Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 47
Filtrar
1.
Front Immunol ; 15: 1334769, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38312842

RESUMO

Background: Stimulator of Interferon Genes (STING) is a dsDNA sensor that triggers type I inflammatory responses. Recent data from our group and others support the therapeutic efficacy of STING agonists applied intratumorally or systemically in a range of murine tumor models, with treatment benefits associated with tumor vascular normalization and improved immune cell recruitment and function within the tumor microenvironment (TME). However, such interventions are rarely curative and STING agonism coordinately upregulates expression of immunoregulatory interferon-stimulated genes (ISGs) including Arg2, Cox2, Isg15, Nos2, and Pdl1 that may limit treatment benefits. We hypothesized that combined treatment of melanoma-bearing mice with STING agonist ADU-S100 together with antagonists of regulatory ISGs would result in improved control of tumor growth vs. treatment with ADU-S100 alone. Methods: Mice bearing either B16 (BRAFWTPTENWT) or BPR20 (BRAFV600EPTEN-/-) melanomas were treated with STING agonist ADU-S100 plus various inhibitors of ARG2, COX2, NOS2, PD-L1, or ISG15. Tumor growth control and changes in the TME were evaluated for combination treatment vs ADU-S100 monotherapy by tumor area measurements and flow cytometry/transcriptional profiling, respectively. Results: In the B16 melanoma model, we noted improved antitumor efficacy only when ADU-S100 was combined with neutralizing/blocking antibodies against PD-L1 or ISG15, but not inhibitors of ARG2, COX2, or NOS2. Conversely, in the BPR20 melanoma model, improved tumor growth control vs. ADU-S100 monotherapy was only observed when combining ADU-S100 with ARG2i, COX2i, and NOS2i, but not anti-PD-L1 or anti-ISG15. Immune changes in the TME associated with improved treatment outcomes were subtle but included increases in proinflammatory innate immune cells and activated CD8+CD69+ T cells and varied between the two tumor models. Conclusions: These data suggest contextual differences in the relative contributions of individual regulatory ISGs that serve to operationally limit the anti-tumor efficacy of STING agonists which should be considered in future design of novel combination protocols for optimal treatment benefit.


Assuntos
Antígeno B7-H1 , Melanoma Experimental , Camundongos , Animais , Proteínas Proto-Oncogênicas B-raf , Ciclo-Oxigenase 2 , Linhagem Celular Tumoral , Interferons , Microambiente Tumoral
2.
Aging Cell ; 22(4): e13782, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36734200

RESUMO

Cardiomyopathy is a progressive disease of the myocardium leading to impaired contractility. Genotoxic cancer therapies are known to be potent drivers of cardiomyopathy, whereas causes of spontaneous disease remain unclear. To test the hypothesis that endogenous genotoxic stress contributes to cardiomyopathy, we deleted the DNA repair gene Ercc1 specifically in striated muscle using a floxed allele of Ercc1 and mice expressing Cre under control of the muscle-specific creatinine kinase (Ckmm) promoter or depleted systemically (Ercc1-/D mice). Ckmm-Cre+/- ;Ercc1-/fl mice expired suddenly of heart disease by 7 months of age. As young adults, the hearts of Ckmm-Cre+/- ;Ercc1-/fl mice were structurally and functionally normal, but by 6-months-of-age, there was significant ventricular dilation, wall thinning, interstitial fibrosis, and systolic dysfunction indicative of dilated cardiomyopathy. Cardiac tissue from the tissue-specific or systemic model showed increased apoptosis and cardiac myocytes from Ckmm-Cre+/- ;Ercc1-/fl mice were hypersensitive to genotoxins, resulting in apoptosis. p53 levels and target gene expression, including several antioxidants, were increased in cardiac tissue from Ckmm-Cre+/- ;Ercc1-/fl and Ercc1-/D mice. Despite this, cardiac tissue from older mutant mice showed evidence of increased oxidative stress. Genetic or pharmacologic inhibition of p53 attenuated apoptosis and improved disease markers. Similarly, overexpression of mitochondrial-targeted catalase improved disease markers. Together, these data support the conclusion that DNA damage produced endogenously can drive cardiac disease and does so mechanistically via chronic activation of p53 and increased oxidative stress, driving cardiac myocyte apoptosis, dilated cardiomyopathy, and sudden death.


Assuntos
Cardiomiopatia Dilatada , Miócitos Cardíacos , Camundongos , Animais , Miócitos Cardíacos/metabolismo , Cardiomiopatia Dilatada/genética , Cardiomiopatia Dilatada/metabolismo , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo , Miocárdio/metabolismo , Reparo do DNA
3.
Autophagy ; 19(1): 92-111, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-35473441

RESUMO

In dry age-related macular degeneration (AMD), LCN2 (lipocalin 2) is upregulated. Whereas LCN2 has been implicated in AMD pathogenesis, the mechanism remains unknown. Here, we report that in retinal pigmented epithelial (RPE) cells, LCN2 regulates macroautophagy/autophagy, in addition to maintaining iron homeostasis. LCN2 binds to ATG4B to form an LCN2-ATG4B-LC3-II complex, thereby regulating ATG4B activity and LC3-II lipidation. Thus, increased LCN2 reduced autophagy flux. Moreover, RPE cells from cryba1 KO, as well as sting1 KO and Sting1Gt mutant mice (models with abnormal iron chelation), showed decreased autophagy flux and increased LCN2, indicative of CGAS- and STING1-mediated inflammasome activation. Live cell imaging of RPE cells with elevated LCN2 also showed a correlation between inflammasome activation and increased fluorescence intensity of the Liperfluo dye, indicative of oxidative stress-induced ferroptosis. Interestingly, both in human AMD patients and in mouse models with a dry AMD-like phenotype (cryba1 cKO and KO), the LCN2 homodimer variant is increased significantly compared to the monomer. Sub-retinal injection of the LCN2 homodimer secreted by RPE cells into NOD-SCID mice leads to retinal degeneration. In addition, we generated an LCN2 monoclonal antibody that neutralizes both the monomer and homodimer variants and rescued autophagy and ferroptosis activities in cryba1 cKO mice. Furthermore, the antibody rescued retinal function in cryba1 cKO mice as assessed by electroretinography. Here, we identify a molecular pathway whereby increased LCN2 elicits pathophysiology in the RPE, cells known to drive dry AMD pathology, thus providing a possible therapeutic strategy for a disease with no current treatment options.Abbreviations: ACTB: actin, beta; Ad-GFP: adenovirus-green fluorescent protein; Ad-LCN2: adenovirus-lipocalin 2; Ad-LCN2-GFP: adenovirus-LCN2-green fluorescent protein; LCN2AKT2: AKT serine/threonine kinase 2; AMBRA1: autophagy and beclin 1 regulator 1; AMD: age-related macular degeneration; ARPE19: adult retinal pigment epithelial cell line-19; Asp278: aspartate 278; ATG4B: autophagy related 4B cysteine peptidase; ATG4C: autophagy related 4C cysteine peptidase; ATG7: autophagy related 7; ATG9B: autophagy related 9B; BLOC-1: biogenesis of lysosomal organelles complex 1; BLOC1S1: biogenesis of lysosomal organelles complex 1 subunit 1; C57BL/6J: C57 black 6J; CGAS: cyclic GMP-AMP synthase; ChQ: chloroquine; cKO: conditional knockout; Cys74: cysteine 74; Dab2: DAB adaptor protein 2; Def: deferoxamine; DHE: dihydroethidium; DMSO: dimethyl sulfoxide; ERG: electroretinography; FAC: ferric ammonium citrate; Fe2+: ferrous; FTH1: ferritin heavy chain 1; GPX: glutathione peroxidase; GST: glutathione S-transferase; H2O2: hydrogen peroxide; His280: histidine 280; IFNL/IFNλ: interferon lambda; IL1B/IL-1ß: interleukin 1 beta; IS: Inner segment; ITGB1/integrin ß1: integrin subunit beta 1; KO: knockout; LC3-GST: microtubule associated protein 1 light chain 3-GST; C-terminal fusion; MAP1LC3/LC3: microtubule associated protein 1 light chain 3; LCN2: lipocalin 2; mAb: monoclonal antibody; MDA: malondialdehyde; MMP9: matrix metallopeptidase 9; NLRP3: NLR family pyrin domain containing 3; NOD-SCID: nonobese diabetic-severe combined immunodeficiency; OS: outer segment; PBS: phosphate-buffered saline; PMEL/PMEL17: premelanosome protein; RFP: red fluorescent protein; rLCN2: recombinant LCN2; ROS: reactive oxygen species; RPE SM: retinal pigmented epithelium spent medium; RPE: retinal pigment epithelium; RSL3: RAS-selective lethal; scRNAseq: single-cell ribonucleic acid sequencing; SD-OCT: spectral domain optical coherence tomography; shRNA: small hairpin ribonucleic acid; SM: spent medium; SOD1: superoxide dismutase 1; SQSTM1/p62: sequestosome 1; STAT1: signal transducer and activator of transcription 1; STING1: stimulator of interferon response cGAMP interactor 1; TYR: tyrosinase; VCL: vinculin; WT: wild type.


Assuntos
Ferroptose , Degeneração Macular , Animais , Humanos , Camundongos , Anticorpos Monoclonais , Autofagia/fisiologia , Inflamassomos/metabolismo , Lipocalina-2/genética , Degeneração Macular/genética , Degeneração Macular/metabolismo , Degeneração Macular/patologia , Camundongos Endogâmicos NOD , Camundongos SCID , Nucleotidiltransferases/metabolismo
4.
Curr Protoc ; 2(9): e549, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-36102926

RESUMO

Immunohistochemistry is an essential technique for the localization and measurement of proteins in cells and tissues. This article describes methods for labeling proteins in adherent and suspension cell cultures and in tissue sections. Choices of antibodies and detection methods are discussed, and detailed troubleshooting guidelines are provided. © 2022 Wiley Periodicals LLC. Basic Protocol 1: Immunofluorescent labeling of cells grown as adherent monolayers Alternate Protocol 1: Immunofluorescent labeling of cells in suspension Basic Protocol 2: Immunofluorescent labeling of tissue sections Alternate Protocol 2: Immunofluorescent labeling using streptavidin-biotin conjugates Alternate Protocol 3: Immunofluorescent double-labeling of tissue sections Alternate Protocol 4: Immunofluorescent double-labeling of tissue sections with two primary antibodies from the same host species.


Assuntos
Anticorpos , Biotina , Antígenos , Imuno-Histoquímica , Proteínas , Estreptavidina
5.
J Transl Med ; 20(1): 331, 2022 07 25.
Artigo em Inglês | MEDLINE | ID: mdl-35879777

RESUMO

BACKGROUND: The effectiveness of MAPK pathway inhibitors (MAPKi) used to treat patients with BRAF-mutant melanoma is limited by a range of resistance mechanisms, including soluble TNF (solTNF)-mediated NF-kB signaling. solTNF preferentially signals through type-1 TNF receptor (TNFR1), however, it can also bind to TNFR2, a receptor that is primarily expressed on leukocytes. Here, we investigate the TNFR2 expression pattern on human BRAFV600E+ melanomas and its role in solTNF-driven resistance reprogramming to MAPKi. METHODS: Flow cytometry was used to test TNFR1, TNFR2 and CD271 expression on, as well as NF-kB phosphorylation in human BRAF-mutant melanoma. The ability of melanoma cell lines to acquire MAPKi resistance in response to recombinant or macrophage-derived TNF was evaluated using the MTT cytotoxicity assay. Gene editing was implemented to knock out or knock in TNF receptors in melanoma cell lines. Knockout and knock-in cell line variants were employed to assess the intrinsic roles of these receptors in TNF-induced resistance to MAPKi. Multicolor immunofluorescence microscopy was utilized to test TNFR2 expression by melanoma in patients receiving MAPKi therapy. RESULTS: TNFR1 and TNFR2 are co-expressed at various levels on 4/7 BRAFV600E+ melanoma cell lines evaluated in this study. In vitro treatments with solTNF induce MAPKi resistance solely in TNFR2-expressing BRAFV600E+ melanoma cell lines. TNFR1 and TNFR2 knockout and knock-in studies indicate that solTNF-mediated MAPKi resistance in BRAFV600E+ melanomas is predicated on TNFR1 and TNFR2 co-expression, where TNFR1 is the central mediator of NF-kB signaling, while TNFR2 plays an auxiliary role. solTNF-mediated effects are transient and can be abrogated with biologics. Evaluation of patient specimens indicates that TNFR2 is expressed on 50% of primary BRAFV600E+ melanoma cells and that MAPKi therapy may lead to the enrichment of TNFR2-expressing tumor cells. CONCLUSIONS: Our data suggest that TNFR2 is essential to solTNF-induced MAPKi resistance and a possible biomarker to identify melanoma patients that can benefit from solTNF-targeting therapies.


Assuntos
Melanoma , Receptores Tipo II do Fator de Necrose Tumoral , Humanos , Melanoma/tratamento farmacológico , Melanoma/genética , Melanoma/metabolismo , NF-kappa B , Inibidores de Proteínas Quinases/farmacologia , Proteínas Proto-Oncogênicas B-raf/genética , Receptores Tipo I de Fatores de Necrose Tumoral/genética , Receptores Tipo I de Fatores de Necrose Tumoral/metabolismo , Receptores Tipo II do Fator de Necrose Tumoral/genética , Receptores Tipo II do Fator de Necrose Tumoral/metabolismo
6.
Redox Biol ; 50: 102226, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35150970

RESUMO

Tissue fibrosis occurs in response to dysregulated metabolism, pro-inflammatory signaling and tissue repair reactions. For example, lungs exposed to environmental toxins, cancer therapies, chronic inflammation and other stimuli manifest a phenotypic shift to activated myofibroblasts and progressive and often irreversible lung tissue scarring. There are no therapies that stop or reverse fibrosis. The 2 FDA-approved anti-fibrotic drugs at best only slow the progression of fibrosis in humans. The present study was designed to test whether a small molecule electrophilic nitroalkene, nitro-oleic acid (NO2-OA), could reverse established pulmonary fibrosis induced by the intratracheal administration of bleomycin in C57BL/6 mice. After 14 d of bleomycin-induced fibrosis development in vivo, lungs were removed, sectioned and precision-cut lung slices (PCLS) from control and bleomycin-treated mice were cultured ex vivo for 4 d with either vehicle or NO2-OA (5 µM). Biochemical and morphological analyses showed that over a 4 d time frame, NO2-OA significantly inhibited pro-inflammatory mediator and growth factor expression and reversed key indices of fibrosis (hydroxyproline, collagen 1A1 and 3A1, fibronectin-1). Quantitative image analysis of PCLS immunohistology reinforced these observations, revealing that NO2-OA suppressed additional hallmarks of the fibrotic response, including alveolar epithelial cell loss, myofibroblast differentiation and proliferation, collagen and α-smooth muscle actin expression. NO2-OA also accelerated collagen degradation by resident macrophages. These effects occurred in the absence of the recognized NO2-OA modulation of circulating and migrating immune cell activation. Thus, small molecule nitroalkenes may be useful agents for reversing pathogenic fibrosis of lung and other organs.


Assuntos
Ácidos Graxos , Fibrose Pulmonar , Animais , Bleomicina/efeitos adversos , Ácidos Graxos/uso terapêutico , Fibrose , Pulmão/patologia , Camundongos , Camundongos Endogâmicos C57BL , Fibrose Pulmonar/induzido quimicamente , Fibrose Pulmonar/tratamento farmacológico , Fibrose Pulmonar/patologia
7.
Curr Protoc ; 2(1): e342, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-35038380

RESUMO

The protocols presented here describe steps for cryosectioning tissue samples to be used in light microscopy methodologies including histochemistry, enzyme immunohistochemistry, and immunofluorescence. © 2022 Wiley Periodicals LLC. Basic Protocol 1: Cryosectioning.


Assuntos
Crioultramicrotomia , Imunofluorescência , Imuno-Histoquímica , Fixação de Tecidos
8.
Curr Protoc ; 2(1): e343, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-35030299

RESUMO

Gravity flow whole-body perfusion maintains effective and reproducible preservation of tissue architecture critical to investigate pathobiology of multiple organs from the same specimen. The purpose of the protocols described within this article is to help the researcher optimize tissue harvest for multisystem pathobiology comparison. The protocols presented here describe tissue harvest for processing and cryopreservation to generate optimal samples for microscopy and parallel biochemical and molecular biology analysis. First, this paper outlines a protocol for tissue perfusion and organ harvest that allows the researcher multiple analysis options from the same research subject simultaneously. Second, this paper outlines a model to optimize ex-vivo tissue fixation for precious human sample preparation. Finally, this paper outlines a methodology for freezing tissue samples to optimize their capacity for biochemical and immunohistochemical analysis. Benefits and alternative approaches to retain cellular morphology in tissue harvest and processing are discussed. Also described within each section are common technical issues to assist problem-solving and troubleshooting. © 2022 Wiley Periodicals LLC. Basic Protocol 1: Whole body in vivo tissue perfusion by gravity flow: preparation and surgical procedures Alternate Protocol: Human ex vivo tissue fixation Basic Protocol 2: Freezing of tissue samples.


Assuntos
Manejo de Espécimes , Coleta de Tecidos e Órgãos , Humanos , Perfusão , Fixação de Tecidos
9.
Am J Physiol Gastrointest Liver Physiol ; 321(5): G449-G460, 2021 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-34523348

RESUMO

Chronic pancreatitis (CP) is a complex inflammatory disorder with numerous associated genetic and environmental risk factors. The most distressing characteristic of CP is recalcitrant pain, often requiring surgical resection including total pancreatectomy with islet autotransplantation (TPIAT). We studied five consented subjects undergoing pancreatic resection and processed isolated cells for single-cell RNA sequencing (scRNA-Seq). Using high-dimensional transcriptomic cluster analysis, we identified 11 unique cell clusters in the pancreas tissue. These cell clusters include a cluster of undifferentiated/dedifferentiated cells and two unique clusters of acinar cells, one of which appears to be in a transitional stage. To determine the cellular response to protease inhibitor and stimulation, we treated aliquots of cells from one subject with a protease inhibitor cocktail with and without bethanechol (a muscarinic receptor agonist) at 100 and 400 µM and compared gene expression profiles. The protease inhibitors appeared to reduce cell stress. Pancreatic digestive enzymes and islet hormones were upregulated in both doses of bethanechol-treated cells compared with naïve cells. High-dose bethanechol appeared to be toxic and consistent with hyperstimulation. These studies demonstrate the feasibility of investigating human acinar cell physiology at the single-cell level and initial evidence that these cells retain responsiveness to agonist stimulation with predicted second messenger and transcriptomic responses.NEW & NOTEWORTHY We conducted single cell RNA sequencing on pancreas tissue from five individuals. We identified eleven unique cell clusters including a large population of dedifferentiated cells as well as two unique clusters of acinar cells, one of which appears to exist in a transitional state. We also examined the cellular response of pancreas tissue to stimulation and identified affected genes and pathways, including pancreatic digestive enzymes.


Assuntos
Células Acinares/metabolismo , Perfilação da Expressão Gênica , Pâncreas/metabolismo , Pancreatite Crônica/genética , RNA-Seq , Análise de Célula Única , Transcriptoma , Células Acinares/efeitos dos fármacos , Células Acinares/patologia , Desdiferenciação Celular , Análise por Conglomerados , Estudos de Viabilidade , Humanos , Agonistas Muscarínicos/farmacologia , Pâncreas/efeitos dos fármacos , Pâncreas/patologia , Pâncreas/cirurgia , Pancreatectomia , Pancreaticoduodenectomia , Pancreatite Crônica/metabolismo , Pancreatite Crônica/patologia , Pancreatite Crônica/cirurgia , Inibidores de Proteases/farmacologia
10.
J Mol Cell Cardiol ; 149: 73-81, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32971072

RESUMO

BACKGROUND: Persistent cardiac Ca2+/calmodulin dependent Kinase II (CaMKII) activation plays an essential role in heart failure development. However, the molecular mechanisms underlying CaMKII induced heart failure progression remains incompletely understood. Histone deacetylases (HDACs) are critical for transcriptional responses to stress, and contribute to expression of pathological genes causing adverse ventricular remodeling. Class I HDACs, including HDAC1, HDAC2 and HDAC3, promote pathological cardiac hypertrophy, whereas class IIa HDACs suppress cardiac hypertrophy. While it is known that CaMKII deactivates class IIa HDACs to enhance cardiac hypertrophy, the role of CaMKII in regulating class I HDACs during heart failure progression is unclear. METHODS AND RESULTS: CaMKII increases the deacetylase activity of recombinant HDAC1, HDAC2 and HDAC3 via in vitro phosphorylation assays. Phosphorylation sites on HDAC1 and HDAC3 are identified with mass spectrometry. HDAC1 activity is also increased in cardiac-specific CaMKIIδC transgenic mice (CaMKIIδC-tg). Beyond post-translational modifications, CaMKII induces HDAC1 and HDAC3 expression. HDAC1 and HDAC3 expression are significantly increased in CaMKIIδC-tg mice. Inhibition of CaMKII by overexpression of the inhibitory peptide AC3-I in the heart attenuates the upregulation of HDAC1 after myocardial infarction surgery. Importantly, a potent HDAC1 inhibitor Quisinostat improves downregulated autophagy genes and cardiac dysfunction in CaMKIIδC-tg mice. In addition to Quisinostat, selective class I HDACs inhibitors, Apicidin and Entinostat, HDAC3 specific inhibitor RGFP966, as well as HDAC1 and HDAC3 siRNA prevent CaMKII overexpression induced cardiac myocyte hypertrophy. CONCLUSION: CaMKII activates class I HDACs in heart failure, which may be a central mechanism for heart failure progression. Selective class I HDACs inhibition may be a novel therapeutic avenue to alleviate CaMKII hyperactivity induced cardiac dysfunction.


Assuntos
Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Progressão da Doença , Insuficiência Cardíaca/enzimologia , Insuficiência Cardíaca/patologia , Histona Desacetilases/metabolismo , Animais , Animais Recém-Nascidos , Autofagia/efeitos dos fármacos , Autofagia/genética , Cardiomegalia/complicações , Cardiomegalia/genética , Cardiomegalia/patologia , Cardiomegalia/fisiopatologia , Regulação para Baixo/efeitos dos fármacos , Regulação para Baixo/genética , Ativação Enzimática/efeitos dos fármacos , Insuficiência Cardíaca/genética , Insuficiência Cardíaca/fisiopatologia , Inibidores de Histona Desacetilases/farmacologia , Ácidos Hidroxâmicos/farmacologia , Camundongos Transgênicos , Modelos Biológicos , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/patologia , Fosforilação/efeitos dos fármacos , Ratos , Complexo Correpressor Histona Desacetilase e Sin3/metabolismo , Regulação para Cima/efeitos dos fármacos , Regulação para Cima/genética
11.
Cells ; 9(7)2020 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-32679764

RESUMO

The aged population is currently at its highest level in human history and is expected to increase further in the coming years. In humans, aging is accompanied by impaired angiogenesis, diminished blood flow and altered metabolism, among others. A cellular mechanism that impinges upon these manifestations of aging can be a suitable target for therapeutic intervention. Here we identify cell surface receptor CD47 as a novel age-sensitive driver of vascular and metabolic dysfunction. With the natural aging process, CD47 and its ligand thrombospondin-1 were increased, concurrent with a reduction of self-renewal transcription factors OCT4, SOX2, KLF4 and cMYC (OSKM) in arteries from aged wild-type mice and older human subjects compared to younger controls. These perturbations were prevented in arteries from aged CD47-null mice. Arterial endothelial cells isolated from aged wild-type mice displayed cellular exhaustion with decreased proliferation, migration and tube formation compared to cells from aged CD47-null mice. CD47 suppressed ex vivo sprouting, in vivo angiogenesis and skeletal muscle blood flow in aged wild-type mice. Treatment of arteries from older humans with a CD47 blocking antibody mitigated the age-related deterioration in angiogenesis. Finally, aged CD47-null mice were resistant to age- and diet-associated weight gain, glucose intolerance and insulin desensitization. These results indicate that the CD47-mediated signaling maladapts during aging to broadly impair endothelial self-renewal, angiogenesis, perfusion and glucose homeostasis. Our findings provide a strong rationale for therapeutically targeting CD47 to minimize these dysfunctions during aging.


Assuntos
Envelhecimento/patologia , Antígeno CD47/metabolismo , Glucose/metabolismo , Homeostase , Neovascularização Fisiológica , Animais , Artérias/patologia , Movimento Celular/genética , Proliferação de Células/genética , Autorrenovação Celular , Células Endoteliais/metabolismo , Células Endoteliais/patologia , Regulação da Expressão Gênica , Humanos , Fator 4 Semelhante a Kruppel , Masculino , Metaloproteinases da Matriz/metabolismo , Síndrome Metabólica/patologia , Camundongos Endogâmicos C57BL , Neovascularização Fisiológica/genética , Fluxo Sanguíneo Regional , Trombospondina 1/metabolismo , Fatores de Transcrição/metabolismo
12.
Am J Physiol Lung Cell Mol Physiol ; 316(6): L1150-L1164, 2019 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-30892078

RESUMO

Pulmonary hypertension (PH) is a leading cause of death in sickle cell disease (SCD) patients. Hemolysis and oxidative stress contribute to SCD-associated PH. We have reported that the protein thrombospondin-1 (TSP1) is elevated in the plasma of patients with SCD and, by interacting with its receptor CD47, limits vasodilation of distal pulmonary arteries ex vivo. We hypothesized that the TSP1-CD47 interaction may promote PH in SCD. We found that TSP1 and CD47 are upregulated in the lungs of Berkeley (BERK) sickling (Sickle) mice and patients with SCD-associated PH. We then generated chimeric animals by transplanting BERK bone marrow into C57BL/6J (n = 24) and CD47 knockout (CD47KO, n = 27) mice. Right ventricular (RV) pressure was lower in fully engrafted Sickle-to-CD47KO than Sickle-to-C57BL/6J chimeras, as shown by the reduced maximum RV pressure (P = 0.013) and mean pulmonary artery pressure (P = 0.020). The afterload of the sickle-to-CD47KO chimeras was also lower, as shown by the diminished pulmonary vascular resistance (P = 0.024) and RV effective arterial elastance (P = 0.052). On myography, aortic segments from Sickle-to-CD47KO chimeras showed improved relaxation to acetylcholine. We hypothesized that, in SCD, TSP1-CD47 signaling promotes PH, in part, by increasing reactive oxygen species (ROS) generation. In human pulmonary artery endothelial cells, treatment with TSP1 stimulated ROS generation, which was abrogated by CD47 blockade. Explanted lungs of CD47KO chimeras had less vascular congestion and a smaller oxidative footprint. Our results show that genetic absence of CD47 ameliorates SCD-associated PH, which may be due to decreased ROS levels. Modulation of TSP1-CD47 may provide a new molecular approach to the treatment of SCD-associated PH.


Assuntos
Anemia Falciforme/patologia , Antígeno CD47/metabolismo , Hipertensão Pulmonar/patologia , Artéria Pulmonar/patologia , Trombospondina 1/metabolismo , Anemia Falciforme/genética , Animais , Antígeno CD47/antagonistas & inibidores , Antígeno CD47/genética , Células Cultivadas , Células Endoteliais/patologia , Humanos , Hipertensão Pulmonar/genética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Artéria Pulmonar/citologia , Espécies Reativas de Oxigênio/metabolismo , Função Ventricular Direita/fisiologia
13.
Front Immunol ; 10: 28, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30733719

RESUMO

Background: Neutrophil extracellular traps (NETs) are generated when activated neutrophils, driven by PAD4, release their DNA, histones, HMGB1, and other intracellular granule components. NETs play a role in acute pancreatitis, worsening pancreatic inflammation, and promoting pancreatic duct obstruction. The autophagy inhibitor chloroquine (CQ) inhibits NET formation; therefore, we investigated the impact of CQ mediated NET inhibition in murine models of pancreatitis and human correlative studies. Methods: L-arginine and choline deficient ethionine supplemented (CDE) diet models of acute pancreatitis were studied in wild type and PAD4-/- mice, incapable of forming NETs. Isolated neutrophils were stimulated to induce NET formation and visualized with fluorescence microscopy. CQ treatment (0.5 mg/ml PO) was initiated after induction of pancreatitis. Biomarkers of NET formation, including cell-free DNA, citrullinated histone H3 (CitH3), and MPO-DNA conjugates were measured in murine serum and correlative human patient serum samples. Results: We first confirmed the role of NETs in the pathophysiology of acute pancreatitis by demonstrating that PAD4-/- mice had decreased pancreatitis severity and improved survival compared to wild-type controls. Furthermore, patients with severe acute pancreatitis had elevated levels of cell-free DNA and MPO-DNA conjugates, consistent with NET formation. Neutrophils from mice with pancreatitis were more prone to NET formation and CQ decreased this propensity to form NETs. CQ significantly reduced serum cell-free DNA and citrullinated histone H3 in murine models of pancreatitis, increasing survival in both models. Conclusions: Inhibition of NETs with CQ decreases the severity of acute pancreatitis and improves survival. Translating these findings into clinical trials of acute pancreatitis is warranted.


Assuntos
Armadilhas Extracelulares/imunologia , Infiltração de Neutrófilos , Neutrófilos/imunologia , Pancreatite/diagnóstico , Pancreatite/etiologia , Doença Aguda , Animais , Anti-Inflamatórios não Esteroides/farmacologia , Biomarcadores , Cloroquina/farmacologia , Cloroquina/uso terapêutico , Modelos Animais de Doenças , Armadilhas Extracelulares/metabolismo , Feminino , Humanos , Mediadores da Inflamação , Camundongos , Camundongos Knockout , Infiltração de Neutrófilos/imunologia , Neutrófilos/metabolismo , Neutrófilos/patologia , Pancreatite/tratamento farmacológico , Pancreatite/mortalidade , Índice de Gravidade de Doença
14.
BMC Cancer ; 18(1): 678, 2018 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-29929491

RESUMO

BACKGROUND: The hypercoagulable state associated with pancreatic adenocarcinoma (PDA) results in increased risk of venous thromboembolism, leading to substantial morbidity and mortality. Recently, neutrophil extracellular traps (NETs), whereby activated neutrophils release their intracellular contents containing DNA, histones, tissue factor, high mobility group box 1 (HMGB1) and other components have been implicated in PDA and in cancer-associated thrombosis. METHODS: Utilizing an orthotopic murine PDA model in C57/Bl6 mice and patient correlative samples, we studied the role of NETs in PDA hypercoagulability and targeted this pathway through treatment with the NET inhibitor chloroquine. PAD4 and RAGE knockout mice, deficient in NET formation, were used to study the role of NETs in platelet aggregation, release of tissue factor and hypercoagulability. Platelet aggregation was assessed using collagen-activated impedance aggregometry. Levels of circulating tissue factor, the initiator of extrinsic coagulation, were measured using ELISA. Thromboelastograms (TEGs) were performed to assess hypercoagulability and changes associated with treatment. Correlative data and samples from a randomized clinical trial of preoperative gemcitabine/nab-paclitaxel with and without hydroxychloroquine were studied and the impact of treatment on venous thromboembolism (VTE) rate was evaluated. RESULTS: The addition of NETs to whole blood stimulated platelet activation and aggregation. DNA and the receptor for advanced glycation end products (RAGE) were necessary for induction of NET associated platelet aggregation. PAD4 knockout tumor-burdened mice, unable to form NETs, had decreased aggregation and decreased circulating tissue factor. The NET inhibitor chloroquine reduces platelet aggregation, reduces circulating tissue factor and decreases hypercoagulability on TEG. Review of correlative data from patients treated on a randomized protocol of preoperative chemotherapy with and without hydroxychloroquine demonstrated a reduction in peri-operative VTE rate from 30 to 9.1% with hydroxychloroquine that neared statistical significance (p = 0.053) despite the trial not being designed to study VTE. CONCLUSION: NETs promote hypercoagulability in murine PDA through stimulation of platelets and release of tissue factor. Chloroquine inhibits NETs and diminishes hypercoagulability. These findings support clinical study of chloroquine to lower rates of venous thromboembolism in patients with cancer. TRIAL REGISTRATION: This study reports correlative data from two clinical trials that registered with clinicaltrials.gov, NCT01128296 (May 21, 2010) and NCT01978184 (November 7, 2013).


Assuntos
Adenocarcinoma/complicações , Cloroquina/uso terapêutico , Armadilhas Extracelulares/efeitos dos fármacos , Neoplasias Pancreáticas/complicações , Trombofilia/tratamento farmacológico , Animais , DNA/fisiologia , Feminino , Humanos , Hidrolases/fisiologia , Hidroxicloroquina/farmacologia , Camundongos , Camundongos Endogâmicos C57BL , Agregação Plaquetária/efeitos dos fármacos , Proteína-Arginina Desiminase do Tipo 4 , Receptor para Produtos Finais de Glicação Avançada/fisiologia , Tromboelastografia , Tromboplastina/metabolismo , Tromboembolia Venosa/prevenção & controle
15.
Redox Biol ; 17: 259-273, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29747066

RESUMO

Accumulation of senescent cells over time contributes to aging and age-related diseases. However, what drives senescence in vivo is not clear. Here we used a genetic approach to determine if spontaneous nuclear DNA damage is sufficient to initiate senescence in mammals. Ercc1-/∆ mice with reduced expression of ERCC1-XPF endonuclease have impaired capacity to repair the nuclear genome. Ercc1-/∆ mice accumulated spontaneous, oxidative DNA damage more rapidly than wild-type (WT) mice. As a consequence, senescent cells accumulated more rapidly in Ercc1-/∆ mice compared to repair-competent animals. However, the levels of DNA damage and senescent cells in Ercc1-/∆ mice never exceeded that observed in old WT mice. Surprisingly, levels of reactive oxygen species (ROS) were increased in tissues of Ercc1-/∆ mice to an extent identical to naturally-aged WT mice. Increased enzymatic production of ROS and decreased antioxidants contributed to the elevation in oxidative stress in both Ercc1-/∆ and aged WT mice. Chronic treatment of Ercc1-/∆ mice with the mitochondrial-targeted radical scavenger XJB-5-131 attenuated oxidative DNA damage, senescence and age-related pathology. Our findings indicate that nuclear genotoxic stress arises, at least in part, due to mitochondrial-derived ROS, and this spontaneous DNA damage is sufficient to drive increased levels of ROS, cellular senescence, and the consequent age-related physiological decline.


Assuntos
Envelhecimento/genética , Senescência Celular/genética , Proteínas de Ligação a DNA/genética , Endonucleases/genética , Mitocôndrias/genética , Animais , Antioxidantes/metabolismo , Senescência Celular/fisiologia , Óxidos N-Cíclicos/farmacologia , Dano ao DNA/efeitos dos fármacos , Reparo do DNA/efeitos dos fármacos , Humanos , Camundongos , Camundongos Knockout , Mitocôndrias/metabolismo , Oxirredução/efeitos dos fármacos , Estresse Oxidativo/genética , Espécies Reativas de Oxigênio/metabolismo
16.
Hepatology ; 67(4): 1499-1515, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-28921638

RESUMO

Although a key role of cross-dressing has been established in immunity to viral infection and more recently in the instigation of transplant rejection, its role in tolerance is unclear. We investigated the role of intragraft dendritic cells (DCs) and cross-dressing in mouse major histocompatibility complex (MHC)-mismatched liver transplant tolerance that occurs without therapeutic immunosuppression. Although donor interstitial DCs diminished rapidly after transplantation, they were replaced in the liver by host DCs that peaked on postoperative day (POD) 7 and persisted indefinitely. Approximately 60% of these recipient DCs displayed donor MHC class I, indicating cross-dressing. By contrast, only a very minor fraction (0%-2%) of cross-dressed DCs (CD-DCs) was evident in the spleen. CD-DCs sorted from liver grafts expressed much higher levels of T cell inhibitory programed death ligand 1 (PD-L1) and high levels of interleukin-10 compared with non-CD-DCs (nCD-DCs) isolated from the graft. Concomitantly, high incidences of programed death protein 1 (PD-1)hi T cell immunoglobulin and mucin domain containing 3 (TIM-3)+ exhausted graft-infiltrating CD8+ T cells were observed. Unlike nCD-DCs, the CD-DCs failed to stimulate proliferation of allogeneic T cells but markedly suppressed antidonor host T cell proliferation. CD-DCs were much less evident in allografts from DNAX-activating protein of 12 kDa (DAP12)-/- donors that were rejected acutely. CONCLUSION: These findings suggest that graft-infiltrating PD-L1hi CD-DCs may play a key role in the regulation of alloimmunity and in the induction of liver transplant tolerance. (Hepatology 2018;67:1499-1515).


Assuntos
Células Dendríticas/imunologia , Sobrevivência de Enxerto/imunologia , Fígado/imunologia , Tolerância ao Transplante/imunologia , Animais , Citometria de Fluxo , Microscopia Intravital , Transplante de Fígado/efeitos adversos , Complexo Principal de Histocompatibilidade/imunologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Transplante Homólogo
17.
Transplantation ; 101(12): 2830-2840, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-28885497

RESUMO

BACKGROUND: Little is known about how new-generation adenosine triphosphate-competitive mechanistic target of rapamycin (mTOR) kinase inhibitors affect immunity and allograft rejection. METHODS: mTOR complex (C) 1 and 2 signaling in dendritic cells and T cells was analyzed by Western blotting, whereas immune cell populations in normal and heart allograft recipient mice were analyzed by flow cytometry. Alloreactive T cell proliferation was quantified in mixed leukocyte reaction; intracellular cytokine production and serum antidonor IgG levels were determined by flow analysis and immunofluorescence staining used to detect IgG in allografts. RESULTS: The novel target of rapamycin kinase inhibitor AZD2014 impaired dendritic cell differentiation and T cell proliferation in vitro and depressed immune cells and allospecific T cell responses in vivo. A 9-day course of AZD2014 (10 mg/kg, intraperitoneally, twice daily) or rapamycin (RAPA) (1 mg/kg, intraperitoneally, daily) prolonged median heart allograft survival time significantly (25 days for AZD2014, 100 days for RAPA, 9.5 days for control). Like RAPA, AZD2014 suppressed graft mononuclear cell infiltration, increased regulatory T cell to effector memory T cell ratios and reduced T follicular helper and B cells 7 days posttransplant. By 21 days (10 days after drug withdrawal), however, T follicular helper and B cells and donor-specific IgG1 and IgG2c antibody titers were significantly lower in RAPA-treated compared with AZD2014-treated mice. Elevated regulatory T cell to effector memory T cell ratios were maintained after RAPA, but not AZD2014 withdrawal. CONCLUSIONS: Immunomodulatory effects of AZD2014, unlike those of RAPA, were not sustained after drug withdrawal, possibly reflecting distinct pharmacokinetics or/and inhibitory effects of AZD2014 on mTORC2.


Assuntos
Trifosfato de Adenosina/química , Rejeição de Enxerto , Transplante de Coração , Sistema Imunitário/efeitos dos fármacos , Alvo Mecanístico do Complexo 1 de Rapamicina/antagonistas & inibidores , Morfolinas/farmacologia , Animais , Benzamidas , Proliferação de Células , Células Dendríticas/citologia , Sobrevivência de Enxerto/efeitos dos fármacos , Imunoglobulina G/química , Imunossupressores/farmacologia , Masculino , Alvo Mecanístico do Complexo 2 de Rapamicina/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C3H , Camundongos Endogâmicos C57BL , Inibidores de Proteínas Quinases/farmacologia , Pirimidinas , Sirolimo/farmacologia , Linfócitos T/citologia , Transplante Homólogo
20.
J Immunol ; 194(12): 6045-56, 2015 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-25964490

RESUMO

Ischemia and reperfusion (I/R) injury following liver transplantation (LTx) is an important problem that significantly impacts clinical outcomes. IFN regulatory factor-1 (IRF-1) is a nuclear transcription factor that plays a critical role in liver injury. Our objective was to determine the immunomodulatory role of IRF-1 during I/R injury following allogeneic LTx. IRF-1 was induced in liver grafts immediately after reperfusion in both human and mouse LTx. IRF-1 contributed significantly to I/R injury because IRF-1-knockout (KO) grafts displayed much less damage as assessed by serum alanine aminotransferase and histology. In vitro, IRF-1 regulated both constitutive and induced expression of IL-15, as well as IL-15Rα mRNA expression in murine hepatocytes and liver dendritic cells. Specific knockdown of IRF-1 in human primary hepatocytes gave similar results. In addition, we identified hepatocytes as the major producer of soluble IL-15/IL-15Rα complexes in the liver. IRF-1-KO livers had significantly reduced NK, NKT, and CD8(+) T cell numbers, whereas rIL-15/IL-15Rα restored these immune cells, augmented cytotoxic effector molecules, promoted systemic inflammatory responses, and exacerbated liver injury in IRF-1-KO graft recipients. These results indicate that IRF-1 promotes LTx I/R injury via hepatocyte IL-15/IL-15Rα production and suggest that targeting IRF-1 and IL-15/IL-15Rα may be effective in reducing I/R injury associated with LTx.


Assuntos
Hepatócitos/metabolismo , Fator Regulador 1 de Interferon/genética , Subunidade alfa de Receptor de Interleucina-15/metabolismo , Interleucina-15/metabolismo , Transplante de Fígado/efeitos adversos , Traumatismo por Reperfusão/genética , Traumatismo por Reperfusão/metabolismo , Aloenxertos , Animais , Técnicas de Cultura de Células , Morte Celular/genética , Citocinas/metabolismo , Células Dendríticas/imunologia , Células Dendríticas/metabolismo , Modelos Animais de Doenças , Regulação da Expressão Gênica , Técnicas de Inativação de Genes , Inativação Gênica , Humanos , Mediadores da Inflamação/metabolismo , Interleucina-15/genética , Subunidade alfa de Receptor de Interleucina-15/genética , Fígado/imunologia , Fígado/metabolismo , Fígado/patologia , Subpopulações de Linfócitos/imunologia , Subpopulações de Linfócitos/metabolismo , Masculino , Camundongos , Camundongos Knockout , Modelos Biológicos , Ligação Proteica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA