Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Sci Rep ; 12(1): 17232, 2022 10 14.
Artigo em Inglês | MEDLINE | ID: mdl-36241863

RESUMO

The classification performance of all-optical Convolutional Neural Networks (CNNs) is greatly influenced by components' misalignment and translation of input images in the practical applications. In this paper, we propose a free-space all-optical CNN (named Trans-ONN) which accurately classifies translated images in the horizontal, vertical, or diagonal directions. Trans-ONN takes advantages of an optical motion pooling layer which provides the translation invariance property by implementing different optical masks in the Fourier plane for classifying translated test images. Moreover, to enhance the translation invariance property, global average pooling (GAP) is utilized in the Trans-ONN structure, rather than fully connected layers. The comparative studies confirm that taking advantage of vertical and horizontal masks along GAP operation provide the best translation invariance property, compared to the alternative network models, for classifying horizontally and vertically shifted test images up to 50 pixel shifts of Kaggle Cats and Dogs, CIFAR-10, and MNIST datasets, respectively. Also, adopting the diagonal mask along GAP operation achieves the best classification accuracy for classifying translated test images in the diagonal direction for large number of pixel shifts (i.e. more than 30 pixel shifts). It is worth mentioning that the proposed translation invariant networks are capable of classifying the translated test images not included in the training procedure.


Assuntos
Redes Neurais de Computação , Aprendizado Profundo
2.
Med Biol Eng Comput ; 57(11): 2461-2469, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31478133

RESUMO

Reliable prediction of epileptic seizures is of prime importance as it can drastically change the quality of life for patients. This study aims to propose a real-time low computational approach for the prediction of epileptic seizures and to present an efficient hardware implementation of this approach for portable prediction systems. Three levels of feature extraction are performed to characterize the pre-ictal activities of the EEG signal. In the first-level, the line length algorithm is applied to the pre-ictal region. The features obtained in the first-level are mathematically integrated to extract the second-level features and then the line lengths of the second-level features are calculated to obtain our third-level feature. The third-level information is compared with predefined threshold levels to make a decision on whether the extracted characteristics are relevant to a seizure occurrence or not. The validity of this algorithm was tested by EEG recordings in the CHB-MIT database (97 seizures, 834.224 h) for 19 epileptic patients. The results showed that the average sensitivity was 90.62%, the specificity was 88.34%, the accuracy was 88.76% with the average false prediction rate as low as 0.0046 h-1, and the average prediction time was 23.3 min. The low computational complexity is the superiority of the proposed approach, which provides a technologically simple but accurate way of predicting epileptic seizures and enables hardware implantable devices. Graphical abstract Proposed seizure prediction algorithm and its features.


Assuntos
Diagnóstico por Computador/métodos , Eletroencefalografia/métodos , Convulsões/diagnóstico , Adolescente , Algoritmos , Criança , Pré-Escolar , Feminino , Humanos , Lactente , Masculino , Sensibilidade e Especificidade , Processamento de Sinais Assistido por Computador , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA