Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
1.
Front Immunol ; 14: 1224383, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38146368

RESUMO

Chronic obstructive pulmonary disease (COPD) is a major health issue primarily caused by cigarette smoke (CS) and characterized by breathlessness and repeated airway inflammation. NLRP6 is a cytosolic innate receptor controlling intestinal inflammation and orchestrating the colonic host-microbial interface. However, its roles in the lungs remain largely unexplored. Using CS exposure models, our data show that airway inflammation is strongly impaired in Nlrp6-deficient mice with drastically fewer recruited neutrophils, a key cell subset in inflammation and COPD. We found that NLRP6 expression in lung epithelial cells is important to control airway and lung tissue inflammation in an inflammasome-dependent manner. Since gut-derived metabolites regulate NLRP6 inflammasome activation in intestinal epithelial cells, we investigated the link between NLRP6, CS-driven lung inflammation, and gut microbiota composition. We report that acute CS exposure alters gut microbiota in both wild-type (WT) and Nlrp6-deficient mice and that antibiotic treatment decreases CS-induced lung inflammation. In addition, gut microbiota transfer from dysbiotic Nlrp6-deficient mice to WT mice decreased airway lung inflammation in WT mice, highlighting an NLRP6-dependent gut-to-lung axis controlling pulmonary inflammation.


Assuntos
Microbioma Gastrointestinal , Pneumonia , Receptores de Superfície Celular , Poluição por Fumaça de Tabaco , Receptores de Superfície Celular/deficiência , Receptores de Superfície Celular/genética , Receptores de Superfície Celular/metabolismo , Pneumonia/induzido quimicamente , Pneumonia/genética , Pneumonia/microbiologia , Animais , Camundongos , Camundongos Endogâmicos C57BL , Células Cultivadas , Células Epiteliais/citologia , Células Epiteliais/patologia , Fezes/microbiologia , Bactérias/classificação , Bactérias/metabolismo , Biodiversidade , Expressão Gênica
2.
Front Immunol ; 14: 1261483, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37841243

RESUMO

Introduction: The pathogenesis of chronic lung diseases is multifaceted with a major role of recurrent micro-injuries of the epithelium. While several reports clearly indicated a prominent role for surfactant-producing alveolar epithelial type 2 (AT2) cells, the contribution of gas exchange-permissive alveolar epithelial type 1 (AT1) cells has not been addressed yet. Here, we investigated whether repeated injury of AT1 cells leads to inflammation and interstitial fibrosis. Methods: We chose an inducible model of AT1 cell depletion following local diphtheria toxin (DT) administration using an iDTR flox/flox (idTRfl/fl) X Aquaporin 5CRE (Aqp5CRE) transgenic mouse strain. Results: We investigated repeated doses and intervals of DT to induce cell death of AT1 cells causing inflammation and interstitial fibrosis. We found that repeated DT administrations at 1ng in iDTRfl/fl X Aqp5CRE mice cause AT1 cell death leading to inflammation, increased tissue repair markers and interstitial pulmonary fibrosis. Discussion: Together, we demonstrate that depletion of AT1 cells using repeated injury represents a novel approach to investigate chronic lung inflammatory diseases and to identify new therapeutic targets.


Assuntos
Pneumonia , Relesões , Camundongos , Animais , Camundongos Transgênicos , Inflamação , Fibrose , Morte Celular
3.
Cells ; 11(21)2022 11 03.
Artigo em Inglês | MEDLINE | ID: mdl-36359882

RESUMO

The cGAS-STING pathway displays important functions in the regulation of innate and adaptive immunity following the detection of microbial and host-derived DNA. Here, we briefly summarize biological functions of STING and review recent literature highlighting its important contribution in the context of respiratory diseases. Over the last years, tremendous progress has been made in our understanding of STING activation, which has favored the development of STING agonists or antagonists with potential therapeutic benefits. Antagonists might alleviate STING-associated chronic inflammation and autoimmunity. Furthermore, pharmacological activation of STING displays strong antiviral properties, as recently shown in the context of SARS-CoV-2 infection. STING agonists also elicit potent stimulatory activities when used as an adjuvant promoting antitumor responses and vaccines efficacy.


Assuntos
Tratamento Farmacológico da COVID-19 , Proteínas de Membrana , Humanos , Proteínas de Membrana/metabolismo , SARS-CoV-2 , Imunidade Adaptativa , Autoimunidade
4.
Front Immunol ; 13: 918507, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36045672

RESUMO

Chronic pulmonary inflammation and chronic obstructive pulmonary disease (COPD) are major health issues largely due to air pollution and cigarette smoke (CS) exposure. The role of the innate receptor NLRP3 (nucleotide-binding domain and leucine-rich repeat containing protein 3) orchestrating inflammation through formation of an inflammasome complex in CS-induced inflammation or COPD remains controversial. Using acute and subchronic CS exposure models, we found that Nlrp3-deficient mice or wild-type mice treated with the NLRP3 inhibitor MCC950 presented an important reduction of inflammatory cells recruited into the bronchoalveolar space and of pulmonary inflammation with decreased chemokines and cytokines production, in particular IL-1ß demonstrating the key role of NLRP3. Furthermore, mice deficient for Caspase-1/Caspase-11 presented also decreased inflammation parameters, suggesting a role for the NLRP3 inflammasome. Importantly we showed that acute CS-exposure promotes NLRP3-dependent cleavage of gasdermin D in macrophages present in the bronchoalveolar space and in bronchial airway epithelial cells. Finally, Gsdmd-deficiency reduced acute CS-induced lung and bronchoalveolar space inflammation and IL-1ß secretion. Thus, we demonstrated in our model that NLRP3 and gasdermin D are key players in CS-induced pulmonary inflammation and IL-1ß release potentially through gasdermin D forming-pore and/or pyroptoctic cell death.


Assuntos
Fumar Cigarros , Pneumonia , Doença Pulmonar Obstrutiva Crônica , Animais , Caspase 1/metabolismo , Fumar Cigarros/efeitos adversos , Células Epiteliais/metabolismo , Inflamassomos/metabolismo , Inflamação/metabolismo , Macrófagos/metabolismo , Camundongos , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Pneumonia/metabolismo , Doença Pulmonar Obstrutiva Crônica/metabolismo , Nicotiana/metabolismo
5.
Front Immunol ; 12: 753789, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34659260

RESUMO

Innate immunity is regulated by a broad set of evolutionary conserved receptors to finely probe the local environment and maintain host integrity. Besides pathogen recognition through conserved motifs, several of these receptors also sense aberrant or misplaced self-molecules as a sign of perturbed homeostasis. Among them, self-nucleic acid sensing by the cyclic GMP-AMP synthase (cGAS)/stimulator of interferon genes (STING) pathway alerts on the presence of both exogenous and endogenous DNA in the cytoplasm. We review recent literature demonstrating that self-nucleic acid detection through the STING pathway is central to numerous processes, from cell physiology to sterile injury, auto-immunity and cancer. We address the role of STING in autoimmune diseases linked to dysfunctional DNAse or related to mutations in DNA sensing pathways. We expose the role of the cGAS/STING pathway in inflammatory diseases, neurodegenerative conditions and cancer. Connections between STING in various cell processes including autophagy and cell death are developed. Finally, we review proposed mechanisms to explain the sources of cytoplasmic DNA.


Assuntos
Doenças Autoimunes/imunologia , DNA/análise , Imunidade Inata/fisiologia , Inflamação/imunologia , Proteínas de Membrana/fisiologia , Neoplasias/imunologia , Doenças Neurodegenerativas/imunologia , Trifosfato de Adenosina/metabolismo , Adulto , Doenças Autoimunes/fisiopatologia , Autofagia , Citocinas/fisiologia , Citoplasma/química , Guanosina Trifosfato/metabolismo , Humanos , Lactente , Inflamação/fisiopatologia , Interferon Tipo I/fisiologia , Mitocôndrias/fisiologia , NF-kappa B/metabolismo , Neoplasias/fisiopatologia , Doenças Neurodegenerativas/fisiopatologia , Nucleotídeos Cíclicos/metabolismo , Nucleotidiltransferases/fisiologia , Transdução de Sinais/fisiologia
6.
Front Immunol ; 11: 1622, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32849550

RESUMO

Cigarette smoke (CS) is the major cause of chronic lung injuries, such as chronic obstructive pulmonary disease (COPD). In patients with severe COPD, tertiary lymphoid follicles containing B lymphocytes and B cell-activating factor (BAFF) overexpression are associated with disease severity. In addition, BAFF promotes adaptive immunity in smokers and mice chronically exposed to CS. However, the role of BAFF in the early phase of innate immunity has never been investigated. We acutely exposed C57BL/6J mice to CS and show early BAFF expression in the bronchoalveolar space and lung tissue that correlates to airway neutrophil and macrophage influx. Immunostaining analysis revealed that neutrophils are the major source of BAFF. We confirmed in vitro that neutrophils secrete BAFF in response to cigarette smoke extract (CSE) stimulation. Antibody-mediated neutrophil depletion significantly dampens lung inflammation to CS exposure but only partially decreases BAFF expression in lung tissue and bronchoalveolar space suggesting additional sources of BAFF. Importantly, BAFF deficient mice displayed decreased airway neutrophil recruiting chemokines and neutrophil influx while the addition of exogenous BAFF significantly enhanced this CS-induced neutrophilic inflammation. This demonstrates that BAFF is a key proinflammatory cytokine and that innate immune cells in particular neutrophils, are an unconsidered source of BAFF in early stages of CS-induced innate immunity.


Assuntos
Fator Ativador de Células B/biossíntese , Exposição por Inalação/efeitos adversos , Neutrófilos/imunologia , Neutrófilos/metabolismo , Pneumonia/etiologia , Pneumonia/metabolismo , Poluição por Fumaça de Tabaco/efeitos adversos , Animais , Fator Ativador de Células B/genética , Líquido da Lavagem Broncoalveolar/imunologia , Citocinas/metabolismo , Modelos Animais de Doenças , Suscetibilidade a Doenças , Expressão Gênica , Humanos , Mediadores da Inflamação/metabolismo , Masculino , Camundongos , Infiltração de Neutrófilos , Pneumonia/patologia , Mucosa Respiratória/imunologia , Mucosa Respiratória/metabolismo , Mucosa Respiratória/patologia , Fumar Tabaco/efeitos adversos
8.
Front Immunol ; 11: 588799, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33488589

RESUMO

Idiopathic pulmonary fibrosis (IPF) is the most common and severe type of interstitial lung disease for which current treatments display limited efficacy. IPF is largely driven by host-derived danger signals released upon recurrent local tissue damage. Here we explored the roles of self-DNA and stimulator of interferon genes (STING), a protein belonging to an intracellular DNA sensing pathway that leads to type I and/or type III interferon (IFN) production upon activation. Using a mouse model of IPF, we report that STING deficiency leads to exacerbated pulmonary fibrosis with increased collagen deposition in the lungs and excessive remodeling factors expression. We further show that STING-mediated protection does not rely on type I IFN signaling nor on IL-17A or TGF-ß modulation but is associated with dysregulated neutrophils. Together, our data support an unprecedented immunoregulatory function of STING in lung fibrosis.


Assuntos
Fibrose Pulmonar Idiopática/imunologia , Proteínas de Membrana/imunologia , Animais , Bleomicina , Líquido da Lavagem Broncoalveolar/citologia , Líquido da Lavagem Broncoalveolar/imunologia , Colágeno/metabolismo , Modelos Animais de Doenças , Fibrose Pulmonar Idiopática/induzido quimicamente , Fibrose Pulmonar Idiopática/metabolismo , Fibrose Pulmonar Idiopática/patologia , Pulmão/imunologia , Pulmão/metabolismo , Pulmão/patologia , Masculino , Proteínas de Membrana/genética , Camundongos Endogâmicos C57BL , Camundongos Knockout , Ácidos Nucleicos , Nucleotidiltransferases/genética , Receptor de Interferon alfa e beta/genética
9.
Sci Rep ; 9(1): 14848, 2019 10 16.
Artigo em Inglês | MEDLINE | ID: mdl-31619733

RESUMO

Cigarette smoke exposure is a leading cause of chronic obstructive pulmonary disease (COPD), a major health issue characterized by airway inflammation with fibrosis and emphysema. Here we demonstrate that acute exposure to cigarette smoke causes respiratory barrier damage with the release of self-dsDNA in mice. This triggers the DNA sensor cGAS (cyclic GMP-AMP synthase) and stimulator of interferon genes (STING), driving type I interferon (IFN I) dependent lung inflammation, which are attenuated in cGAS, STING or type I interferon receptor (IFNAR) deficient mice. Therefore, we demonstrate a critical role of self-dsDNA release and of the cGAS-STING-type I interferon pathway upon cigarette smoke-induced damage, which may lead to therapeutic targets in COPD.


Assuntos
DNA/metabolismo , Proteínas de Membrana/metabolismo , Nucleotidiltransferases/metabolismo , Pneumonia/metabolismo , Enfisema Pulmonar/metabolismo , Receptor de Interferon alfa e beta/metabolismo , Poluição por Fumaça de Tabaco/efeitos adversos , Animais , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Sequências Repetitivas de Ácido Nucleico
10.
J Exp Med ; 216(3): 556-570, 2019 03 04.
Artigo em Inglês | MEDLINE | ID: mdl-30787033

RESUMO

Necrotic cell death during Mycobacterium tuberculosis (Mtb) infection is considered host detrimental since it facilitates mycobacterial spread. Ferroptosis is a type of regulated necrosis induced by accumulation of free iron and toxic lipid peroxides. We observed that Mtb-induced macrophage necrosis is associated with reduced levels of glutathione and glutathione peroxidase-4 (Gpx4), along with increased free iron, mitochondrial superoxide, and lipid peroxidation, all of which are important hallmarks of ferroptosis. Moreover, necrotic cell death in Mtb-infected macrophage cultures was suppressed by ferrostatin-1 (Fer-1), a well-characterized ferroptosis inhibitor, as well as by iron chelation. Additional experiments in vivo revealed that pulmonary necrosis in acutely infected mice is associated with reduced Gpx4 expression as well as increased lipid peroxidation and is likewise suppressed by Fer-1 treatment. Importantly, Fer-1-treated infected animals also exhibited marked reductions in bacterial load. Together, these findings implicate ferroptosis as a major mechanism of necrosis in Mtb infection and as a target for host-directed therapy of tuberculosis.


Assuntos
Ferroptose/fisiologia , Ferro/metabolismo , Mycobacterium tuberculosis/patogenicidade , Tuberculose/patologia , Animais , Morte Celular , Células Cultivadas , Ferroptose/efeitos dos fármacos , Glutationa/metabolismo , Interações Hospedeiro-Patógeno , Humanos , Quelantes de Ferro/farmacologia , Peroxidação de Lipídeos , Macrófagos/efeitos dos fármacos , Macrófagos/microbiologia , Macrófagos/patologia , Masculino , Camundongos Endogâmicos C57BL , Fosfolipídeo Hidroperóxido Glutationa Peroxidase/metabolismo , Tuberculose/metabolismo , Tuberculose/microbiologia
11.
J Exp Med ; 215(11): 2705-2714, 2018 11 05.
Artigo em Inglês | MEDLINE | ID: mdl-30232200

RESUMO

T follicular helper (Tfh) cells express transcription factor BCL-6 and cytokine IL-21. Mature Tfh cells are also capable of producing IFN-γ without expressing the Th1 transcription factor T-bet. Whether this IFN-γ-producing Tfh population represents a unique Tfh subset with a distinct differentiation pathway is poorly understood. By using T-bet fate-mapping mouse strains, we discovered that almost all the IFN-γ-producing Tfh cells have previously expressed T-bet and express high levels of NKG2D. DNase I hypersensitivity analysis indicated that the Ifng gene locus is partially accessible in this "ex-T-bet" population with a history of T-bet expression. Furthermore, multicolor tissue imaging revealed that the ex-T-bet Tfh cells found in germinal centers express IFN-γ in situ. Finally, we found that IFN-γ-expressing Tfh cells are absent in T-bet-deficient mice, but fully present in mice with T-bet deletion at late stages of T cell differentiation. Together, our findings demonstrate that transient expression of T-bet epigenetically imprints the Ifng locus for cytokine production in this Th1-like Tfh cell subset.


Assuntos
Diferenciação Celular/imunologia , Impressão Genômica/imunologia , Centro Germinativo/imunologia , Proteínas com Domínio T/imunologia , Células Th1/imunologia , Animais , Diferenciação Celular/genética , Centro Germinativo/citologia , Interferon gama/genética , Interferon gama/imunologia , Interleucinas/genética , Interleucinas/imunologia , Masculino , Camundongos , Camundongos Transgênicos , Proteínas Proto-Oncogênicas c-bcl-6/genética , Proteínas Proto-Oncogênicas c-bcl-6/imunologia , Proteínas com Domínio T/genética , Células Th1/citologia
12.
Front Immunol ; 9: 1427, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29977244

RESUMO

Lysosomal cathepsin B (CTSB) has been proposed to play a role in the induction of acute inflammation. We hypothesised that the presence of active CTSB in the cytosol is crucial for NLRP3-inflammasome assembly and, consequently, for mature IL-1ß generation after mycobacterial infection in vitro. Elevated levels of CTSB was observed in the lungs of mice and rabbits following infection with Mycobacterium tuberculosis (Mtb) H37Rv as well as in plasma from acute tuberculosis patients. H37Rv-infected murine bone marrow-derived macrophages (BMDMs) displayed both lysosomal leakage, with release of CTSB into the cytosol, as well as increased levels of mature IL-1ß. These responses were diminished in BMDM infected with a mutant H37Rv deficient in ESAT-6 expression. Pharmacological inhibition of cathepsin activity with CA074-Me resulted in a substantial reduction of both mature IL-1ß production and caspase-1 activation in infected macrophages. Moreover, cathepsin inhibition abolished the interaction between NLRP3 and ASC, measured by immunofluorescence imaging in H37Rv-infected macrophages, demonstrating a critical role of the enzyme in NLRP3-inflammasome activation. These observations suggest that during Mtb infection, lysosomal release of activated CTSB and possibly other cathepsins inhibitable by CA07-Me is critical for the induction of inflammasome-mediated IL-1ß processing by regulating NLRP3-inflammasome assembly in the cytosol.

13.
Front Immunol ; 9: 1476, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29988569

RESUMO

Idiopathic pulmonary fibrosis is a progressive, devastating, and yet untreatable fibrotic disease of unknown origin. Interleukin-33 (IL-33), an IL-1 family member acts as an alarmin with pro-inflammatory properties when released after stress or cell death. Here, we investigated the role of IL-33 in the bleomycin (BLM)-induced inflammation and fibrosis model using mice IL-33 receptor [chain suppression of tumorigenicity 2 (ST2)] mice compared with C57BL/6 wild-type mice. Unexpectedly, 24 h post-BLM treatment ST2-deficient mice displayed augmented inflammatory cell recruitment, in particular by neutrophils, together with enhanced levels of chemokines and remodeling factors in the bronchoalveolar space and/or the lungs. At 11 days, lung remodeling and fibrosis were decreased with reduced M2 macrophages in the lung associated with M2-like cytokine profile in ST2-deficient mice, while lung cellular inflammation was decreased but with fluid retention (edema) increased. In vivo magnetic resonance imaging (MRI) analysis demonstrates a rapid development of edema detectable at day 7, which was increased in the absence of ST2. Our results demonstrate that acute neutrophilic pulmonary inflammation leads to the development of an IL-33/ST2-dependent lung fibrosis associated with the production of M2-like polarization. In addition, non-invasive MRI revealed enhanced inflammation with lung edema during the development of pulmonary inflammation and fibrosis in absence of ST2.

14.
Sci Rep ; 7(1): 10438, 2017 09 05.
Artigo em Inglês | MEDLINE | ID: mdl-28874800

RESUMO

Malaria is a fatal disease that displays a spectrum of symptoms and severity, which are determined by complex host-parasite interactions. It has been difficult to study the effects of parasite strains on disease severity in human infections, but the mechanisms leading to specific disease phenotypes can be investigated using strains of rodent malaria parasites that cause different disease symptoms in inbred mice. Using a unique mouse malaria model, here we investigated the mechanisms of splenic cell death and their relationship to control of parasitemia and host mortality. C57BL/6 mice infected with Plasmodium yoelii nigeriensis N67C display high levels of pro-inflammatory cytokines and chemokines (IL-6, IFN-γ, TNF-α, CXCL1, and CCL2) and extensive splenic damage with dramatic reduction of splenic cell populations. These disease phenotypes were rescued in RAG2-/-, IFN-γ-/-, or T cell depleted mice, suggesting IFN-γ and T cell mediated disease mechanisms. Additionally, apoptosis was one of the major pathways involved in splenic cell death, which coincides with the peaks of pro-inflammatory cytokines. Our results demonstrate the critical roles of T cells and IFN-γ in mediating splenic cell apoptosis, parasitemia control, and host lethality and thus may provide important insights for preventing/reducing morbidity associated with severe malaria in humans.


Assuntos
Malária/parasitologia , Plasmodium yoelii/fisiologia , Baço/patologia , Animais , Apoptose , Biomarcadores , Biópsia , Morte Celular , Citocinas/metabolismo , Proteínas de Ligação a DNA/genética , Modelos Animais de Doenças , Feminino , Interações Hospedeiro-Parasita , Humanos , Mediadores da Inflamação/metabolismo , Estágios do Ciclo de Vida , Linfócitos/imunologia , Linfócitos/metabolismo , Malária/mortalidade , Malária/patologia , Camundongos , Camundongos Knockout , Mortalidade
15.
Sci Rep ; 7: 40312, 2017 01 16.
Artigo em Inglês | MEDLINE | ID: mdl-28091576

RESUMO

Humoral immune responses have the potential to maintain protective antibody levels for years due to the immunoglobulin-secreting activity of long-lived plasma cells (LLPCs). However, many subunit vaccines under development fail to generate robust LLPC responses, and therefore a variety of strategies are being employed to overcome this limitation, including conjugation to carrier proteins and/or formulation with potent adjuvants. Pfs25, an antigen expressed on malaria zygotes and ookinetes, is a leading transmission blocking vaccine (TBV) candidate for Plasmodium falciparum. Currently, the conjugate vaccine Pfs25-EPA/Alhydrogel is in Phase 1 clinical trials in the USA and Africa. Thus far, it has proven to be safe and immunogenic, but it is expected that a more potent formulation will be required to establish antibody titers that persist for several malaria transmission seasons. We sought to determine the contribution of carrier determinants and adjuvants in promoting high-titer, long-lived antibody responses against Pfs25. We found that both adjuvants and carrier proteins influence the magnitude and capacity of Pfs25-specific humoral responses to remain above a protective level. Furthermore, a liposomal adjuvant with QS21 and a TLR4 agonist (GLA-LSQ) was especially effective at inducing T follicular helper (Tfh) and LLPC responses to Pfs25 when coupled to immunogenic carrier proteins.


Assuntos
Adjuvantes Imunológicos/metabolismo , Formação de Anticorpos/imunologia , Proteínas de Transporte/metabolismo , Apresentação Cruzada/imunologia , Vacinas Antimaláricas/imunologia , Plasmodium falciparum/imunologia , Proteínas de Protozoários/imunologia , Linfócitos T/imunologia , Animais , Anticorpos Antiprotozoários/imunologia , Antígenos de Protozoários/imunologia , Feminino , Imunidade Celular , Imunidade Humoral , Imunização , Malária Falciparum/imunologia , Camundongos Endogâmicos C57BL
16.
J Immunol ; 197(10): 3884-3893, 2016 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-27798160

RESUMO

T follicular helper (Tfh) cells are a subset of CD4+ T lymphocytes that promote the development of humoral immunity. Although the triggers required for the differentiation of the other major Th subsets are well defined, those responsible for Tfh cell responses are still poorly understood. We determined that mice immunized with peptide or protein Ags emulsified in IFA or related water-in-oil adjuvants develop a highly polarized response in which the majority of the Ag-specific CD4+ T cells are germinal center-homing CXCR5+Bcl6+ Tfh cells. Despite the absence of exogenous microbial pathogen-associated molecular patterns, the Tfh cell responses observed were dependent, in part, on MyD88. Importantly, in addition to IL-6, T cell-intrinsic type I IFN signaling is required for optimal Tfh cell polarization. These findings suggest that water-in-oil adjuvants promote Tfh cell-dominated responses by triggering endogenous alarm signals that, in turn, induce type I IFN-dependent differentiation pathway functioning in T cells.


Assuntos
Adjuvantes Imunológicos/química , Interferon Tipo I/metabolismo , Interleucina-6/metabolismo , Linfócitos T Auxiliares-Indutores/imunologia , Animais , Antígenos/imunologia , Diferenciação Celular , Centro Germinativo/imunologia , Imunidade Humoral , Imunização , Interferon Tipo I/imunologia , Interleucina-6/imunologia , Ativação Linfocitária , Camundongos , Óleos , Peptídeos/imunologia , Receptores CXCR5/metabolismo , Transdução de Sinais , Água
17.
Methods Mol Biol ; 1417: 63-74, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27221481

RESUMO

The evaluation of the inflammasome activation usually addresses the presence of extracellular IL-1ß and IL-18 or the secretion of danger signal proteins such as HMGB-1 through their quantification using an enzyme-linked immunosorbent assay (ELISA). The ELISA is a routine laboratory technique that uses antibodies and colorimetric changes to identify a substance of interest. ELISA uses a solid-phase enzyme immunoassay to detect the presence of a substance, usually an antigen, in a liquid or wet sample. Using 96 well plates, the ELISA technique enables to quantify the concentration of a single cytokine in multiple samples. However, a limitation of IL-1ß and IL-18 ELISA is the absence of discrimination between active and non-active form of the proteins, parameter critical, for example, to distinguish the biologically relevant IL-1ß from its poorly active form pro-IL-1ß. This issue can be solved using western blots or immunoblots (IB), a common analytical procedure to detect the presence of different proteins in biological samples. Using denaturating conditions, IB allows the visualization of different sizes of the proteins of choice and is a commonly used technique in the inflammasome field to evaluate, for instance, the maturation of pro-IL-1ß, pro-IL-18, and pro-caspase-1 into mature IL-1ß, mature IL-18, and mature caspase-1, respectively. Moreover inflammasome activation may lead to the release of inflammasome particles outside the cell through caspase-1- or caspase-11-dependent cell death mechanism termed pyroptosis. In this case, NLR, ASC, and caspase-1 components are detectable outside the cell using IB analysis. ELISA and IB can be performed on cell culture supernatant or cell extract and on ex vivo samples from organ homogenates or biological fluids such as serum and plasma or bronchoalveolar lavages.


Assuntos
Proteína HMGB1/metabolismo , Inflamassomos/metabolismo , Interleucina-18/metabolismo , Interleucina-1beta/metabolismo , Animais , Western Blotting , Células da Medula Óssea/citologia , Caspase 1/metabolismo , Células Cultivadas , Ensaio de Imunoadsorção Enzimática , Immunoblotting , Camundongos , Peso Molecular , Piroptose
18.
Immunity ; 44(3): 522-524, 2016 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-26982361

RESUMO

Adjuvants promote adaptive immunity through the triggering of innate signals that are largely poorly understood. In this issue of Immunity, Lavelle and colleagues describe an unexpected role for the DNA sensing cGAS-STING pathway in the mechanism of action of the Th1 cell-promoting polysaccharide adjuvant chitosan.


Assuntos
Adjuvantes Imunológicos/administração & dosagem , Quitosana/administração & dosagem , Células Dendríticas/fisiologia , Proteínas de Membrana/metabolismo , Mitocôndrias/metabolismo , Nucleotidiltransferases/metabolismo , Células Th1/imunologia , Animais , Feminino , Humanos
19.
Eur J Immunol ; 46(4): 897-911, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26689285

RESUMO

Infection of C57BL/6 mice with most Leishmania major strains results in a healing lesion and clearance of parasites from the skin. Infection of C57BL/6 mice with the L. major Seidman strain (LmSd), isolated from a patient with chronic lesions, despite eliciting a strong Th1 response, results in a nonhealing lesion, poor parasite clearance, and complete destruction of the ear dermis. We show here that in comparison to a healing strain, LmSd elicited early upregulation of IL-1ß mRNA and IL-1ß-producing dermal cells and prominent neutrophil recruitment to the infected skin. Mice deficient in Nlrp3, apoptosis-associated speck-like protein containing a caspase recruitment domain, or caspase-1/11, or lacking IL-1ß or IL-1 receptor signaling, developed healing lesions and cleared LmSd from the infection site. Mice resistant to LmSd had a stronger antigen-specific Th1 response. The possibility that IL-1ß might act through neutrophil recruitment to locally suppress immunity was supported by the healing observed in neutropenic Genista mice. Secretion of mature IL-1ß by LmSd-infected macrophages in vitro was dependent on activation of the Nlrp3 inflammasome and caspase-1. These data reveal that Nlrp3 inflammasome-dependent IL-1ß, associated with localized neutrophil recruitment, plays a crucial role in the development of a nonhealing form of cutaneous leishmaniasis in conventionally resistant mice.


Assuntos
Proteínas de Transporte/genética , Interleucina-1beta/genética , Leishmania major/imunologia , Leishmaniose Cutânea/imunologia , Infiltração de Neutrófilos/imunologia , Neutrófilos/imunologia , Animais , Caspase 1/genética , Caspases/genética , Caspases Iniciadoras , Modelos Animais de Doenças , Humanos , Interleucina-17/genética , Leishmania major/isolamento & purificação , Leishmaniose Cutânea/parasitologia , Macrófagos/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteína 3 que Contém Domínio de Pirina da Família NLR , RNA Mensageiro/biossíntese , Receptores de Citocinas/genética , Receptores de Interleucina , Receptores Tipo I de Interleucina-1/genética , Células Th1/imunologia
20.
J Immunol ; 195(6): 2763-73, 2015 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-26268658

RESUMO

Pulmonary tuberculosis (TB) is characterized by oxidative stress and lung tissue destruction by matrix metalloproteinases (MMPs). The interplay between these distinct pathological processes and the implications for TB diagnosis and disease staging are poorly understood. Heme oxygenase-1 (HO-1) levels were previously shown to distinguish active from latent TB, as well as successfully treated Mycobacterium tuberculosis infection. MMP-1 expression is also associated with active TB. In this study, we measured plasma levels of these two important biomarkers in distinct TB cohorts from India and Brazil. Patients with active TB expressed either very high levels of HO-1 and low levels of MMP-1 or the converse. Moreover, TB patients with either high HO-1 or MMP-1 levels displayed distinct clinical presentations, as well as plasma inflammatory marker profiles. In contrast, in an exploratory North American study, inversely correlated expression of HO-1 and MMP-1 was not observed in patients with other nontuberculous lung diseases. To assess possible regulatory interactions in the biosynthesis of these two enzymes at the cellular level, we studied the expression of HO-1 and MMP-1 in M. tuberculosis-infected human and murine macrophages. We found that infection of macrophages with live virulent M. tuberculosis is required for robust induction of high levels of HO-1 but not MMP-1. In addition, we observed that CO, a product of M. tuberculosis-induced HO-1 activity, inhibits MMP-1 expression by suppressing c-Jun/AP-1 activation. These findings reveal a mechanistic link between oxidative stress and tissue remodeling that may find applicability in the clinical staging of TB patients.


Assuntos
Heme Oxigenase-1/sangue , Metaloproteinase 1 da Matriz/sangue , Estresse Oxidativo/fisiologia , Tuberculose Pulmonar/patologia , Adulto , Idoso , Biomarcadores/sangue , Brasil , Feminino , Heme Oxigenase-1/metabolismo , Humanos , Índia , Proteínas Quinases JNK Ativadas por Mitógeno/metabolismo , Proteínas de Ligação a TGF-beta Latente/sangue , Pulmão/microbiologia , Pulmão/patologia , Macrófagos/microbiologia , Macrófagos/patologia , Masculino , Metaloproteinase 1 da Matriz/biossíntese , Pessoa de Meia-Idade , Mycobacterium tuberculosis/imunologia , Fator de Transcrição AP-1/metabolismo , Tuberculose Pulmonar/imunologia , Tuberculose Pulmonar/microbiologia , Estados Unidos , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA