Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
Biol Chem ; 404(8-9): 829-837, 2023 07 26.
Artigo em Inglês | MEDLINE | ID: mdl-37078249

RESUMO

Recent advances in cryo-electron microscopy have led to multiple structures of Mediator in complex with the RNA polymerase II (Pol II) transcription initiation machinery. As a result we now hold in hands near-complete structures of both yeast and human Mediator complexes and have a better understanding of their interactions with the Pol II pre-initiation complex (PIC). Herein, we provide a summary of recent achievements and discuss their implications for future studies of Mediator and its role in gene regulation.


Assuntos
Complexo Mediador , RNA Polimerase II , Humanos , Microscopia Crioeletrônica , RNA Polimerase II/química , RNA Polimerase II/genética , RNA Polimerase II/metabolismo , Complexo Mediador/genética , Complexo Mediador/metabolismo , Saccharomyces cerevisiae/metabolismo , Regulação da Expressão Gênica , Transcrição Gênica
2.
Nat Struct Mol Biol ; 29(12): 1159-1169, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36424526

RESUMO

RNA polymerase II (Pol II) carries out transcription of both protein-coding and non-coding genes. Whereas Pol II initiation at protein-coding genes has been studied in detail, Pol II initiation at non-coding genes, such as small nuclear RNA (snRNA) genes, is less well understood at the structural level. Here, we study Pol II initiation at snRNA gene promoters and show that the snRNA-activating protein complex (SNAPc) enables DNA opening and transcription initiation independent of TFIIE and TFIIH in vitro. We then resolve cryo-EM structures of the SNAPc-containing Pol IIpre-initiation complex (PIC) assembled on U1 and U5 snRNA promoters. The core of SNAPc binds two turns of DNA and recognizes the snRNA promoter-specific proximal sequence element (PSE), located upstream of the TATA box-binding protein TBP. Two extensions of SNAPc, called wing-1 and wing-2, bind TFIIA and TFIIB, respectively, explaining how SNAPc directs Pol II to snRNA promoters. Comparison of structures of closed and open promoter complexes elucidates TFIIH-independent DNA opening. These results provide the structural basis of Pol II initiation at non-coding RNA gene promoters.


Assuntos
RNA Polimerase II , Fatores de Transcrição , Animais , RNA Polimerase II/metabolismo , Fatores de Transcrição/metabolismo , RNA Polimerase III/genética , Transcrição Gênica , RNA Nuclear Pequeno/genética , RNA Nuclear Pequeno/metabolismo , Proteína de Ligação a TATA-Box/genética , Proteína de Ligação a TATA-Box/metabolismo , DNA
3.
Nature ; 594(7861): 129-133, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33902108

RESUMO

Mediator is a conserved coactivator complex that enables the regulated initiation of transcription at eukaryotic genes1-3. Mediator is recruited by transcriptional activators and binds the pre-initiation complex (PIC) to stimulate the phosphorylation of RNA polymerase II (Pol II) and promoter escape1-6. Here we prepare a recombinant version of human Mediator, reconstitute a 50-subunit Mediator-PIC complex and determine the structure of the complex by cryo-electron microscopy. The head module of Mediator contacts the stalk of Pol II and the general transcription factors TFIIB and TFIIE, resembling the Mediator-PIC interactions observed in the corresponding complex in yeast7-9. The metazoan subunits MED27-MED30 associate with exposed regions in MED14 and MED17 to form the proximal part of the Mediator tail module that binds activators. Mediator positions the flexibly linked cyclin-dependent kinase (CDK)-activating kinase of the general transcription factor TFIIH near the linker to the C-terminal repeat domain of Pol II. The Mediator shoulder domain holds the CDK-activating kinase subunit CDK7, whereas the hook domain contacts a CDK7 element that flanks the kinase active site. The shoulder and hook domains reside in the Mediator head and middle modules, respectively, which can move relative to each other and may induce an active conformation of the CDK7 kinase to allosterically stimulate phosphorylation of the C-terminal domain.


Assuntos
Microscopia Crioeletrônica , Complexo Mediador/química , Complexo Mediador/ultraestrutura , RNA Polimerase II/química , RNA Polimerase II/ultraestrutura , Regulação Alostérica , Sítios de Ligação , Domínio Catalítico , Quinases Ciclina-Dependentes/química , Quinases Ciclina-Dependentes/metabolismo , DNA Complementar/genética , Humanos , Complexo Mediador/metabolismo , Modelos Moleculares , Fosforilação , Ligação Proteica , RNA Polimerase II/metabolismo , Fator de Transcrição TFIIB/química , Fator de Transcrição TFIIB/metabolismo , Fatores de Transcrição TFII/química , Fatores de Transcrição TFII/metabolismo , Iniciação da Transcrição Genética , Quinase Ativadora de Quinase Dependente de Ciclina
4.
J Med Chem ; 63(2): 601-612, 2020 01 23.
Artigo em Inglês | MEDLINE | ID: mdl-31859507

RESUMO

The serine/threonine kinase TBK1 (TANK-binding kinase 1) and its homologue IKKε are noncanonical members of the inhibitor of the nuclear factor κB (IκB) kinase family. These kinases play important roles in multiple cellular pathways and, in particular, in inflammation. Herein, we describe our investigations on a family of benzimidazoles and the identification of the potent and highly selective TBK1/IKKε inhibitor BAY-985. BAY-985 inhibits the cellular phosphorylation of interferon regulatory factor 3 and displays antiproliferative efficacy in the melanoma cell line SK-MEL-2 but showed only weak antitumor activity in the SK-MEL-2 human melanoma xenograft model.


Assuntos
Quinase I-kappa B/antagonistas & inibidores , Inibidores de Proteínas Quinases/síntese química , Inibidores de Proteínas Quinases/farmacologia , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Benzimidazóis/síntese química , Benzimidazóis/farmacologia , Sítios de Ligação , Cristalografia por Raios X , Descoberta de Drogas , Ensaios de Triagem em Larga Escala , Humanos , Modelos Moleculares , Fosforilação , Relação Estrutura-Atividade , Especificidade por Substrato
5.
Nature ; 562(7728): 538-544, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30323286

RESUMO

The transcriptional co-activator p300 is a histone acetyltransferase (HAT) that is typically recruited to transcriptional enhancers and regulates gene expression by acetylating chromatin. Here we show that the activation of p300 directly depends on the activation and oligomerization status of transcription factor ligands. Using two model transcription factors, IRF3 and STAT1, we demonstrate that transcription factor dimerization enables the trans-autoacetylation of p300 in a highly conserved and intrinsically disordered autoinhibitory lysine-rich loop, resulting in p300 activation. We describe a crystal structure of p300 in which the autoinhibitory loop invades the active site of a neighbouring HAT domain, revealing a snapshot of a trans-autoacetylation reaction intermediate. Substrate access to the active site involves the rearrangement of an autoinhibitory RING domain. Our data explain how cellular signalling and the activation and dimerization of transcription factors control the activation of p300, and therefore explain why gene transcription is associated with chromatin acetylation.


Assuntos
Multimerização Proteica , Fatores de Transcrição/química , Fatores de Transcrição/metabolismo , Fatores de Transcrição de p300-CBP/química , Fatores de Transcrição de p300-CBP/metabolismo , Acetilação , Domínio Catalítico , Cromatina/química , Cromatina/metabolismo , Cristalografia por Raios X , Ativação Enzimática , Humanos , Fator Regulador 3 de Interferon/química , Fator Regulador 3 de Interferon/metabolismo , Ligantes , Lisina/química , Lisina/metabolismo , Modelos Moleculares , Domínios Proteicos , Fator de Transcrição STAT1/química , Fator de Transcrição STAT1/metabolismo , Transcrição Gênica
6.
Proc Natl Acad Sci U S A ; 115(4): E601-E609, 2018 01 23.
Artigo em Inglês | MEDLINE | ID: mdl-29317535

RESUMO

Cytokine signaling through the JAK/STAT pathway controls multiple cellular responses including growth, survival, differentiation, and pathogen resistance. An expansion in the gene regulatory repertoire controlled by JAK/STAT signaling occurs through the interaction of STATs with IRF transcription factors to form ISGF3, a complex that contains STAT1, STAT2, and IRF9 and regulates expression of IFN-stimulated genes. ISGF3 function depends on selective interaction between IRF9, through its IRF-association domain (IAD), with the coiled-coil domain (CCD) of STAT2. Here, we report the crystal structures of the IRF9-IAD alone and in a complex with STAT2-CCD. Despite similarity in the overall structure among respective paralogs, the surface features of the IRF9-IAD and STAT2-CCD have diverged to enable specific interaction between these family members. We derive a model for the ISGF3 complex bound to an ISRE DNA element and demonstrate that the observed interface between STAT2 and IRF9 is required for ISGF3 function in cells.


Assuntos
Fator Gênico 3 Estimulado por Interferon, Subunidade gama/metabolismo , Fator de Transcrição STAT2/metabolismo , Animais , Regulação da Expressão Gênica , Células HEK293 , Humanos , Fator Gênico 3 Estimulado por Interferon, Subunidade gama/genética , Janus Quinases/metabolismo , Camundongos , Mutação Puntual , Domínios Proteicos , Fator de Transcrição STAT2/genética , Transdução de Sinais
7.
Biochim Biophys Acta ; 1861(5): 462-70, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-26869448

RESUMO

Monoglyceride lipases (MGLs) are a group of α/ß-hydrolases that catalyze the hydrolysis of monoglycerides (MGs) into free fatty acids and glycerol. This reaction serves different physiological functions, namely in the last step of phospholipid and triglyceride degradation, in mammalian endocannabinoid and arachidonic acid metabolism, and in detoxification processes in microbes. Previous crystal structures of MGLs from humans and bacteria revealed conformational plasticity in the cap region of this protein and gave insight into substrate binding. In this study, we present the structure of a MGL from Saccharomyces cerevisiae called Yju3p in its free form and in complex with a covalently bound substrate analog mimicking the tetrahedral intermediate of MG hydrolysis. These structures reveal a high conservation of the overall shape of the MGL cap region and also provide evidence for conformational changes in the cap of Yju3p. The complex structure reveals that, despite the high structural similarity, Yju3p seems to have an additional opening to the substrate binding pocket at a different position compared to human and bacterial MGL. Substrate specificities towards MGs with saturated and unsaturated alkyl chains of different lengths were tested and revealed highest activity towards MG containing a C18:1 fatty acid.


Assuntos
Monoacilglicerol Lipases/química , Monoglicerídeos/química , Proteínas de Saccharomyces cerevisiae/química , Sítios de Ligação , Catálise , Clonagem Molecular , Cristalização , Hidrólise , Simulação de Dinâmica Molecular , Monoacilglicerol Lipases/genética , Monoacilglicerol Lipases/metabolismo , Monoglicerídeos/metabolismo , Mutagênese Sítio-Dirigida , Mutação , Ligação Proteica , Conformação Proteica , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Relação Estrutura-Atividade , Especificidade por Substrato
8.
Acta Crystallogr F Struct Biol Commun ; 71(Pt 2): 243-6, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25664804

RESUMO

The protein Yju3p is the orthologue of monoglyceride lipases in the yeast Saccharomyces cerevisiae. A soluble variant of this lipase termed s-Yju3p (38.3 kDa) was generated and purified to homogeneity by affinity and size-exclusion chromatography. s-Yju3p was crystallized in a vapour-diffusion setup at 293 K and a complete data set was collected to 2.4 Å resolution. The crystal form was orthorhombic (space group P212121), with unit-cell parameters a = 77.2, b = 108.6, c = 167.7 Å. The asymmetric unit contained four molecules with a solvent content of 46.4%.


Assuntos
Monoacilglicerol Lipases/química , Monoacilglicerol Lipases/isolamento & purificação , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/isolamento & purificação , Saccharomyces cerevisiae/enzimologia , Difração de Raios X , Sequência de Aminoácidos , Cromatografia em Gel , Cristalização , Eletroforese em Gel de Poliacrilamida , Dados de Sequência Molecular , Isoformas de Proteínas/química , Solubilidade
9.
J Biol Chem ; 288(43): 31093-104, 2013 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-24014019

RESUMO

Monoacylglycerol lipases (MGLs) play an important role in lipid catabolism across all kingdoms of life by catalyzing the release of free fatty acids from monoacylglycerols. The three-dimensional structures of human and a bacterial MGL were determined only recently as the first members of this lipase family. In addition to the α/ß-hydrolase core, they showed unexpected structural similarities even in the cap region. Nevertheless, the structural basis for substrate binding and conformational changes of MGLs is poorly understood. Here, we present a comprehensive study of five crystal structures of MGL from Bacillus sp. H257 in its free form and in complex with different substrate analogs and the natural substrate 1-lauroylglycerol. The occurrence of different conformations reveals a high degree of conformational plasticity of the cap region. We identify a specific residue, Ile-145, that might act as a gatekeeper restricting access to the binding site. Site-directed mutagenesis of Ile-145 leads to significantly reduced hydrolase activity. Bacterial MGLs in complex with 1-lauroylglycerol, myristoyl, palmitoyl, and stearoyl substrate analogs enable identification of the binding sites for the alkyl chain and the glycerol moiety of the natural ligand. They also provide snapshots of the hydrolytic reaction of a bacterial MGL at different stages. The alkyl chains are buried in a hydrophobic tunnel in an extended conformation. Binding of the glycerol moiety is mediated via Glu-156 and water molecules. Analysis of the structural features responsible for cap plasticity and the binding modes of the ligands suggests conservation of these features also in human MGL.


Assuntos
Bacillus/enzimologia , Proteínas de Bactérias/química , Monoacilglicerol Lipases/química , Monoglicerídeos/química , Bacillus/genética , Proteínas de Bactérias/genética , Cristalografia por Raios X , Humanos , Hidrólise , Monoacilglicerol Lipases/genética , Monoglicerídeos/genética , Mutagênese Sítio-Dirigida , Estrutura Terciária de Proteína , Relação Estrutura-Atividade , Especificidade por Substrato
10.
Biochim Biophys Acta ; 1821(7): 1012-21, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22561231

RESUMO

Monoacylglycerol lipases (MGLs) catalyse the hydrolysis of monoacylglycerol into free fatty acid and glycerol. MGLs have been identified throughout all genera of life and have adopted different substrate specificities depending on their physiological role. In humans, MGL plays an integral part in lipid metabolism affecting energy homeostasis, signalling processes and cancer cell progression. In bacteria, MGLs degrade short-chain monoacylglycerols which are otherwise toxic to the organism. We report the crystal structures of MGL from the bacterium Bacillus sp. H257 (bMGL) in its free form at 1.2Å and in complex with phenylmethylsulfonyl fluoride at 1.8Å resolution. In both structures, bMGL adopts an α/ß hydrolase fold with a cap in an open conformation. Access to the active site residues, which were unambiguously identified from the protein structure, is facilitated by two different channels. The larger channel constitutes the highly hydrophobic substrate binding pocket with enough room to accommodate monoacylglycerol. The other channel is rather small and resembles the proposed glycerol exit hole in human MGL. Molecular dynamics simulation of bMGL yielded open and closed states of the entrance channel and the glycerol exit hole. Despite differences in the number of residues, secondary structure elements, and low sequence identity in the cap region, this first structure of a bacterial MGL reveals striking structural conservation of the overall cap architecture in comparison with human MGL. Thus it provides insight into the structural conservation of the cap amongst MGLs throughout evolution and provides a framework for rationalising substrate specificities in each organism.


Assuntos
Bacillus/enzimologia , Proteínas de Bactérias/química , Monoacilglicerol Lipases/química , Monoglicerídeos/química , Fluoreto de Fenilmetilsulfonil/química , Sequência de Aminoácidos , Bacillus/genética , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Domínio Catalítico , Clonagem Molecular , Sequência Conservada , Cristalografia por Raios X , Escherichia coli , Humanos , Interações Hidrofóbicas e Hidrofílicas , Simulação de Dinâmica Molecular , Dados de Sequência Molecular , Monoacilglicerol Lipases/genética , Monoacilglicerol Lipases/metabolismo , Monoglicerídeos/metabolismo , Estrutura Secundária de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Alinhamento de Sequência , Homologia Estrutural de Proteína , Especificidade por Substrato
11.
Biochim Biophys Acta ; 1801(9): 1063-71, 2010 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-20554061

RESUMO

Monoacylglycerols (MAGs) are short-lived intermediates of glycerolipid metabolism. Specific molecular species, such as 2-arachidonoylglycerol, which is a potent activator of cannabinoid receptors, may also function as lipid signaling molecules. In mammals, enzymes hydrolyzing MAG to glycerol and fatty acids, resembling the final step in lipolysis, or esterifying MAG to diacylglycerol, are well known; however, despite the high level of conservation of lipolysis, the corresponding activities in yeast have not been characterized yet. Here we provide evidence that the protein Yju3p functions as a potent MAG hydrolase in yeast. Cellular MAG hydrolase activity was decreased by more than 90% in extracts of Yju3p-deficient cells, indicating that Yju3p accounts for the vast majority of this activity in yeast. Loss of this activity was restored by heterologous expression of murine monoglyceride lipase (MGL). Since yju3Delta mutants accumulated MAG in vivo only at very low concentrations, we considered the possibility that MAGs are re-esterified into DAG by acyltransferases. Indeed, cellular MAG levels were further increased in mutant cells lacking Yju3p and Dga1p or Lro1p acyltransferase activities. In conclusion, our studies suggest that catabolic and anabolic reactions affect cellular MAG levels. Yju3p is the functional orthologue of mammalian MGL and is required for efficient degradation of MAG in yeast.


Assuntos
Monoacilglicerol Lipases/metabolismo , Monoglicerídeos/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/enzimologia , Aciltransferases/genética , Aciltransferases/metabolismo , Sequência de Aminoácidos , Animais , Clonagem Molecular , Diacilglicerol O-Aciltransferase/genética , Diacilglicerol O-Aciltransferase/metabolismo , Teste de Complementação Genética , Hidrólise , Camundongos , Dados de Sequência Molecular , Monoacilglicerol Lipases/genética , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/crescimento & desenvolvimento , Proteínas de Saccharomyces cerevisiae/genética , Homologia de Sequência de Aminoácidos , Frações Subcelulares , Triglicerídeos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA