages or neutrophils in the lung. B cell numbers were lower, while apoptosis was higher in the pulmonary lesions of Mtb-infected Duox1 KO mice compared to infected WT animals. Taken together, these data demonstrate that while Duox1 might influence leukocyte recruitment to inflammatory cell aggregates, Duox1 is dispensable for the overall clinical course of Mtb lung infection in a mouse model.


Assuntos
Oxidases Duais , Tuberculose , Animais , Humanos , Camundongos , Citocinas/metabolismo , Oxidases Duais/genética , Peróxido de Hidrogênio/metabolismo , Pulmão/patologia , Tuberculose/imunologia
9.
Front Immunol ; 13: 859033, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35663985

RESUMO

The influenza virus has a large clinical burden and is associated with significant mortality and morbidity. The development of effective drugs for the treatment or prevention of influenza is important in order to reduce its impact. Adamantanes and neuraminidase inhibitors are two classes of anti-influenza drugs in which resistance has developed; thus, there is an urgent need to explore new therapeutic options. Boosting antiviral innate immune mechanisms in the airways represents an attractive approach. Hypothiocyanite (OSCN-) is produced by the airway epithelium and is effective in reducing the replication of several influenza A virus strains in vitro. It remains, however, largely unexplored whether OSCN- has such an antiviral effect in vivo. Here we determined the therapeutic potential of OSCN-, alone or in combination with amantadine (AMT), in preventing lethal influenza A virus replication in mice and in vitro. Mice intranasally infected with a lethal dose of A/Puerto Rico/8/1934 (H1N1) or A/Hong Kong/8/1968 (H3N2) were cured by the combination treatment of OSCN- and AMT. Monotherapy with OSCN- or AMT alone did not substantially improve survival outcomes. However, AMT+OSCN- treatment significantly inhibited viral replication, and in vitro treatment inhibited viral entry and nuclear transport of different influenza A virus strains (H1N1 and H3N2) including the AMT-resistant strain A/WSN/33 (H1N1). A triple combination treatment consisting of AMT, oseltamivir, and OSCN- was also tested and further inhibited in vitro viral replication of the AMT-resistant A/WSN/33 strain. These results suggest that OSCN- is a promising anti-influenza treatment option when combined with other antiviral drugs.


Assuntos
Vírus da Influenza A Subtipo H1N1 , Vírus da Influenza A , Influenza Humana , Amantadina/farmacologia , Amantadina/uso terapêutico , Animais , Antivirais/farmacologia , Antivirais/uso terapêutico , Humanos , Vírus da Influenza A Subtipo H3N2 , Influenza Humana/tratamento farmacológico , Camundongos , Tiocianatos
10.
Infect Immun ; 90(5): e0068221, 2022 05 19.
Artigo em Inglês | MEDLINE | ID: mdl-35499339

RESUMO

Human intelectin-1 (hIntL-1) is a secreted glycoprotein capable of binding exocyclic 1,2-diols within surface glycans of human pathogens such as Streptococcus pneumoniae, Vibrio cholerae, and Helicobacter pylori. For the latter, lectin binding was shown to cause bacterial agglutination and increased phagocytosis, suggesting a role for hIntL-1 in pathogen surveillance. In this study, we investigated the interactions between hIntL-1 and S. pneumoniae, the leading cause of bacterial pneumonia. We show that hIntL-1 also agglutinates S. pneumoniae serotype 43, which displays an exocyclic 1,2-diol moiety in its capsular polysaccharide but is unable to kill in a complement-dependent manner or to promote bacterial killing by peripheral blood mononuclear cells. In contrast, hIntL-1 not only significantly increases serotype-specific S. pneumoniae killing by neutrophils but also enhances the attachment of these bacteria to A549 lung epithelial cells. Taken together, our results suggest that hIntL-1 participates in host surveillance through microbe sequestration and enhanced targeting to neutrophils.


Assuntos
Neutrófilos , Streptococcus pneumoniae , Citocinas/metabolismo , Proteínas Ligadas por GPI/metabolismo , Humanos , Lectinas/metabolismo , Leucócitos Mononucleares/metabolismo , Neutrófilos/metabolismo , Fagocitose , Polissacarídeos/metabolismo , Sorogrupo , Streptococcus pneumoniae/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA