Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Elife ; 122024 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-38236718

RESUMO

As the genome is organized into a three-dimensional structure in intracellular space, epigenomic information also has a complex spatial arrangement. However, most epigenetic studies describe locations of methylation marks, chromatin accessibility regions, and histone modifications in the horizontal dimension. Proper spatial epigenomic information has rarely been obtained. In this study, we designed spatial chromatin accessibility sequencing (SCA-seq) to resolve the genome conformation by capturing the epigenetic information in single-molecular resolution while simultaneously resolving the genome conformation. Using SCA-seq, we are able to examine the spatial interaction of chromatin accessibility (e.g. enhancer-promoter contacts), CpG island methylation, and spatial insulating functions of the CCCTC-binding factor. We demonstrate that SCA-seq paves the way to explore the mechanism of epigenetic interactions and extends our knowledge in 3D packaging of DNA in the nucleus.


Assuntos
Cromatina , Epigenômica , Cromatina/genética , Cromossomos , DNA , Sequências Reguladoras de Ácido Nucleico , Metilação de DNA
2.
Genome Biol ; 24(1): 61, 2023 03 29.
Artigo em Inglês | MEDLINE | ID: mdl-36991510

RESUMO

Epigenetic modifications of histones are associated with development and pathogenesis of disease. Existing approaches cannot provide insights into long-range interactions and represent the average chromatin state. Here we describe BIND&MODIFY, a method using long-read sequencing for profiling histone modifications and transcription factors on individual DNA fibers. We use recombinant fused protein A-M.EcoGII to tether methyltransferase M.EcoGII to protein binding sites to label neighboring regions by methylation. Aggregated BIND&MODIFY signal matches bulk ChIP-seq and CUT&TAG. BIND&MODIFY can simultaneously measure histone modification status, transcription factor binding, and CpG 5mC methylation at single-molecule resolution and also quantifies correlation between local and distal elements.


Assuntos
Eucariotos , Histonas , Eucariotos/genética , Histonas/metabolismo , Cromatina , Metilação , DNA/metabolismo , Metilação de DNA
3.
Development ; 149(12)2022 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-35588208

RESUMO

As one of the post-transcriptional regulatory mechanisms, uncoupling of transcription and translation plays an essential role in development and adulthood physiology. However, it remains elusive how thousands of mRNAs get translationally silenced while stability is maintained for hours or even days before translation. In addition to oocytes and neurons, developing spermatids display significant uncoupling of transcription and translation for delayed translation. Therefore, spermiogenesis represents an excellent in vivo model for investigating the mechanism underlying uncoupled transcription and translation. Through full-length poly(A) deep sequencing, we discovered dynamic changes in poly(A) length through deadenylation and re-polyadenylation. Deadenylation appeared to be mediated by microRNAs (miRNAs), and transcripts with shorter poly(A) tails tend to be sequestered into ribonucleoprotein (RNP) granules for translational repression and stabilization. In contrast, re-polyadenylation might allow for translocation of the translationally repressed transcripts from RNP granules to polysomes. Overall, our data suggest that miRNA-dependent poly(A) length control represents a previously unreported mechanism underlying uncoupled translation and transcription in haploid male mouse germ cells.


Assuntos
MicroRNAs , Poli A , Animais , Haploidia , Masculino , Camundongos , MicroRNAs/genética , MicroRNAs/metabolismo , Poli A/metabolismo , Biossíntese de Proteínas , RNA Mensageiro/metabolismo , Espermátides/metabolismo
4.
Epigenetics Chromatin ; 14(1): 40, 2021 08 23.
Artigo em Inglês | MEDLINE | ID: mdl-34425889

RESUMO

BACKGROUND: Although extrachromosomal DNA (ecDNA) has been intensively studied for several decades, the mechanisms underlying its tumorigenic effects have been revealed only recently. In most conventional sequencing studies, the high-throughput short-read sequencing largely ignores the epigenetic status of most ecDNA regions except for the junctional areas. METHODS: Here, we developed a method of sequencing enzyme-accessible chromatin in circular DNA (CCDA-seq) based on the use of methylase to label open chromatin without fragmentation and exonuclease to enrich ecDNA sequencing depth, followed by long-read nanopore sequencing. RESULTS: Using CCDA-seq, we observed significantly different patterns in nucleosome/regulator binding to ecDNA at a single-molecule resolution. CONCLUSIONS: These results deepen the understanding of ecDNA regulatory mechanisms.


Assuntos
Cromatina , Sequenciamento de Nucleotídeos em Larga Escala , Cromatina/genética , DNA/genética , Epigenômica , Metiltransferases
5.
Ann Transl Med ; 9(3): 219, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33708846

RESUMO

BACKGROUND: Acute myocardial infarction (AMI) is one of the most common global causes of death. Although considerable progress has been made in AMI diagnosis, there remains an urgent need for novel diagnostic biomarkers for its prevention and treatment. Functional exosomal microRNAs (miRNAs) are recognized as potential biomarkers in many diseases. This study's objective was to identify specific plasma exosomal miRNAs with biomarker potential for early AMI detection. METHODS: Exosomes from the plasma of 26 coronary artery disease (CAD) patients, 55 AMI patients, and 37 healthy controls were isolated and characterized by transmission electron microcopy (TEM), western blotting, and nanoparticle tracking analysis (NTA). The miRNAs were purified from exosomes, and unique molecular identifier (UMI) small RNA sequencing was performed. The random forest (RF) model was trained to predict potential biomarkers. RESULTS: NTA demonstrated that nanoparticle concentration did not change after AMI, while nanoparticle size distribution significantly decreased. The CAD and AMI groups' miRNA expression profiles significantly differed from the healthy group's profile. The RF classifier could be used to distinguish the healthy group from the AMI group, but could not be used to distinguish the CAD group from the other groups, which caused a high classification error rate. Eighteen miRNAs were selected as biomarkers based on their RF classifier significance. The diagnostic accuracy of 18 miRNAs was evaluated using AUC values of 0.93, 0.87, and 0.75 to detect healthy controls, AMI, and CAD, respectively. CONCLUSIONS: Nanoparticle diameter and the 18 miRNAs may serve as simple and accessible fingerprints for early AMI diagnosis.

6.
Nat Plants ; 3: 17037, 2017 04 10.
Artigo em Inglês | MEDLINE | ID: mdl-28394309

RESUMO

RNA editing is a post-transcriptional process that modifies the genetic information on RNA molecules. In flowering plants, RNA editing usually alters cytidine to uridine in plastids and mitochondria. The PLS-type pentatricopeptide repeat (PPR) protein and the multiple organellar RNA editing factor (MORF, also known as RNA editing factor interacting protein (RIP)) are two types of key trans-acting factors involved in this process. However, how they cooperate with one another remains unclear. Here, we have characterized the interactions between a designer PLS-type PPR protein (PLS)3PPR and MORF9, and found that RNA-binding activity of (PLS)3PPR is drastically increased on MORF9 binding. We also determined the crystal structures of (PLS)3PPR, MORF9 and the (PLS)3PPR-MORF9 complex. MORF9 binding induces significant compressed conformational changes of (PLS)3PPR, revealing the molecular mechanisms by which MORF9-bound (PLS)3PPR has increased RNA-binding activity. Similarly, increased RNA-binding activity is observed for the natural PLS-type PPR protein, LPA66, in the presence of MORF9. These findings significantly expand our understanding of MORF function in plant organellar RNA editing.


Assuntos
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Edição de RNA , RNA de Plantas/genética , Proteínas de Ligação a RNA/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Cloroplastos/fisiologia , RNA de Plantas/metabolismo , Proteínas de Ligação a RNA/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA