Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Langmuir ; 40(14): 7433-7443, 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38532537

RESUMO

We investigate the structure and interactions of a model anionic/amphoteric mixed surfactant micellar system, namely, sodium dodecyl sulfate (SDS) and N,N-dimethyldodecylamine N-oxide (DDAO), employing SANS, FTIR, DLS, and pH measurements, in the range 0.1-100 mM total surfactant concentration and 0-100% DDAO. Increasing surfactant concentration is found to elongate the prolate ellipsoid micelles (RPolar ∼ 25-40 Å), accompanied by up to a 6-fold increase in micellar charge. The surfactant synergy, in terms of micellar charge and size, diffusion coefficient, solution pH, and headgroup interactions, was found to vary with concentration. At lower concentrations (≤50 mM), the SDS-DDAO ratio of maximum synergy is found to be asymmetric (at 65-85% DDAO), which is rationalized using regular solution theory, suggesting an equilibrium between Na+ dissociation, DDAO protonation, and counterion concentration. At higher concentrations, maximum synergy shifts toward the equimolar ratio. Overall, our study expands and unifies previous reports, providing a comprehensive understanding for this model, synergetic mixed micellar system.

2.
Lab Chip ; 23(11): 2540-2552, 2023 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-37185587

RESUMO

We report the coupling of dynamic light scattering (DLS) in microfluidics, using a contact-free fibre-optic system, enabling the under-flow characterisation of a range of solutions, dispersions, and structured fluids. The system is evaluated and validated with model systems, specifically micellar and (dilute) polymer solutions, and colloidal dispersions of different radii (∼1-100 nm). A systematic method of flow-DLS analysis is examined as a function of flow velocity (0-16 cm s-1), and considerations of the relative contribution of 'transit' and 'Brownian' terms enable the identification of regions where (i) a quiescent approximation suffices, (ii) the flow-DLS framework holds, as well as (iii) where deviations are found, until eventually (iv) the convection dominates. We investigate practically relevant, robust setups, namely that of a capillary connected to microdevice, as well as direct measurement on a glass microdevice, examining the role of capillary dimensions and challenges of optical alignment. We conclude with a demonstration of a continuous flow measurement of a binary surfactant/salt solution, whose micellar dimensions vary with composition, characterised with hundreds of data points (every ∼5 s) and adequate statistics, within a few minutes.

3.
Phys Chem Chem Phys ; 24(48): 29413-29422, 2022 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-36448993

RESUMO

We investigate the phase behavior of model ternary triacylglycerol blends, comprising triolein (C57H104O6, OOO), tripalmitin (C51H98O6, PPP) and tristearin (C57H110O6, SSS), building upon extensive characterisation of single and binary mixtures, in order to rigorously map the thermal transitions of model natural 'fats'. A combination of calorimetry, X-ray diffraction, and FTIR spectroscopy is employed to determine crystallisation and melting temperatures and identify the corresponding phases in the complex ternary system. We recover the eutectic behaviour of SSS-PPP blends and the invariability of OOO neat transitions, and resolve the complex ß' + ß ternary surface, reflecting the roles of unsaturation and polymorphism of its constituents. Our results provide a representation of the OOO:PPP:SSS:temperature phase behaviour into a triangular prism, consistent with binary pair-wise data, which can inform a range of food science, cosmetic, pharmaceutical and cleaning applications that depend strongly on the physical-chemistry of such multicomponent 'triglycerides'.


Assuntos
Trioleína , Trioleína/química , Triglicerídeos/química , Cristalização , Difração de Raios X
4.
ACS Appl Mater Interfaces ; 14(27): 31463-31473, 2022 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-35699282

RESUMO

We investigate the effect of micrometer-scale surface wrinkling on the attachment and proliferation of model bacteria (Staphylococcus aureus, Pseudomonas aeruginosa, and Escherichia coli K12) and fungi (Candida albicans). Specifically, sinusoidal (1D), checkerboard (C), and herringbone (H) patterns were fabricated by mechanical wrinkling of plasma-oxidized polydimethylsiloxane (PDMS) bilayers and contrasted with flat (F) surfaces. Microbial deformation and orientation were found to correlate with the aspect ratio and commensurably with surface pattern dimensions and local pattern order. Significantly, the proliferation of P. aeruginosa could be described by a linear scaling between bacterial area coverage and available surface area, defined as a fraction of the line integral along each profile with negative curvature. However, in the early stages of proliferation (up to 6 h examined), that C and H patterns disrupt the spatial arrangement of bacteria, impeding proliferation for several hours and reducing it (by ∼50%) thereafter. Our findings suggest a simple framework to rationalize the impact of micrometer-scale topography on microbial action and demonstrate that multiaxial patterning order provides an effective strategy to delay and frustrate the early stages of bacterial proliferation.


Assuntos
Pseudomonas aeruginosa , Staphylococcus aureus , Bactérias , Candida albicans/fisiologia , Pseudomonas aeruginosa/fisiologia , Staphylococcus aureus/fisiologia
5.
Langmuir ; 38(23): 7198-7207, 2022 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-35658451

RESUMO

We examine the solution structures in a mixed surfactant system of sodium dodecyl sulfate (SDS) and N,N-dimethyldodecylamine N-oxide (DDAO) in water, on both sides of the two-phase boundary, employing dynamic light scattering, small-angle neutron scattering, and Fourier transform infrared spectroscopy. The precipitate phase boundary was accessed by lowering pH to 8, from its floating pH 9.5 value, and was experimentally approached from the monomeric and micellar regions in three ways: at fixed DDAO or SDS concentrations and at a fixed (70:30) SDS:DDAO molar ratio. We characterize the size, shape, and interactions of micelles, which elongate approaching the boundary, leading to the formation of disk-like aggregates within the biphasic region, coexisting with micelles and monomers. Our data, from both monomeric and micellar solutions, indicate that the two phase structures formed are largely pathway-independent, with dimensions influenced by both pH and mixed surfactant composition. Precipitation occurs at intermediate stoichiometries with a similar SDS:DDAO ratio, whereas asymmetric stoichiometries form a re-entrant transition, returning to the mixed micelle phase. Overall, our findings demonstrate the effect of stoichiometry and solution pH on the synergistic interaction of mixed surfactants and their impact on phase equilibrium and associated micellar and two-phase structures.

6.
Langmuir ; 37(17): 5099-5108, 2021 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-33877849

RESUMO

Linear alkylbenzene sulfonate (NaLAS) surfactant is often combined with polycarboxylate polymers in detergent formulations. However, the behavior of these aqueous surfactant-polymer systems in the absence of an added electrolyte is unreported. This work investigates the behavior of such systems using polarized light microscopy, small-angle X-ray scattering (SAXS), centrifugation, and 2H NMR techniques. A phase diagram at 50 °C is reported for 0-50 wt % NaLAS concentrations and 0-10 wt % polycarboxylate concentrations. The NaLAS-water system is micellar at concentrations <35 wt %, and a 2-phase micellar-lamellar system is seen at higher NaLAS levels, consistent with that reported by previous studies. As polymers are added at low surfactant concentrations (∼10 to 20 wt % NaLAS), a second optically isotropic phase is formed; this is thought to be a polymer-rich phase. Further addition of polycarboxylate leads to the formation of a lamellar phase. At high surfactant concentrations (>20 wt % NaLAS), the addition of a polymer induces a second lamellar phase. These observed behaviors are thought to arise as a result of depletion flocculation and salting-out effects. The observed lamellar phases adopt colloidal multilamellar vesicle (MLV) structures, and the average MLV radii were estimated using 2H NMR by probing the diffusion and anisotropy of D2O within the bilayers of the vesicles. The NMR results show that as the polymer concentration was increased from 0 to 10 wt %, an increase in the average multilamellar vesicle size from ∼200 to ∼500 nm was observed. This increase in the calculated average MLV radius likely results from depletion flocculation-induced MLV fusion.

7.
Materials (Basel) ; 14(9)2021 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-33923267

RESUMO

The applications of polymeric sponges are varied, ranging from cleaning and filtration to medical applications. The specific properties of polymeric foams, such as pore size and connectivity, are dependent on their constituent materials and production methods. Nuclear magnetic resonance imaging (MRI) and X-ray micro-computed tomography (µCT) offer complementary information about the structure and properties of porous media. In this study, we employed MRI, in combination with µCT, to characterize the structure of polymeric open-cell foam, and to determine how it changes upon compression, µCT was used to identify the morphology of the pores within sponge plugs, extracted from polyurethane open-cell sponges. MRI T2 relaxation maps and bulk T2 relaxation times measurements were performed for 7° dH water contained within the same polyurethane foams used for µCT. Magnetic resonance and µCT measurements were conducted on both uncompressed and 60% compressed sponge plugs. Compression was achieved using a graduated sample holder with plunger. A relationship between the average T2 relaxation time and maximum opening was observed, where smaller maximum openings were found to have a shorter T2 relaxation times. It was also found that upon compression, the average maximum opening of pores decreased. Average pore size ranges of 375-632 ± 1 µm, for uncompressed plugs, and 301-473 ± 1 µm, for compressed plugs, were observed. By determining maximum opening values and T2 relaxation times, it was observed that the pore structure varies between sponges within the same production batch, as well as even with a single sponge.

8.
J Colloid Interface Sci ; 582(Pt A): 201-211, 2021 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-32823122

RESUMO

HYPOTHESIS: Vesicle-polymer dispersions are found in drug-delivery systems and consumer products but undergo phase separation. Previous studies of phase separation have focussed on systems with high density differences between continuous and vesicular phases. In this study, we investigate phase separation in vesicle-polymer mixtures with very small density differences, in the presence and absence of air bubbles. EXPERIMENTS: Magnetic resonance (MR) imaging, X-ray Computed Tomography and rheological measurements are reported which characterise the properties and stability of vesicle suspensions composed of the cationic surfactant, diethylesterdimethyl ammonium chloride, mixed with non-adsorbing polymer. 1H T2 MR relaxation images are employed to observe phase separation, for a range of vesicle-polymer mixtures, which are analysed using Moran's I spatial autocorrelation to quantify the extent and rate of phase separation. FINDINGS: It was found that in presence of air bubbles, phase separation follows a compression/collapse mechanism, typical of colloidal gels with large density differences between the phases. Without air bubbles, phase separation develops through the formation of tiny cracks and fractures in the samples. MRI enabled visualisation of the evolution of phase separation inside highly turbid samples. The rate of phase separation was found to generally increase with increasing polymer concentration and decrease with increasing vesicle volume fraction.

9.
J Colloid Interface Sci ; 582(Pt B): 1116-1127, 2021 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-32942067

RESUMO

Aqueous mixtures of anionic and nonionic/cationic surfactants can form non-trivial self-assemblies in solution and exhibit macroscopic responses. Here, we investigate the micellar phase of pure and mixed aqueous solutions of Sodium Dodecyl Sulfate (SDS) and Dimethyldodecyl Amine Oxide (DDAO) using a combination of Small Angle Neutron Scattering (SANS), Fourier-Transform Infrared Spectroscopy (FTIR) and rheological measurements. We examine the effect of temperature (0-60 °C), on the 20 wt% SDS micellar solutions with varying DDAO (⩽5 wt%), and seek to correlate micellar structure with zero-shear solution viscosity. SANS establishes the formation of prolate ellipsoidal micelles in aqueous solutions of pure SDS, DDAO and SDS/DDAO mixtures, whose axial ratio is found to increase upon cooling. Elongation of the ellipsoidal micelles of pure SDS is also induced by the introduction of the non-anionic DDAO, which effectively reduces the repulsive interactions between the anionic SDS head-groups. In FTIR measurements, the formation of elongated mixed ellipsoidal micelles is confirmed by the increase of ordering in the hydrocarbon chain tails and interaction between surfactant head-groups. We find that the zero-shear viscosity of the mixed surfactant solutions increases exponentially with decreasing temperature and increasing DDAO content. Significantly, a master curve for solution viscosity can be obtained in terms of micellar aspect ratio, subsuming the effects of both temperature and DDAO composition in the experimental range investigated. The intrinsic viscosity of mixed micellar solutions is significantly larger than the analytical and numerical predictions for Brownian suspensions of ellipsoidal colloids, highlighting the need to consider interactions of soft micelles under shear, especially at high concentrations.

10.
Soft Matter ; 16(33): 7835-7844, 2020 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-32756697

RESUMO

We investigate the shape, dimensions, and transformation pathways of micelles of linear sodium alkylbenzenesulfonate (NaLAS), a common anionic surfactant, in aqueous solution. Employing Small Angle Neutron Scattering (SANS) and surface tensiometry, we quantify the effects of surfactant concentration (0.6-15 wt%), temperature (5-40 °C) and added salt (≤0.35 M Na2SO4). Spherical micelles form at low NaLAS (≤2.6 wt%) concentration in water, and become elongated with increasing concentration and decreasing temperature. Addition of salt reduces the critical micelle concentration (CMC) and thus promotes the formation of micelles. At fixed NaLAS concentration, salt addition causes spherical micelles to grow into cylindrical micelles, and then multilamellar vesicles (MLVs), which we examine by SANS and cryo-TEM. Above a threshold salt concentration, the MLVs reach diameters of 100 s of nm to few µm, eventually causing precipitation. While the salt concentrations associated with the micelle-to-cylinder transformation increase only slightly with temperature, those required for the cylinder-to-MLV transformation exhibit a pronounced, linear temperature dependence, which we examine in detail. Our study establishes a solution structure map for this model anionic surfactant in water, quantifying the combined roles of concentration, temperature and salt, at practically relevant conditions.

11.
Rev Sci Instrum ; 91(4): 045109, 2020 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-32357682

RESUMO

Measurement of the phase behavior and (meta)stability of liquid formulations, including surfactant solutions, is required for the understanding of mixture thermodynamics, as well as their practical utilization. We report a microfluidic platform with a stepped temperature profile, imposed by a dual Peltier module, connected to an automated multiwell plate injector and optical setup, for rapid solution phase mapping. The measurement protocol is defined by the temperature step ΔT ≡ T1 - T2 (≲100 °C), volumetric flow rate Q ≡ ΔV/Δt (≲50 µl/min), which implicitly set the thermal gradient ΔT/Δt (≃0.1-50 °C/min), and measurement time (which must exceed the intrinsic timescale of the relevant phase transformation). Furthermore, U-shaped microchannels can assess the reversibility of such transformations, yielding a facile measurement of the metastable zone width of the phase diagram. By contrast with traditional approaches, the platform precisely controls the cooling and heating rates by tuning the flow rate, and the absolute temperature excursion by the hot and cold thermal profile, which remain stationary during operation, thus allowing the sequential and reproducible screening of large sample arrays. As a model system, we examined the transition from the micellar (L1) to the liquid crystalline lamellar phase (Lα), upon cooling, of aqueous solutions of sodium linear alkylbenzene sulfonate, a biodegradable anionic surfactant extensively employed in industry. Our findings are validated with quiescent optical microscopy and small angle neutron scattering data.

12.
J Colloid Interface Sci ; 546: 221-230, 2019 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-30921676

RESUMO

We report the spontaneous formation of multilamellar vesicles (MLVs) from low concentration (<30 wt%) aqueous micellar solutions of sodium linear alkylbenezene sulfonate (NaLAS) upon cooling, employing a combination of optical microscopy (OM), Small Angle Neutron Scattering (SANS), and Cryo-TEM. Upon cooling, MLVs grow from, and coexist with, the surfactant micelles, attaining diameters ranging from hundreds of nanometers to a few micrometers depending on the cooling rate, whilst the d-spacing of internal lamellae remains unchanged, at ≃ 3 nm. While microscale fluid and flow properties of the mixed MLVs and micellar phase depend on rate of cooling, the corresponding nanoscale structure of the surfactant aggregates, resolved by time-resolved SANS, remains unchanged. Our data indicate that the mixed MLV and micellar phases are in thermodynamic equilibrium with a fixed relative volume fraction determined by temperature and total surfactant concentration. Under flow, MLVs aggregate and consequently migrate away from the channel walls, thus reduce the overall hydrodynamic resistance. Our findings demonstrate that the molecular and mesoscopic structure of ubiquitous, low concentration NaLAS solutions, and in turn their flow properties, are dramatically influenced by temperature variation about ambient conditions.

13.
J Colloid Interface Sci ; 513: 180-187, 2018 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-29153711

RESUMO

In complex colloidal systems, particle-poor regions can develop within particle-rich phases during sedimentation or creaming. These particle-poor regions are overlooked by 1D profiles, which are typically used to assess particle distributions in a sample. Alternative methods to visualise and quantify these regions are required to better understand phase separation, which is the focus of this paper. Magnetic resonance imaging has been used to monitor the development of compositional heterogeneity in a vesicle-polymer mixture undergoing creaming. T2 relaxation time maps were used to identify the distribution of vesicles, with vesicle-poor regions exhibiting higher T2 relaxation times than regions richer in vesicles. Phase separated structures displayed a range of different morphologies and a variety of image analysis methods, including first-order statistics, Fourier transformation, grey level co-occurrence matrices and Moran's I spatial autocorrelation, were used to characterise these structures, and quantify their heterogeneity. Of the image analysis techniques used, Moran's I was found to be the most effective at quantifying the degree and morphology of phase separation, providing a robust, quantitative measure by which comparisons can be made between a diverse range of systems undergoing phase separation. The sensitivity of Moran's I can be enhanced by the choice of weight matrices used.

14.
Langmuir ; 32(23): 5852-61, 2016 06 14.
Artigo em Inglês | MEDLINE | ID: mdl-27196820

RESUMO

The structure and flow behavior of a concentrated aqueous solution (45 wt %) of the ubiquitous linear sodium alkylbenzenesulfonate (NaLAS) surfactant is investigated by microfluidic small-angle X-ray scattering (SAXS) at 70 °C. NaLAS is an intrinsically complex mixture of over 20 surfactant molecules, presenting coexisting micellar (L1) and lamellar (Lα) phases. Novel microfluidic devices were fabricated to ensure pressure and thermal resistance, ability to handle viscous fluids, and low SAXS background. Polarized light optical microscopy showed that the NaLAS solution exhibits wall slip in microchannels, with velocity profiles approaching plug flow. Microfluidic SAXS demonstrated the structural spatial heterogeneity of the system with a characteristic length scale of 50 nL. Using a statistical flow-SAXS analysis, we identified the micellar phase and multiple coexisting lamellar phases with a continuous distribution of d spacings between 37.5 and 39.5 Å. Additionally, we showed that the orientation of NaLAS lamellar phases is strongly affected by a single microfluidic constriction. The bilayers align parallel to the velocity field upon entering a constriction and perpendicular to it upon exiting. On the other hand, multilamellar vesicle phases are not affected under the same flow conditions. Our results demonstrate that despite the compositional complexity inherent to NaLAS, microfluidic SAXS can rigorously elucidate its structure and flow response.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA