Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
1.
Biomedicines ; 12(5)2024 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-38791041

RESUMO

Human dihydrofolate reductase (hDHFR) is an essential cellular enzyme, and inhibiting its activity is a promising strategy for cancer therapy. We have chosen the trimethoprim molecule (TMP) as a model compound in our search for a new class of hDHFR inhibitors. We incorporated an amide bond, a structural element typical of netropsin, a ligand that binds selectively in the minor groove of DNA, into the molecules of TMP analogs. In this work, we present previously obtained and evaluated eleven benzamides (JW1-JW8; MB1, MB3, MB4). Recently, these compounds were specifically projected as potential inhibitors of the enzymes acetylcholinesterase (AChE) and ß-secretase (BACE1). JW8 was most active against AChE, with an inhibitory concentration of AChE IC50 = 0.056 µM, while the IC50 for donepezil was 0.046 µM. This compound was also the most active against the BACE1 enzyme. The IC50 value was 9.01 µM compared to that for quercetin, with IC50 = 4.89 µM. All the benzamides were active against hDHFR, with IC50 values ranging from 4.72 to 20.17 µM, and showed activity greater than TMP (55.26 µM). Quantitative results identified the derivatives JW2 and JW8 as the most promising. A molecular modeling study demonstrates that JW2 interacts strongly with the key residue Gly-117, while JW8 interacts strongly with Asn-64 and Arg-70. Furthermore, JW2 and JW8 demonstrate the ability to stabilize the hDHFR enzyme, despite forming fewer hydrogen bonds with the protein compared to reference ligands. It can be concluded that this class of compounds certainly holds great promise for good active leads in medicinal chemistry.

2.
Int J Mol Sci ; 25(8)2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38673944

RESUMO

It is important to search for cytostatic compounds in order to fight cancer. One of them could be 2'-methylthiamine, which is a thiamine antimetabolite with an additional methyl group at the C-2 carbon of thiazole. So far, the cytostatic potential of 2'-methylthiamine has not been studied. We have come forward with a simplified method of synthesis using commercially available substrates and presented a comparison of its effects, as boosted by oxythiamine, on normal skin fibroblasts and HeLa cancer cells, having adopted in vitro culture techniques. Oxythiamine has been found to inhibit the growth and metabolism of cancer cells significantly better than 2'-methylthiamine (GI50 36 and 107 µM, respectively), while 2'-methylthiamine is more selective for cancer cells than oxythiamine (SI = 180 and 153, respectively). Docking analyses have revealed that 2'-methylthiamine (ΔG -8.2 kcal/mol) demonstrates a better affinity with thiamine pyrophosphokinase than thiamine (ΔG -7.5 kcal/mol ) and oxythiamine (ΔG -7.0 kcal/mol), which includes 2'-methylthiamine as a potential cytostatic. Our results suggest that the limited effect of 2'-methylthiamine on HeLa arises from the related arduous transport as compared to oxythiamine. Given that 2'-methylthiamine may possibly inhibit thiamine pyrophosphokinase, it could once again be considered a potential cytostatic. Thus, research should be carried out in order to find the best way to improve the transport of 2'-methylthiamine into cells, which may trigger its cytostatic properties.


Assuntos
Simulação de Acoplamento Molecular , Oxitiamina , Humanos , Células HeLa , Oxitiamina/farmacologia , Oxitiamina/química , Oxitiamina/metabolismo , Tiamina/farmacologia , Tiamina/análogos & derivados , Tiamina/química , Antineoplásicos/farmacologia , Antineoplásicos/química , Proliferação de Células/efeitos dos fármacos , Fibroblastos/efeitos dos fármacos , Fibroblastos/metabolismo , Simulação por Computador
3.
Molecules ; 28(22)2023 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-38005248

RESUMO

Cytostatic and pro-apoptotic effects of selenium steroid derivatives against HeLa cells were determined. The highest cytostatic activity was shown by derivative 4 (GI50 25.0 µM, almost complete growth inhibition after three days of culture, and over 97% of apoptotic and dead cells at 200 µM). The results of our study (cell number measurements, apoptosis profile, relative expression of apoptosis-related APAF1, BID, and mevalonate pathway-involved HMGCR, SQLE, CYP51A1, and PDHB genes, and computational chemistry data) support the hypothesis that tested selenosteroids induce the extrinsic pathway of apoptosis by affecting the cell membrane as cholesterol antimetabolites. An additional mechanism of action is possible through a direct action of derivative 4 to inhibit PDHB expression in a way similar to steroid hormones.


Assuntos
Citostáticos , Humanos , Células HeLa , Citostáticos/farmacologia , Apoptose , Colesterol/metabolismo
4.
Int J Mol Sci ; 24(19)2023 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-37834347

RESUMO

The synthesis of eleven new and previously undescribed benzamides was designed. These compounds were specifically projected as potential inhibitors of the enzymes acetylcholinesterase (AChE) and ß-secretase (BACE1). N,N'-(1,4-phenylene)bis(3-methoxybenzamide) was most active against AChE, with an inhibitory concentration of AChE IC50 = 0.056 µM, while the IC50 for donepezil was 0.046 µM. This compound was also the most active against the BACE1 enzyme. The IC50 value was 9.01 µM compared to that for quercetin, with IC50 = 4.89 µM. Quantitative results identified this derivative to be the most promising. Molecular modeling was performed to elucidate the potential mechanism of action of this compound. Dynamic simulations showed that new ligands only had a limited stabilizing effect on AChE, but all clearly reduced the flexibility of the enzyme. It can, therefore, be concluded that a possible mechanism of inhibition increases the stiffness and decreases the flexibility of the enzyme, which obviously impedes its proper function. An analysis of the H-bonding patterns suggests a different mechanism (from other ligands) when interacting the most active derivative with the enzyme.


Assuntos
Acetilcolinesterase , Doença de Alzheimer , Humanos , Acetilcolinesterase/metabolismo , Simulação de Acoplamento Molecular , Inibidores da Colinesterase/farmacologia , Secretases da Proteína Precursora do Amiloide/metabolismo , Ácido Aspártico Endopeptidases/metabolismo , Doença de Alzheimer/tratamento farmacológico , Relação Estrutura-Atividade
5.
Pharmaceuticals (Basel) ; 16(9)2023 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-37765056

RESUMO

The spectrum of biological properties of s-triazine derivatives is broad and includes anti-microbial, anti-cancer, and anti-neurodegenerative activities, among others. The s-triazine molecule, due to the possibility of substituting three substituents, offers many opportunities to obtain hybrid compounds with a wide variety of activities. A group of 1,3,5 triazine derivatives containing a dipeptide, 2-ethylpiperazine, and a methoxy group as substituents was screened for their antimicrobial activity. An in vitro study was conducted on pathogenic bacteria (E. coli, S. aureus, B. subtilis, and M. luteus), yeasts (C. albicans), and filamentous fungi (A. fumigatus, A. flavus, F. solani, and P. citrinum) via microdilution in broth, and the results were compared with antibacterial (Streptomycin) and antifungal (Ketoconazole and Nystatin) antibiotics. Several s-triazine analogues have minimal inhibitory concentrations lower than the standard. To confirm the inhibitory potential of the most active compounds against gyrases E. coli and S. aureus, a bacterial gyrases inhibition assay, and molecular docking studies were performed. The most active s-triazine derivatives contained the -NH-Trp(Boc)-AlaOMe, -NH-Asp(OtBu)-AlaOMe, and -NH-PheOMe moieties in their structures.

6.
Int J Mol Sci ; 22(7)2021 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-33916202

RESUMO

Eighteen previously undescribed trimethoprim (TMP) analogs containing amide bonds (1-18) were synthesized and compared with TMP, methotrexate (MTX), and netropsin (NT). These compounds were designed as potential minor groove binding agents (MGBAs) and inhibitors of human dihydrofolate reductase (hDHFR). The all-new derivatives were obtained via solid phase synthesis using 4-nitrophenyl Wang resin. Data from the ethidium displacement test confirmed their DNA-binding capacity. Compounds 13-14 (49.89% and 43.85%) and 17-18 (41.68% and 42.99%) showed a higher binding affinity to pBR322 plasmid than NT. The possibility of binding in a minor groove as well as determination of association constants were performed using calf thymus DNA, T4 coliphage DNA, poly (dA-dT)2, and poly (dG-dC)2. With the exception of compounds 9 (IC50 = 56.05 µM) and 11 (IC50 = 55.32 µM), all of the compounds showed better inhibitory properties against hDHFR than standard, which confirms that the addition of the amide bond into the TMP structures increases affinity towards hDHFR. Derivatives 2, 6, 13, 14, and 16 were found to be the most potent hDHFR inhibitors. This molecular modelling study shows that they interact strongly with a catalytically important residue Glu-30.


Assuntos
Antagonistas do Ácido Fólico/síntese química , Trimetoprima/análogos & derivados , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular
7.
Front Chem ; 9: 806873, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35174142

RESUMO

A Reaction Class Transition State Theory (RC-TST) is applied to calculate thermal rate constants for hydrogen abstraction by OOH radical from alkanes in the temperature range of 300-2500 K. The rate constants for the reference reaction C2H6 + ∙OOH → ∙C2H5 + H2O2, is obtained with the Canonical Variational Transition State Theory (CVT) augmented with the Small Curvature Tunneling (SCT) correction. The necessary parameters were obtained from M06-2X/aug-cc-pVTZ data for a training set of 24 reactions. Depending on the approximation employed, only the reaction energy or no additional parameters are needed to predict the RC-TST rates for other class representatives. Although each of the reactions can in principle be investigated at higher levels of theory, the approach provides a nearly equally reliable rate constant at a fraction of the cost needed for larger and higher level calculations. The systematic error is smaller than 50% in comparison with high level computations. Satisfactory agreement with literature data, augmented by the lack of necessity of tedious and time consuming transition state calculations, facilitated the seamless application of the proposed methodology to the Automated Reaction Mechanism Generators (ARMGs) programs.

8.
Antioxidants (Basel) ; 8(12)2019 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-31779214

RESUMO

Vitamin E is the most active natural lipophilic antioxidant with a broad spectrum of biological activity. α-Tocopherol (α-T), the main representative of the vitamin E family, is a strong inhibitor of lipid peroxidation as a chain-breaking antioxidant. Antioxidant and antiradical properties of vitamin E result from the presence of a phenolic hydroxyl group at the C-6 position. Due to stereoelectronic effects in the dihydropyranyl ring, the dissociation enthalpy for phenolic O-H bond (BDEOH) is reduced. The high chain-breaking reactivity of α-T is mainly attributed to orbital overlapping of the 2p-type lone pair on the oxygen atom (O1) in para position to the phenolic group, and the aromatic π-electron system. The influence of the O1 atom on the antioxidant activity of vitamin E was estimated quantitatively. The all-rac-1-carba-α-tocopherol was synthesized for the first time. Along with model compounds, 1-carba-analog of Trolox and its methyl ester were screened for their in vitro antioxidant activity by inhibition of styrene oxidation, and for the radical-reducing properties by means of 2,2-diphenyl-1-picrylhydrazyl free radical (DPPH) scavenging assay. To study the antioxidant activity, density functional theory (DFT) was also applied. Reaction enthalpies related to HAT (hydrogen atom transfer), SET-PT (sequential electron transfer-proton transfer), and SPLET (sequential proton loss-electron transfer) mechanisms were calculated.

9.
J Phys Chem A ; 123(4): 750-763, 2019 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-30596495

RESUMO

A reaction class transition state theory (RC-TST) augmented with structure-activity relationship (SAR) methodology is applied to predict high-pressure limit thermal rate constants for hydrogen abstraction by •OH radical from polycyclic aromatic hydrocarbons (PAHs) reaction class in the temperature range of 300-3000 K. The rate constants for the reference reaction of C6H6 + •OH → C6H5 + H2O is calculated by the canonical variational transition state theory (CVT) with small curvature tunneling (SCT). Only the reaction energy is needed to predict RC-TST rates for other processes within the family, the parameters needed were obtained from M06-2X/cc-pVTZ data for a training set of 34 reactions. The systematic error of the resulting RC-TST rates is smaller than 50% in comparison with explicit rate calculations, which facilitates application of the proposed methodology to the automated reaction mechanism generators (ARMGs) schemes.

10.
Phys Chem Chem Phys ; 20(36): 23578-23592, 2018 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-30188552

RESUMO

This work provides a rigorous procedure, within the framework of the Reaction Class Transition State Theory (RC-TST) and the Structure-Activity Relationship (SAR), for predicting reliable thermal rate constants on-the-fly for hydrogen abstraction reactions by methyl/ethyl radicals from Polycyclic Aromatic Hydrocarbons (PAHs) in a temperature range of 300-3000 K. All necessary RC-TST parameters were derived from ab initio calculations for a representative set of 36 reactions on which different error analyses and comparisons with available literature data were carried out. In addition to the good agreement between the RC-TST rate constants and the literature data, the detailed error analyses show that RC-TST/SAR, utilizing either the Linear Energy Relationship (LER) where only the reaction energy is needed or Barrier Height Grouping (BHG) where no additional data is needed, can predict the thermal rate constants for any reaction in the title reaction class with an average systematic error of less than 50% when compared to the explicit rate calculations. Therefore, the constructed RC-TST procedure can be confidently used to obtain reliable rate constants on the fly in an attempt to effectively construct detailed kinetic mechanisms for PAH-related fuels.

11.
Biosci Rep ; 38(1)2018 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-29208764

RESUMO

Thiamine plays a very important coenzymatic and non-coenzymatic role in the regulation of basic metabolism. Thiamine diphosphate is a coenzyme of many enzymes, most of which occur in prokaryotes. Pyruvate dehydrogenase and 2-oxoglutarate dehydrogenase complexes as well as transketolase are the examples of thiamine-dependent enzymes present in eukaryotes, including human. Therefore, thiamine is considered as drug or diet supplement which can support the treatment of many pathologies including neurodegenerative and vascular system diseases. On the other hand, thiamine antivitamins, which can interact with thiamine-dependent enzymes impeding their native functions, thiamine transport into the cells or a thiamine diphosphate synthesis, are good propose to drug design. The development of organic chemistry in the last century allowed the synthesis of various thiamine antimetabolites such as amprolium, pyrithiamine, oxythiamine, or 3-deazathiamine. Results of biochemical and theoretical chemistry research show that affinity to thiamine diphosphate-dependent enzymes of these synthetic molecules exceeds the affinity of native coenzyme. Therefore, some of them have already been used in the treatment of coccidiosis (amprolium), other are extensively studied as cytostatics in the treatment of cancer or fungal infections (oxythiamine and pyrithiamine). This review summarizes the current knowledge concerning the synthesis and mechanisms of action of selected thiamine antivitamins and indicates the potential of their practical use.


Assuntos
Desenho de Fármacos , Tiamina Pirofosfato/metabolismo , Tiamina/metabolismo , Amprólio/química , Amprólio/metabolismo , Antimetabólitos/uso terapêutico , Transporte Biológico , Humanos , Oxitiamina/antagonistas & inibidores , Oxitiamina/metabolismo , Piritiamina/antagonistas & inibidores , Piritiamina/metabolismo , Tiamina/antagonistas & inibidores , Tiamina/síntese química , Tiamina Pirofosfato/química
12.
Steroids ; 117: 71-76, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27644145

RESUMO

The condensation of 16-dehydropregnenolone acetate with 2-aminobenzimidazole was studied. The polycyclic aromatic product was formed as a single regioisomer in a cascade reaction comprising addition, cyclization, autoxidation, and aromatization, in addition to the rearranged D-homo product. The reaction mechanism based on DFT calculations is proposed.


Assuntos
Benzimidazóis/química , Pregnenolona/análogos & derivados , Ciclização , Modelos Moleculares , Estrutura Molecular , Pregnenolona/química , Esteroides/química
13.
J Phys Chem B ; 120(8): 1871-84, 2016 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-26752508

RESUMO

Performance of the Reaction Class Transition State Theory (RC-TST) for prediction of rates constants of elementary reactions is examined using data from its previous applications to a number of different reaction classes. The RC-TST theory is taking advantage of the common structure denominator of all reactions in a given family combined with structure activity relationships to provide a rigorous theoretical framework to obtain rate expression of any reaction within a reaction class in a simple and cost-effective manner. This opens the possibility for integrating this methodology with an automated mechanism generator for "on-the-fly" generation of accurate kinetic models of complex reacting systems.

14.
J Phys Chem A ; 119(16): 3689-703, 2015 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-25822662

RESUMO

This paper presents a computational study on the low-temperature mechanism and kinetics of the reaction between molecular oxygen and alkyl radicals of methyl propanoate (MP), which plays an important role in low-temperature oxidation and/or autoignition processes of the title fuel. Their multiple reaction pathways either accelerate the oxidation process via chain branching or inhibit it by forming relatively stable products. The potential energy surfaces of the reactions between three primary MP radicals and molecular oxygen, namely, C(•)H2CH2COOCH3 + O2, CH3C(•)HCOOCH3 + O2, and CH3CH2COOC(•)H2 + O2, were constructed using the accurate composite CBS-QB3 method. Thermodynamic properties of all species as well as high-pressure rate constants of all reaction channels were derived with explicit corrections for tunneling and hindered internal rotations. Our calculation results are in good agreement with a limited number of scattered data in the literature. Furthermore, pressure- and temperature-dependent rate constants for all reaction channels on the multiwell-multichannel potential energy surfaces were computed with the quantum Rice-Ramsperger-Kassel (QRRK) and the modified strong collision (MSC) theories. This procedure resulted in a thermodynamically consistent detailed kinetic submechanism for low-temperature oxidation governed by the title process. A simplified mechanism, which consists of important reactions, is also suggested for low-temperature combustion at engine-like conditions.


Assuntos
Radicais Livres/química , Oxigênio/química , Propionatos/química , Temperatura , Cinética , Oxirredução , Teoria Quântica
15.
J Phys Chem A ; 116(25): 6643-54, 2012 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-22612265

RESUMO

Kinetics of the ß-scission in alkyl radical reaction class was studied using the reaction class transition state theory (RC-TST) combined with the linear energy relationship (LER) and the barrier height grouping (BHG) approach. All necessary parameters were derived from first-principle density functional calculations for a representative set of 21 reactions. Different error analyses and comparisons with available literature data were made. Direct comparison with available experimental data indicates that the RC-TST/LER, where only reaction energy is needed, can predict rate constants for any reaction in this reaction class with excellent accuracy. Specifically for this reaction class, the RC-TST/LER method has less than 60% systematic errors on average in the predicted rate constants when compared to explicit rate calculations.

16.
J Phys Chem A ; 116(1): 242-54, 2012 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-22129072

RESUMO

Kinetics of the 1,5-intramolecular hydrogen migration in the alkyl radicals reaction class has been studied using the reaction class transition state theory combined with the linear energy relationship (LER) and the barrier height grouping (BHG) approach. The high pressure limits of the rate constants for the reference reaction of 1-pentyl → 1-pentyl, calculated by the Canonical Variational Transition State Theory (CVT) with the Small Curvature Tunneling (SCT), are taken from the literature. Direct comparison with available experimental data indicates that the RC-TST/LER, where only reaction energy is needed, can predict rate constants for any reaction in this reaction class with excellent accuracy. Specifically for this reaction class, the RC-TST/LER method has less than 65% systematic errors in the predicted rate constants when compared to explicit rate calculations.

17.
Phys Chem Chem Phys ; 13(33): 15037-46, 2011 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-21779588

RESUMO

High pressure limits of thermal rate constants of four C-C bond beta scission reactions of propyl, 1-butyl, 2-butyl and isobutyl radicals were calculated using the canonical variational transition state theory (CVT) with a multi-dimensional small-curvature tunneling (SCT) correction over the temperature range of 300-3000 K. The CCSD(T)/cc-pVDZ//BH&HLYP/cc-pVDZ method was used to provide necessary potential energy surface information. Rate constants for these reactions were used to extrapolate rate constants for reactions in larger alkyls where experimental data are available using the Reaction Class Transition State Theory (RC-TST). Excellent agreement with experimental data confirms the validity of the RC-TST methodology and the accuracy of the calculated kinetic data in this study.

18.
Phys Chem Chem Phys ; 12(36): 10988-95, 2010 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-20664879

RESUMO

High pressure limits of thermal rate constants of intramolecular hydrogen migrations, particularly 1,3 to 1,6 H-shift in propyl, butyl, pentyl and hexyl radicals, respectively, were calculated using the canonical variational transition state theory (CVT) with a multi-dimensional small-curvature tunneling (SCT) correction over the temperature range of 300-3000 K. The CCSD(T)/cc-pVDZ//BH&HLYP/cc-pVDZ method was used to provide necessary potential energy surface information. Rate constants for these reactions were used to extrapolate rate constants for reactions of larger alkyls where experimental data are available using the Reaction Class Transition State Theory (RC-TST). Excellent agreement with experimental data confirms the validity of the RC-TST methodology and the accuracy of the calculated kinetic data in this study.

19.
J Phys Chem A ; 113(29): 8327-36, 2009 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-19569659

RESUMO

This paper presents an application of the reaction class transition state theory (RC-TST) to predict thermal rate constants for hydrogen abstraction reactions of the type C(2)H(3) + alkane --> C(2)H(4) + alkyl radical. The linear energy relationship (LER) was proven to hold for both noncyclic and cyclic hydrocarbons. We have derived all parameters for the RC-TST method from rate constants of 19 representative reactions, coupling with LER and the barrier height grouping (BHG) approach. Both the RC-TST/LER, where only reaction energy is needed, and the RC-TST/BHG, where no other information is needed, can predict rate constants for any reaction in this reaction class with satisfactory accuracy for combustion modeling. Our analysis indicates that less than 90% systematic errors on the average exist in the predicted rate constants using the RC-TST/LER or RC-TST/BHG method, while in comparison to explicit rate calculations, the differences are within a factor of 2 on the average.

20.
J Phys Chem A ; 113(8): 1564-73, 2009 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-19193045

RESUMO

The kinetics of the 1,4-intramolecular hydrogen migration in the alkyl radicals reaction class has been studied using reaction class transition-state theory combined with the linear energy relationship (LER) and barrier height grouping (BHG) approach. The rate constants for the reference reaction of n-C(4)H(9) were obtained by canonical variational transition-state theory (CVT) with the small curvature tunnelling (SCT) correction in the temperature range 300-3000 K with potential-energy surface information computed at the CCSD(T)/cc-pVDZ//BH&HLYP/cc-pVDZ level of theory. Error analyses indicate that RC-TST/LER, where only reaction energy is needed, and RC-TST/BHG, where no other information is needed, can predict rate constants for any reaction in this reaction class with excellent accuracy. Specifically, for this reaction class the RC-TST/LER method has less than 65% systematic errors in the predicted rate constants, while the RC-TST/BHG method has less than 80% error when compared to explicit rate calculations.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA