Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 97
Filtrar
1.
Anal Methods ; 16(19): 2983-2996, 2024 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-38717259

RESUMO

We have successfully developed a validated high-throughput analysis method for the identification and quantification of native and oxifunctionalized monolignols using direct infusion electrospray ionization tandem mass spectrometry (DI-ESI-MS/MS). Oxifunctionalized monolignols generated through unspecific peroxygenase catalysis present a sustainable alternative to fossil aromatic hydrocarbons. This study emphasizes a sustainable analytical approach for these renewable biocatalytic precursors, addressing challenges such as matrix effects, accuracy, precision, and sensitivity of the method. Our findings demonstrate the potential of overcoming quantification difficulties using DI-ESI-MS. Notably, this analytical methodology represents a novel utilization of DI-ESI-MS/MS in examining monolignols and their functionalization, thereby advancing the exploration of lignin as a valuable and sustainable bioresource.


Assuntos
Lignina , Espectrometria de Massas por Ionização por Electrospray , Espectrometria de Massas em Tandem , Espectrometria de Massas por Ionização por Electrospray/métodos , Espectrometria de Massas em Tandem/métodos , Lignina/química
2.
Nat Commun ; 15(1): 3975, 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38729930

RESUMO

Oxidoreductases have evolved tyrosine/tryptophan pathways that channel highly oxidizing holes away from the active site to avoid damage. Here we dissect such a pathway in a bacterial LPMO, member of a widespread family of C-H bond activating enzymes with outstanding industrial potential. We show that a strictly conserved tryptophan is critical for radical formation and hole transference and that holes traverse the protein to reach a tyrosine-histidine pair in the protein's surface. Real-time monitoring of radical formation reveals a clear correlation between the efficiency of hole transference and enzyme performance under oxidative stress. Residues involved in this pathway vary considerably between natural LPMOs, which could reflect adaptation to different ecological niches. Importantly, we show that enzyme activity is increased in a variant with slower radical transference, providing experimental evidence for a previously postulated trade-off between activity and redox robustness.


Assuntos
Proteínas de Bactérias , Oxigenases de Função Mista , Oxirredução , Oxigenases de Função Mista/metabolismo , Oxigenases de Função Mista/genética , Oxigenases de Função Mista/química , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/química , Domínio Catalítico , Triptofano/metabolismo , Polissacarídeos/metabolismo , Mutação , Estresse Oxidativo , Tirosina/metabolismo , Modelos Moleculares , Histidina/metabolismo , Histidina/genética
3.
Biochemistry ; 62(22): 3170-3172, 2023 11 21.
Artigo em Inglês | MEDLINE | ID: mdl-37916429
4.
J Biol Inorg Chem ; 28(7): 689-698, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37725277

RESUMO

Superoxide dismutases (SODs) are enzymes that catalyze the dismutation of the superoxide radical anion into O2 and H2O2 in a two-step reaction. They are ubiquitous to all forms of life and four different types of metal centers are detected, dividing this class of enzymes into Cu-/Zn-, Ni-, Mn-, and Fe-SODs. In this study, a superoxide dismutase from the thermophilic bacteria Thermobifida fusca (TfSOD) was cloned and expressed before the recombinant enzyme was characterized. The enzyme was found to be active for superoxide dismutation measured by inhibition of cytochrome c oxidation and the inhibition of the autoxidation of pyrogallol. Its pH-optimum was determined to be 7.5, while it has a broad temperature optimum ranging from 20 to 90 °C. Combined with the Tm that was found to be 78.5 ± 0.5 °C at pH 8.0, TfSOD can be defined as a thermostable enzyme. Moreover, the crystal structure of TfSOD was determined and refined to 1.25 Å resolution. With electron paramagnetic resonance spectroscopy, it was confirmed that iron is the metal co-factor of TfSOD. The cell potential (Em) for the TfSOD-Fe3+/TfSOD-Fe2+ redox couple was determined to be 287 mV.


Assuntos
Superóxido Dismutase , Superóxidos , Peróxido de Hidrogênio , Thermobifida
5.
J Am Chem Soc ; 145(34): 18888-18903, 2023 08 30.
Artigo em Inglês | MEDLINE | ID: mdl-37584157

RESUMO

Lytic polysaccharide monooxygenases (LPMOs) are powerful monocopper enzymes that can activate strong C-H bonds through a mechanism that remains largely unknown. Herein, we investigated the role of a conserved glutamine/glutamate in the second coordination sphere. Mutation of the Gln in NcAA9C to Glu, Asp, or Asn showed that the nature and distance of the headgroup to the copper fine-tune LPMO functionality and copper reactivity. The presence of Glu or Asp close to the copper lowered the reduction potential and decreased the ratio between the reduction and reoxidation rates by up to 500-fold. All mutants showed increased enzyme inactivation, likely due to changes in the confinement of radical intermediates, and displayed changes in a protective hole-hopping pathway. Electron paramagnetic resonance (EPR) and X-ray absorption spectroscopic (XAS) studies gave virtually identical results for all NcAA9C variants, showing that the mutations do not directly perturb the Cu(II) ligand field. DFT calculations indicated that the higher experimental reoxidation rate observed for the Glu mutant could be reconciled if this residue is protonated. Further, for the glutamic acid form, we identified a Cu(III)-hydroxide species formed in a single step on the H2O2 splitting path. This is in contrast to the Cu(II)-hydroxide and hydroxyl intermediates, which are predicted for the WT and the unprotonated glutamate variant. These results show that this second sphere residue is a crucial determinant of the catalytic functioning of the copper-binding histidine brace and provide insights that may help in understanding LPMOs and LPMO-inspired synthetic catalysts.


Assuntos
Cobre , Oxigenases de Função Mista , Oxigenases de Função Mista/química , Cobre/química , Peróxido de Hidrogênio/metabolismo , Polissacarídeos/metabolismo , Glutamatos
6.
Sci Rep ; 13(1): 5345, 2023 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-37005446

RESUMO

Bacterial lytic polysaccharide monooxygenases (LPMOs) are known to oxidize the most abundant and recalcitrant polymers in Nature, namely cellulose and chitin. The genome of the model actinomycete Streptomyces coelicolor A3(2) encodes seven putative LPMOs, of which, upon phylogenetic analysis, four group with typical chitin-oxidizing LPMOs, two with typical cellulose-active LPMOs, and one which stands out by being part of a subclade of non-characterized enzymes. The latter enzyme, called ScLPMO10D, and most of the enzymes found in this subclade are unique, not only because of variation in the catalytic domain, but also as their C-terminus contains a cell wall sorting signal (CWSS), which flags the LPMO for covalent anchoring to the cell wall. Here, we have produced a truncated version of ScLPMO10D without the CWSS and determined its crystal structure, EPR spectrum, and various functional properties. While showing several structural and functional features typical for bacterial cellulose active LPMOs, ScLPMO10D is only active on chitin. Comparison with two known chitin-oxidizing LPMOs of different taxa revealed interesting functional differences related to copper reactivity. This study contributes to our understanding of the biological roles of LPMOs and provides a foundation for structural and functional comparison of phylogenetically distant LPMOs with similar substrate specificities.


Assuntos
Oxigenases de Função Mista , Streptomyces coelicolor , Oxigenases de Função Mista/metabolismo , Streptomyces coelicolor/metabolismo , Domínio Catalítico , Filogenia , Celulose , Quitina/química , Polissacarídeos Bacterianos , Parede Celular/metabolismo , Polissacarídeos
7.
FEBS Lett ; 597(10): 1363-1374, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37081294

RESUMO

Polysaccharide-degrading mono-copper lytic polysaccharide monooxygenases (LPMOs) are efficient peroxygenases that require electron donors (reductants) to remain in the active Cu(I) form and to generate the H2 O2 co-substrate from molecular oxygen. Here, we show how commonly used reductants affect LPMO catalysis in a pH-dependent manner. Between pH 6.0 and 8.0, reactions with ascorbic acid show little pH dependency, whereas reactions with gallic acid become much faster at increased pH. These dependencies correlate with the reductant ionization state, which affects its ability to react with molecular oxygen and generate H2 O2 . The correlation does not apply to l-cysteine because, as shown by stopped-flow kinetics, increased H2 O2 production at higher pH is counteracted by increased binding of l-cysteine to the copper active site. The findings highlight the importance of the choice of reductant and pH in LPMO reactions.


Assuntos
Cisteína , Substâncias Redutoras , Substâncias Redutoras/farmacologia , Oxirredução , Cisteína/metabolismo , Polissacarídeos/metabolismo , Oxigenases de Função Mista/química , Concentração de Íons de Hidrogênio , Oxigênio
8.
Essays Biochem ; 67(3): 551-559, 2023 04 18.
Artigo em Inglês | MEDLINE | ID: mdl-36876880

RESUMO

In nature, enzymatic degradation of recalcitrant polysaccharides such as chitin and cellulose takes place by a synergistic interaction between glycoside hydrolases (GHs) and lytic polysaccharide monooxygenases (LPMOs). The two different families of carbohydrate-active enzymes use two different mechanisms when breaking glycosidic bonds between sugar moieties. GHs employ a hydrolytic activity and LPMOs are oxidative. Consequently, the topologies of the active sites differ dramatically. GHs have tunnels or clefts lined with a sheet of aromatic amino acid residues accommodating single polymer chains being threaded into the active site. LPMOs are adapted to bind to the flat crystalline surfaces of chitin and cellulose. It is believed that the LPMO oxidative mechanism provides new chain ends that the GHs can attach to and degrade, often in a processive manner. Indeed, there are many reports of synergies as well as rate enhancements when LPMOs are applied in concert with GHs. Still, these enhancements vary in magnitude with respect to the nature of the GH and the LPMO. Moreover, impediment of GH catalysis is also observed. In the present review, we discuss central works where the interplay between LPMOs and GHs has been studied and comment on future challenges to be addressed to fully use the potential of this interplay to improve enzymatic polysaccharide degradation.


Assuntos
Glicosídeo Hidrolases , Oxigenases de Função Mista , Oxigenases de Função Mista/química , Oxigenases de Função Mista/metabolismo , Polissacarídeos/metabolismo , Celulose/metabolismo , Quitina/química , Quitina/metabolismo
9.
Protein Eng Des Sel ; 362023 01 21.
Artigo em Inglês | MEDLINE | ID: mdl-36892404

RESUMO

Lignocellulosic biomass is a renewable source of energy, chemicals and materials. Many applications of this resource require the depolymerization of one or more of its polymeric constituents. Efficient enzymatic depolymerization of cellulose to glucose by cellulases and accessory enzymes such as lytic polysaccharide monooxygenases is a prerequisite for economically viable exploitation of this biomass. Microbes produce a remarkably diverse range of cellulases, which consist of glycoside hydrolase (GH) catalytic domains and, although not in all cases, substrate-binding carbohydrate-binding modules (CBMs). As enzymes are a considerable cost factor, there is great interest in finding or engineering improved and robust cellulases, with higher activity and stability, easy expression, and minimal product inhibition. This review addresses relevant engineering targets for cellulases, discusses a few notable cellulase engineering studies of the past decades and provides an overview of recent work in the field.


Assuntos
Celulase , Celulases , Celulases/genética , Celulases/química , Celulases/metabolismo , Biomassa , Lignina/metabolismo , Celulose/química , Celulase/metabolismo , Hidrólise
10.
Biochemistry ; 60(47): 3633-3643, 2021 11 30.
Artigo em Inglês | MEDLINE | ID: mdl-34738811

RESUMO

The copper-dependent lytic polysaccharide monooxygenases (LPMOs) are receiving attention because of their role in the degradation of recalcitrant biomass and their intriguing catalytic properties. The fundamentals of LPMO catalysis remain somewhat enigmatic as the LPMO reaction is affected by a multitude of LPMO- and co-substrate-mediated (side) reactions that result in a complex reaction network. We have performed kinetic studies with two LPMOs that are active on soluble substrates, NcAA9C and LsAA9A, using various reductants typically employed for LPMO activation. Studies with NcAA9C under "monooxygenase" conditions showed that the impact of the reductant on catalytic activity is correlated with the hydrogen peroxide-generating ability of the LPMO-reductant combination, supporting the idea that a peroxygenase reaction is taking place. Indeed, the apparent monooxygenase reaction could be inhibited by a competing H2O2-consuming enzyme. Interestingly, these fungal AA9-type LPMOs were found to have higher oxidase activity than bacterial AA10-type LPMOs. Kinetic analysis of the peroxygenase activity of NcAA9C on cellopentaose revealed a fast stoichiometric conversion of high amounts of H2O2 to oxidized carbohydrate products. A kcat value of 124 ± 27 s-1 at 4 °C is 20 times higher than a previously described kcat for peroxygenase activity on an insoluble substrate (at 25 °C) and some 4 orders of magnitude higher than typical "monooxygenase" rates. Similar studies with LsAA9A revealed differences between the two enzymes but confirmed fast and specific peroxygenase activity. These results show that the catalytic site arrangement of LPMOs provides a unique scaffold for highly efficient copper redox catalysis.


Assuntos
Biodegradação Ambiental , Proteínas Fúngicas/metabolismo , Oxigenases de Função Mista/metabolismo , Polissacarídeos/metabolismo , Biomassa , Domínio Catalítico , Cobre/química , Cobre/metabolismo , Ensaios Enzimáticos , Proteínas Fúngicas/genética , Proteínas Fúngicas/isolamento & purificação , Peróxido de Hidrogênio/metabolismo , Cinética , Lentinula/enzimologia , Oxigenases de Função Mista/genética , Oxigenases de Função Mista/isolamento & purificação , Neurospora crassa/enzimologia , Proteínas Recombinantes/genética , Proteínas Recombinantes/isolamento & purificação , Proteínas Recombinantes/metabolismo
11.
J Fungi (Basel) ; 7(9)2021 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-34575756

RESUMO

The development of yeast biofilms is a major problem due to their increased antifungal resistance, which leads to persistent infections with severe clinical implications. The high antifungal activity of well-characterized chitosan polymers makes them potential alternatives for treating yeast biofilms. The activity of a chito-oligosaccharide with a depolymerization degree (DPn) of 32 (C32) and a fraction of acetylation (FA) of 0.15 on Candida sp. biofilms was studied. The results showed a concentration-dependent reduction in the number of viable cells present in C. albicans, C. glabrata, and C. guillermondii preformed biofilms in the presence of C32, especially on intermediate and mature biofilms. A significant decrease in the metabolic activity of yeast biofilms treated with C32 was also observed. The antifungals fluconazole (Flu) and miconazole (Mcz) decreased the number of viable cells in preformed early biofilms, but not in the intermediate or mature biofilms. Contrary to Flu or Mcz, C32 also reduced the formation of new biofilms. Interestingly, a synergistic effect on yeast biofilm was observed when C32 and Flu/Mcz were used in combination. C32 has the potential to become an alternative therapeutic agent against Candida biofilms alone or in combination with antifungal drugs and this will reduce the use of antifungals and decrease antifungal resistance.

12.
ACS Catal ; 11(18): 11685-11695, 2021 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-34567832

RESUMO

Enzymes known as lytic polysaccharide monooxygenases (LPMOs) are recognized as important contributors to aerobic enzymatic degradation of recalcitrant polysaccharides such as chitin and cellulose. LPMOs are remarkably abundant in nature, with some fungal species possessing more than 50 LPMO genes, and the biological implications of this diversity remain enigmatic. For example, chitin-active LPMOs have been encountered in biological niches where chitin conversion does not seem to take place. We have carried out an in-depth kinetic characterization of a putatively chitin-active LPMO from Aspergillus fumigatus (AfAA11B), which, as we show here, has multiple unusual properties, such as a low redox potential and high oxidase activity. Furthermore, AfAA11B is hardly active on chitin, while being very active on soluble oligomers of N-acetylglucosamine. In the presence of chitotetraose, the enzyme can withstand considerable amounts of H2O2, which it uses to efficiently and stoichiometrically convert this substrate. The unique properties of AfAA11B allowed experiments showing that it is a strict peroxygenase and does not catalyze a monooxygenase reaction. This study shows that nature uses LPMOs for breaking glycosidic bonds in non-polymeric substrates in reactions that depend on H2O2. The quest for the true substrates of these enzymes, possibly carbohydrates in the cell wall of the fungus or its competitors, will be of major interest.

13.
J Proteome Res ; 20(8): 4041-4052, 2021 08 06.
Artigo em Inglês | MEDLINE | ID: mdl-34191517

RESUMO

Chitin is an abundant natural polysaccharide that is hard to degrade because of its crystalline nature and because it is embedded in robust co-polymeric materials containing other polysaccharides, proteins, and minerals. Thus, it is of interest to study the enzymatic machineries of specialized microbes found in chitin-rich environments. We describe a genomic and proteomic analysis of Andreprevotia ripae, a chitinolytic Gram-negative bacterium isolated from an anthill. The genome of A. ripae encodes four secreted family GH19 chitinases of which two were detected and upregulated during growth on chitin. In addition, the genome encodes as many as 25 secreted GH18 chitinases, of which 17 were detected and 12 were upregulated during growth on chitin. Finally, the single lytic polysaccharide monooxygenase (LPMO) was strongly upregulated during growth on chitin. Whereas 66% of the 29 secreted chitinases contained two carbohydrate-binding modules (CBMs), this fraction was 93% (13 out of 14) for the upregulated chitinases, suggesting an important role for these CBMs. Next to an unprecedented multiplicity of upregulated chitinases, this study reveals several chitin-induced proteins that contain chitin-binding CBMs but lack a known catalytic function. These proteins are interesting targets for discovery of enzymes used by nature to convert chitin-rich biomass. The MS proteomic data have been deposited in the PRIDE database with accession number PXD025087.


Assuntos
Betaproteobacteria/enzimologia , Quitinases , Proteômica , Animais , Formigas/microbiologia , Proteínas de Bactérias/genética , Betaproteobacteria/isolamento & purificação , Quitina , Quitinases/genética , Oxigenases de Função Mista/genética , Polissacarídeos
14.
Biotechnol Biofuels ; 14(1): 122, 2021 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-34044872

RESUMO

BACKGROUND: Lytic polysaccharide monooxygenases (LPMOs) are attracting large attention due their ability to degrade recalcitrant polysaccharides in biomass conversion and to perform powerful redox chemistry. RESULTS: We have established a universal Pichia pastoris platform for the expression of fungal LPMOs using state-of-the-art recombination cloning and modern molecular biological tools to achieve high yields from shake-flask cultivation and simple tag-less single-step purification. Yields are very favorable with up to 42 mg per liter medium for four different LPMOs spanning three different families. Moreover, we report for the first time of a yeast-originating signal peptide from the dolichyl-diphosphooligosaccharide-protein glycosyltransferase subunit 1 (OST1) form S. cerevisiae efficiently secreting and successfully processes the N-terminus of LPMOs yielding in fully functional enzymes. CONCLUSION: The work demonstrates that the industrially most relevant expression host P. pastoris can be used to express fungal LPMOs from different families in high yields and inherent purity. The presented protocols are standardized and require little equipment with an additional advantage with short cultivation periods.

15.
Biotechnol Biofuels ; 14(1): 28, 2021 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-33478537

RESUMO

BACKGROUND: Lytic polysaccharide monooxygenases (LPMOs) are monocopper enzymes that catalyze oxidative depolymerization of industrially relevant crystalline polysaccharides, such as cellulose, in a reaction that depends on an electron donor and O2 or H2O2. While it is well known that LPMOs can utilize a wide variety of electron donors, the variation in reported efficiencies of various LPMO-reductant combinations remains largely unexplained. RESULTS: In this study, we describe a novel two-domain cellulose-active family AA10 LPMO from a marine actinomycete, which we have used to look more closely at the effects of the reductant and copper ions on the LPMO reaction. Our results show that ascorbate-driven LPMO reactions are extremely sensitive to very low amounts (micromolar concentrations) of free copper because reduction of free Cu(II) ions by ascorbic acid leads to formation of H2O2, which speeds up the LPMO reaction. In contrast, the use of gallic acid yields steady reactions that are almost insensitive to the presence of free copper ions. Various experiments, including dose-response studies with the enzyme, showed that under typically used reaction conditions, the rate of the reaction is limited by LPMO-independent formation of H2O2 resulting from oxidation of the reductant. CONCLUSION: The strong impact of low amounts of free copper on LPMO reactions with ascorbic acid and O2, i.e. the most commonly used conditions when assessing LPMO activity, likely explains reported variations in LPMO rates. The observed differences between ascorbic acid and gallic acid show a way of making LPMO reactions less copper-dependent and illustrate that reductant effects on LPMO action need to be interpreted with great caution. In clean reactions, with minimized generation of H2O2, the (O2-driven) LPMO reaction is exceedingly slow, compared to the much faster peroxygenase reaction that occurs when adding H2O2.

16.
Biochemistry ; 59(48): 4581-4590, 2020 12 08.
Artigo em Inglês | MEDLINE | ID: mdl-33213137

RESUMO

Chito-oligosaccharides (CHOS) are homo- or hetero-oligomers of N-acetylglucosamine (GlcNAc, A) and d-glucosamine (GlcN, D). Production of well-defined CHOS-mixtures, or even pure CHOS, with specific lengths and sugar compositions, is of great interest since these oligosaccharides have interesting bioactivities. While direct chemical synthesis of CHOS is not straightforward, chemo-enzymatic approaches have shown some promise. We have used engineered glycoside hydrolases to catalyze oligomerization of activated DA building blocks through transglycosylation reactions. The building blocks were generated from readily available (GlcNAc)2-para-nitrophenol through deacetylation of the nonreducing end sugar with a recombinantly expressed deacetylase from Aspergillus niger (AnCDA9). This approach, using a previously described hyper-transglycosylating variant of ChiA from Serratia marcescens (SmChiA) and a newly generated transglycosylating variant of Chitinase D from Serratia proteamaculans (SpChiD), led to production of CHOS containing up to ten alternating D and A units [(DA)2, (DA)3, (DA)4, and (DA)5]. The most abundant compounds were purified and characterized. Finally, we demonstrate that (DA)3 generated in this study may serve as a specific inhibitor of the human chitotriosidase. Inhibition of this enzyme has been suggested as a therapeutic strategy against systemic sclerosis.


Assuntos
Quitina/análogos & derivados , Oligossacarídeos/biossíntese , Oligossacarídeos/síntese química , Acetilglucosamina/química , Aspergillus niger/enzimologia , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Sequência de Carboidratos , Quitina/biossíntese , Quitina/síntese química , Quitinases/genética , Quitinases/metabolismo , Cristalografia por Raios X , Glucosamina/química , Hexosaminidases/metabolismo , Humanos , Modelos Moleculares , Estrutura Molecular , Mutagênese Sítio-Dirigida , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , Oligossacarídeos/química , Serratia/enzimologia , Serratia/genética , Serratia marcescens/enzimologia , Serratia marcescens/genética , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz
17.
Proc Natl Acad Sci U S A ; 117(32): 19178-19189, 2020 08 11.
Artigo em Inglês | MEDLINE | ID: mdl-32723819

RESUMO

Lytic polysaccharide monooxygenases (LPMOs) have a unique ability to activate molecular oxygen for subsequent oxidative cleavage of glycosidic bonds. To provide insight into the mode of action of these industrially important enzymes, we have performed an integrated NMR/electron paramagnetic resonance (EPR) study into the detailed aspects of an AA10 LPMO-substrate interaction. Using NMR spectroscopy, we have elucidated the solution-phase structure of apo-BlLPMO10A from Bacillus licheniformis, along with solution-phase structural characterization of the Cu(I)-LPMO, showing that the presence of the metal has minimal effects on the overall protein structure. We have, moreover, used paramagnetic relaxation enhancement (PRE) to characterize Cu(II)-LPMO by NMR spectroscopy. In addition, a multifrequency continuous-wave (CW)-EPR and 15N-HYSCORE spectroscopy study on the uniformly isotope-labeled 63Cu(II)-bound 15N-BlLPMO10A along with its natural abundance isotopologue determined copper spin-Hamiltonian parameters for LPMOs to markedly improved accuracy. The data demonstrate that large changes in the Cu(II) spin-Hamiltonian parameters are induced upon binding of the substrate. These changes arise from a rearrangement of the copper coordination sphere from a five-coordinate distorted square pyramid to one which is four-coordinate near-square planar. There is also a small reduction in metal-ligand covalency and an attendant increase in the d(x2-y2) character/energy of the singly occupied molecular orbital (SOMO), which we propose from density functional theory (DFT) calculations predisposes the copper active site for the formation of a stable Cu-O2 intermediate. This switch in orbital character upon addition of chitin provides a basis for understanding the coupling of substrate binding with O2 activation in chitin-active AA10 LPMOs.


Assuntos
Bacillus licheniformis/enzimologia , Proteínas de Bactérias/química , Quitina/metabolismo , Oxigenases de Função Mista/química , Oxigênio/metabolismo , Bacillus licheniformis/química , Proteínas de Bactérias/metabolismo , Domínio Catalítico , Quitina/química , Cobre/química , Cobre/metabolismo , Espectroscopia de Ressonância de Spin Eletrônica , Imageamento por Ressonância Magnética , Oxigenases de Função Mista/metabolismo , Oxigênio/química , Especificidade por Substrato
19.
Biochem Biophys Res Commun ; 521(1): 120-124, 2020 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-31629467

RESUMO

In nature, recalcitrant polysaccharides such as chitin and cellulose are degraded by glycoside hydrolases (GH) that act synergistically through different modes of action including attack from reducing-end and nonreducing-end (exo-mode) and random (endo-mode) on single polysaccharide chains. Both modes can be combined with a processive mechanism where the GH remain bound to the polysaccharide to perform multiple catalytic steps before dissociation into the solution. In this work, we have determined association rate constants and their activation paramaters for three co-evolved GHs from Serratia marcescens (SmChiA, SmChiB, and SmChiC) with an oligomeric substrate. Interestingly, we observe a positive correlation between the association rate constants and processive ability for the GHs. Previously, a positive correlation has been observed between substrate binding affinity and processive ability. SmChiA with highest processive ability of the three GHs bind with a kon of 11.5 ±â€¯0.2 µM-1s-1, which is five-fold and 130-fold faster than SmChiB (less processive) and SmChiC (nonprocessive), respectively.


Assuntos
Glicosídeo Hidrolases/metabolismo , Serratia marcescens/enzimologia , Glicosídeo Hidrolases/química , Glicosídeo Hidrolases/isolamento & purificação , Cinética , Modelos Moleculares
20.
Molecules ; 24(21)2019 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-31717737

RESUMO

Chitin, an insoluble linear polymer of ß-1,4-N-acetyl-d-glucosamine (GlcNAc; A), can be converted to chitosan, a soluble heteropolymer of GlcNAc and d-glucosamine (GlcN; D) residues, by partial deacetylation. In nature, deacetylation of chitin is catalyzed by enzymes called chitin deacetylases (CDA) and it has been proposed that CDAs could be used to produce chitosan. In this work, we show that CDAs can remove up to approximately 10% of N-acetyl groups from two different (α and ß) chitin nanofibers, but cannot produce chitosan.


Assuntos
Amidoidrolases/metabolismo , Quitina/química , Quitosana/química , Acetilação , Amidoidrolases/química , Espectroscopia de Ressonância Magnética , Nanofibras/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA