Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
1.
Cancer Epidemiol Biomarkers Prev ; 32(5): 697-707, 2023 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-36788426

RESUMO

BACKGROUND: Little is known regarding factors associated with calcitriol and a relative measure of calcitriol, the calcitriol-24,25-dihydroxyvitamin D3-calcifediol proportion ratio (C24CPR). METHODS: Using a cross-sectional study design, healthy young adults of African and European descent, matched (1:1) on age (±5 years) provided a blood sample in non-summer months (N = 376). Vitamin D metabolites were measured in plasma with HPLC/MS-MS. West African genetic ancestry proportion (WGA) was estimated using STRUCTURE modeling of genetic ancestry-informative markers. Multivariable regression models were used to estimate the association of WGA and vitamin D-pathway gene variants with calcitriol and C24CPR, controlling for days from summer solstice, age, sex, blood pressure, body mass index, dietary vitamin D intake, oral contraceptive/medroxyprogesterone acetate use, smoking, tanning bed use, and time of day. RESULTS: Calcitriol and C24CPR were not highly correlated (rho = 0.14), although both were significantly, positively, and monotonically associated with WGA (Ptrend 0.025 and <0.001, respectively). In fully adjusted models, genetic factors explained a greater proportion of variability in C24CPR (R2 = 0.121 and 0.310, respectively). Variants in genes with associated with calcitriol (CALB1, CYP27B1, GC, and PPARGC1A) differed from those associated with C24CPR (CYP3A43, FGF23, KL, and VDR). CONCLUSIONS: Both absolute and relative measures of calcitriol were significantly higher among African Americans. Otherwise, these biomarkers appear to be genetically distinct. IMPACT: C24CPR may be better suited to personalized medicine, due to a higher proportion of population variability explained by genetic variation and a less skewed distribution.


Assuntos
Calcitriol , Vitamina D , Adulto Jovem , Humanos , Calcitriol/metabolismo , Estudos Transversais , Calcifediol/metabolismo , Vitaminas , Receptores de Calcitriol/genética
2.
Cancer Prev Res (Phila) ; 13(4): 357-366, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31969344

RESUMO

We previously reported that the environmental pollutant and tobacco smoke constituent dibenzo[def,p]chrysene (DBP) induced DNA damage, altered DNA methylation and induced oral squamous cell carcinoma (OSCC) in mice. In the present study, we showed that 5% dietary black raspberry (BRB) significantly reduced (P < 0.05) the levels of DBP-DNA adducts in the mouse oral cavity with comparable effect to those of its constitutes. Thus, only BRB was selected to examine if aberrant DNA methylation induced by DBP can be altered by BRB. Using comparative genome-wide DNA methylation analysis, we identified 479 hypermethylated and 481 hypomethylated sites (q < 0.01, methylation difference >25%) between the oral tissues of mice treated with DBP and fed control diet or diet containing BRB. Among the 30 differential methylated sites (DMS) induced by DBP, we found DMS mapped to Fgf3, Qrich2, Rmdn2, and Cbarp were hypermethylated by BRB whereas hypomethylated by DBP at either the exact position or proximal sites; DMS mapped to Vamp3, Ppp1rB1, Pkm, and Zfp316 were hypomethylated by BRB but hypermethylated by DBP at proximal sites. In addition to Fgf3, 2 DMS mapped to Fgf4 and Fgf13 were hypermethylated by BRB; these fibroblast growth factors are involved in regulation of the epithelial-mesenchymal transition (EMT) pathway as identified by IPA. Moreover, BRB significantly reduced (P < 0.05) the tumor incidence from 70% to 46.7%. Taken together, the inhibitory effects of BRB on DNA damage combined with its effects on epigenetic alterations may account for BRB inhibition of oral tumorigenesis induced by DBP. SIGNIFICANCE: We provided mechanistic insights that can account for the inhibition of oral tumors by BRB, which could serve as the framework for future chemopreventive trials for addicted smokers as well as non- or former smokers who are exposed to environmental carcinogens.


Assuntos
Benzopirenos/toxicidade , Epigênese Genética , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Neoplasias Bucais/tratamento farmacológico , Extratos Vegetais/farmacologia , Rubus/química , Poluição por Fumaça de Tabaco/prevenção & controle , Animais , Apoptose , Biomarcadores Tumorais/genética , Carcinógenos/toxicidade , Carcinoma de Células Escamosas/induzido quimicamente , Carcinoma de Células Escamosas/tratamento farmacológico , Carcinoma de Células Escamosas/genética , Carcinoma de Células Escamosas/patologia , Proliferação de Células , Metilação de DNA , Feminino , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Neoplasias Bucais/induzido quimicamente , Neoplasias Bucais/genética , Neoplasias Bucais/patologia , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de Xenoenxerto
3.
PLoS One ; 14(12): e0226821, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31856248

RESUMO

The homeostatic iron regulator protein HFE is involved in regulation of iron acquisition for cells. The prevalence of two common HFE gene variants (H63D, C282Y) has been studied in many cancer types; however, the impact of HFE variants, sex and HFE gene expression in lung cancer has not been studied. We determined the prevalence of HFE variants and their impact on cancer phenotypes in lung cancer cell lines, in lung cancer patient specimens, and using The Cancer Genome Atlas (TCGA) database. We found that seven out of ten human lung cancer cell lines carry the H63D or C282Y HFE variant. Analysis of lung cancer specimens from our institute (Penn State Hershey Medical Center) revealed a sex and genotype interaction risk for metastasis in lung adenocarcinoma (LUAD) patients; H63D HFE is associated with less metastasis in males compared to wild type (WT) HFE; however, females with the H63D HFE variant tend to develop more metastatic tumors than WT female patients. In the TCGA LUAD dataset, the H63D HFE variant was associated with poorer survival in females compared to females with WT HFE. The frequency of C282Y HFE is higher in female lung squamous cell carcinoma (LUSC) patients of TCGA than males, however the C282Y HFE variant did not impact the survival of LUSC patients. In the TCGA LUSC dataset, C282Y HFE patients (especially females) had poorer survival than WT HFE patients. HFE expression level was not affected by HFE genotype status and did not impact patient's survival, regardless of sex. In summary, these data suggest that there is a sexually dimorphic effect of HFE polymorphisms in the survival and metastatic disease in lung cancer.


Assuntos
Carcinoma/genética , Proteína da Hemocromatose/genética , Neoplasias Pulmonares/genética , Polimorfismo de Nucleotídeo Único , Adulto , Idoso , Idoso de 80 Anos ou mais , Carcinoma/patologia , Linhagem Celular Tumoral , Feminino , Humanos , Neoplasias Pulmonares/patologia , Masculino , Pessoa de Meia-Idade , Metástase Neoplásica
4.
J Virol ; 93(17)2019 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-31189705

RESUMO

Epidemiological data confirm a much higher incidence of high-risk human papillomavirus 16 (HPV16)-mediated carcinogenesis of the cervical epithelium than for other target sites. In order to elucidate tissue-specific responses to virus infection, we compared gene expression changes induced by productive HPV16 infection of cervical, foreskin, and tonsil organotypic rafts. These rafts closely mimic persistent HPV16 infection, long before carcinogenesis sets in. The total number of gene expression changes varied considerably across the tissue types, with only 32 genes being regulated in common. Among them, we confirmed the Kelch-like family protein KLHL35 and the laminin-5 complex to be upregulated and downregulated, respectively, in all the three tissues. HPV16 infection induces upregulation of genes involved in cell cycle control, cell division, mitosis, DNA replication, and DNA damage repair in all the three tissues, indicative of a hyperproliferative environment. In the cervical and tonsil epithelium, we observe significant downregulation of genes involved in epidermis development, keratinocyte differentiation, and extracellular matrix organization. On the other hand, in HPV16-positive foreskin (HPV16 foreskin) tissue, several genes involved in interferon-mediated innate immunity, cytokine signaling, and cellular defenses were downregulated. Furthermore, pathway analysis and experimental validations identified important cellular pathways like STAT1 and transforming growth factor ß (TGF-ß) to be differentially regulated among the three tissue types. The differential modulation of important cellular pathways like TGF-ß1 and STAT1 can explain the sensitivity of tissues to HPV cancer progression.IMPORTANCE Although the high-risk human papillomavirus 16 infects anogenital and oropharyngeal sites, the cervical epithelium has a unique vulnerability to progression of cancer. Host responses during persistent infection and preneoplastic stages can shape the outcome of cancer progression in a tissue-dependent manner. Our study for the first time reports differential regulation of critical cellular functions and signaling pathways during productive HPV16 infection of cervical, foreskin, and tonsil tissues. While the virus induces hyperproliferation in infected cells, it downregulates epithelial differentiation, epidermal development, and innate immune responses, according to the tissue type. Modulation of these biological functions can determine virus fitness and pathogenesis and illuminate key cellular mechanisms that the virus employs to establish persistence and finally initiate disease progression.


Assuntos
Colo do Útero/virologia , Prepúcio do Pênis/virologia , Perfilação da Expressão Gênica/métodos , Papillomavirus Humano 16/patogenicidade , Tonsila Palatina/virologia , Infecções por Papillomavirus/genética , Diferenciação Celular , Linhagem Celular Tumoral , Colo do Útero/química , Colo do Útero/citologia , Feminino , Prepúcio do Pênis/química , Prepúcio do Pênis/citologia , Regulação Neoplásica da Expressão Gênica , Redes Reguladoras de Genes , Papillomavirus Humano 16/genética , Humanos , Queratinócitos/química , Queratinócitos/citologia , Queratinócitos/virologia , Masculino , Análise em Microsséries , Especificidade de Órgãos , Tonsila Palatina/química , Tonsila Palatina/citologia , Infecções por Papillomavirus/virologia , Transdução de Sinais , Replicação Viral
5.
J Biol Chem ; 294(14): 5508-5520, 2019 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-30733333

RESUMO

Diabetes promotes the posttranslational modification of proteins by O-linked addition of GlcNAc (O-GlcNAcylation) to Ser/Thr residues of proteins and thereby contributes to diabetic complications. In the retina of diabetic mice, the repressor of mRNA translation, eIF4E-binding protein 1 (4E-BP1), is O-GlcNAcylated, and sequestration of the cap-binding protein eukaryotic translation initiation factor (eIF4E) is enhanced. O-GlcNAcylation has also been detected on several eukaryotic translation initiation factors and ribosomal proteins. However, the functional consequence of this modification is unknown. Here, using ribosome profiling, we evaluated the effect of enhanced O-GlcNAcylation on retinal gene expression. Mice receiving thiamet G (TMG), an inhibitor of the O-GlcNAc hydrolase O-GlcNAcase, exhibited enhanced retinal protein O-GlcNAcylation. The principal effect of TMG on retinal gene expression was observed in ribosome-associated mRNAs (i.e. mRNAs undergoing translation), as less than 1% of mRNAs exhibited changes in abundance. Remarkably, ∼19% of the transcriptome exhibited TMG-induced changes in ribosome occupancy, with 1912 mRNAs having reduced and 1683 mRNAs having increased translational rates. In the retina, the effect of O-GlcNAcase inhibition on translation of specific mitochondrial proteins, including superoxide dismutase 2 (SOD2), depended on 4E-BP1/2. O-GlcNAcylation enhanced cellular respiration and promoted mitochondrial superoxide levels in WT cells, and 4E-BP1/2 deletion prevented O-GlcNAcylation-induced mitochondrial superoxide in cells in culture and in the retina. The retina of diabetic WT mice exhibited increased reactive oxygen species levels, an effect not observed in diabetic 4E-BP1/2-deficient mice. These findings provide evidence for a mechanism whereby diabetes-induced O-GlcNAcylation promotes oxidative stress in the retina by altering the selection of mRNAs for translation.


Assuntos
Proteínas de Transporte/metabolismo , Retinopatia Diabética/metabolismo , Proteínas do Olho/metabolismo , Mitocôndrias/metabolismo , Fosfoproteínas/metabolismo , Biossíntese de Proteínas , RNA Mensageiro/metabolismo , Retina/metabolismo , Acilação , Proteínas Adaptadoras de Transdução de Sinal , Animais , Proteínas de Transporte/genética , Proteínas de Ciclo Celular , Retinopatia Diabética/genética , Retinopatia Diabética/patologia , Fatores de Iniciação em Eucariotos , Proteínas do Olho/genética , Feminino , Camundongos , Camundongos Knockout , Mitocôndrias/genética , Mitocôndrias/patologia , Consumo de Oxigênio/efeitos dos fármacos , Fosfoproteínas/genética , Piranos/farmacologia , RNA Mensageiro/genética , Espécies Reativas de Oxigênio/metabolismo , Retina/patologia , Tiazóis/farmacologia
6.
J Virol ; 92(20)2018 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-30045992

RESUMO

Human papillomavirus (HPV) infection is the world's most common sexually transmitted infection and is responsible for most cases of cervical cancer. Previous studies of global gene expression changes induced by HPV infection have focused on the cancerous stages of infection, and therefore, not much is known about global gene expression changes at early preneoplastic stages of infection. We show for the first time the global gene expression changes during early-stage HPV16 infection in cervical tissue using 3-dimensional organotypic raft cultures, which produce high levels of progeny virions. cDNA microarray analysis showed that a total of 594 genes were upregulated and 651 genes were downregulated at least 1.5-fold with HPV16 infection. Gene ontology analysis showed that biological processes including cell cycle progression and DNA metabolism were upregulated, while skin development, immune response, and cell death were downregulated with HPV16 infection in cervical keratinocytes. Individual genes were selected for validation at the transcriptional and translational levels, including UBC, which was central to the protein association network of immune response genes, and top downregulated genes RPTN, SERPINB4, KRT23, and KLK8 In particular, KLK8 and SERPINB4 were shown to be upregulated in cancer, which contrasts with the gene regulation during the productive replication stage. Organotypic raft cultures, which allow full progression of the HPV life cycle, allowed us to identify novel gene modulations and potential therapeutic targets of early-stage HPV infection in cervical tissue. Additionally, our results suggest that early-stage productive infection and cancerous stages of infection are distinct disease states expressing different host transcriptomes.IMPORTANCE Persistent HPV infection is responsible for most cases of cervical cancer. The transition from precancerous to cancerous stages of HPV infection is marked by a significant reduction in virus production. Most global gene expression studies of HPV infection have focused on the cancerous stages. Therefore, little is known about global gene expression changes at precancerous stages. For the first time, we measured global gene expression changes at the precancerous stages of HPV16 infection in human cervical tissue producing high levels of virus. We identified a group of genes that are typically overexpressed in cancerous stages to be significantly downregulated at the precancerous stage. Moreover, we identified significantly modulated genes that have not yet been studied in the context of HPV infection. Studying the role of these genes in HPV infection will help us understand what drives the transition from precancerous to cancerous stages and may lead to the development of new therapeutic targets.


Assuntos
Colo do Útero/patologia , Epitélio/patologia , Epitélio/virologia , Interações Hospedeiro-Patógeno , Papillomavirus Humano 16/crescimento & desenvolvimento , Infecções por Papillomavirus/patologia , Feminino , Perfilação da Expressão Gênica , Ontologia Genética , Humanos , Análise em Microsséries , Modelos Biológicos , Técnicas de Cultura de Órgãos
7.
Cell Rep ; 23(11): 3209-3222, 2018 06 12.
Artigo em Inglês | MEDLINE | ID: mdl-29898393

RESUMO

Homeostatic synaptic downscaling reduces neuronal excitability by modulating the number of postsynaptic receptors. Histone modifications and the subsequent chromatin remodeling play critical roles in activity-dependent gene expression. Histone modification codes are recognized by chromatin readers that affect gene expression by altering chromatin structure. We show that L3mbtl1 (lethal 3 malignant brain tumor-like 1), a polycomb chromatin reader, is downregulated by neuronal activity and is essential for synaptic response and downscaling. Genome-scale mapping of L3mbtl1 occupancies identified Ctnnb1 as a key gene downstream of L3mbtl1. Importantly, the occupancy of L3mbtl1 on the Ctnnb1 gene was regulated by neuronal activity. L3mbtl1 knockout neurons exhibited reduced Ctnnb1 expression. Partial knockdown of Ctnnb1 in wild-type neurons reduced excitatory synaptic transmission and abolished homeostatic downscaling, and transfecting Ctnnb1 in L3mbtl1 knockout neurons enhanced synaptic transmission and restored homeostatic downscaling. These results highlight a role for L3mbtl1 in regulating homeostasis of synaptic efficacy.


Assuntos
Cromatina/metabolismo , Proteínas Nucleares/metabolismo , Proteínas Supressoras de Tumor/metabolismo , Animais , Células Cultivadas , Hipocampo/citologia , Hipocampo/metabolismo , Histonas/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteínas Nucleares/deficiência , Proteínas Nucleares/genética , Picrotoxina/farmacologia , Regiões Promotoras Genéticas , Interferência de RNA , RNA Interferente Pequeno/metabolismo , Proteínas Repressoras , Transmissão Sináptica/efeitos dos fármacos , Proteínas Supressoras de Tumor/deficiência , Proteínas Supressoras de Tumor/genética , beta Catenina/antagonistas & inibidores , beta Catenina/genética , beta Catenina/metabolismo
8.
Am J Epidemiol ; 187(4): 754-766, 2018 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-28673024

RESUMO

We investigated the association between genetic polymorphisms in cytochrome P450 (CYP2R1, CYP24A1, and the CYP3A family) with nonsummer plasma concentrations of vitamin D metabolites (25-hydroxyvitamin D3 (25(OH)D3) and proportion 24,25-dihydroxyvitamin D3 (24,25(OH)2D3)) among healthy individuals of sub-Saharan African and European ancestry, matched on age (within 5 years; n = 188 in each ancestral group), in central suburban Pennsylvania (2006-2009). Vitamin D metabolites were measured using high-performance liquid chromatography with tandem mass spectrometry. Paired multiple regression and adjusted least-squares mean analyses were used to test for associations between genotype and log-transformed metabolite concentrations, adjusted for age, sex, proportion of West-African genetic ancestry, body mass index, oral contraceptive (OC) use, tanning bed use, vitamin D intake, days from summer solstice, time of day of blood draw, and isoforms of the vitamin D receptor (VDR) and vitamin D binding protein. Polymorphisms in CYP2R1, CYP3A43, vitamin D binding protein, and genetic ancestry proportion remained associated with plasma 25(OH)D3 after adjustment. Only CYP3A43 and VDR polymorphisms were associated with proportion 24,25(OH)2D3. Magnitudes of association with 25(OH)D3 were similar for CYP3A43, tanning bed use, and OC use. Significant least-squares mean interactions (CYP2R1/OC use (P = 0.030) and CYP3A43/VDR (P = 0.013)) were identified. A CYP3A43 genotype, previously implicated in cancer, is strongly associated with biomarkers of vitamin D metabolism. Interactive associations should be further investigated.


Assuntos
24,25-Di-Hidroxivitamina D 3/sangue , Calcifediol/sangue , Colestanotriol 26-Mono-Oxigenase/genética , Citocromo P-450 CYP3A/genética , Família 2 do Citocromo P450/genética , Receptores de Calcitriol/genética , Vitamina D3 24-Hidroxilase/genética , Adolescente , Adulto , África Subsaariana , Fatores Etários , População Negra/genética , Índice de Massa Corporal , Dieta , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Polimorfismo Genético , Fatores Sexuais , Vitamina D/administração & dosagem , População Branca/genética , Adulto Jovem
9.
PLoS One ; 12(10): e0186873, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29073177

RESUMO

Genetic and epigenetic alterations observed at end stage OSCC formation could be considered as a consequence of cancer development and thus changes in normal or premalignant tissues which had been exposed to oral carcinogens such as Dibenzo[def,p]chrysene (DBP) may better serve as predictive biomarkers of disease development. Many types of DNA damage can induce epigenetic changes which can occur early and in the absence of evident morphological abnormalities. Therefore we used ERRBS to generate genome-scale, single-base resolution DNA methylomes from histologically normal oral tissues of mice treated with DBP under experimental conditions known to induce maximum DNA damage which is essential for the development of OSCC induced by DBP in mice. After genome-wide correction, 30 and 48 differentially methylated sites (DMS) were identified between vehicle control and DBP treated mice using 25% and 10% differences in methylation, respectively. RT-PCR was further performed to examine the expressions of nine selected genes. Among them, Fgf3, a gene frequently amplified in head and neck cancer, showed most prominent and significant gene expression change (2.4× increases), despite the hypomethylation of Fgf3 was identified at >10kb upstream of transcription start site. No difference was observed in protein expression between normal oral tissues treated with DBP or vehicle as examined by immunohistochemistry. Collectively, our results indicate that Fgf3 hypomethylation and gene overexpression, but not protein expression, occurred in the early stage of oral carcinogenesis induced by DBP. Thus, Fgf3 hypomethylation may serve as a potential biomarker for early detection of OSCC.


Assuntos
Benzopirenos/toxicidade , Biomarcadores Tumorais/metabolismo , Carcinógenos/toxicidade , Carcinoma de Células Escamosas/diagnóstico , Fator 3 de Crescimento de Fibroblastos/metabolismo , Neoplasias Bucais/diagnóstico , Nicotiana/química , Animais , Carcinoma de Células Escamosas/metabolismo , Carcinoma de Células Escamosas/patologia , Metilação de DNA , Detecção Precoce de Câncer , Feminino , Camundongos , Neoplasias Bucais/metabolismo , Neoplasias Bucais/patologia , Reação em Cadeia da Polimerase em Tempo Real
10.
Alcohol ; 62: 1-9, 2017 08.
Artigo em Inglês | MEDLINE | ID: mdl-28755746

RESUMO

Excessive alcohol consumption results in significant changes in gene expression and isoforms due to altered mRNA splicing. As such, an intriguing possibility is that disturbances in alternative splicing are involved in key pathological pathways triggered by alcohol exposure. However, no resources have been available to systematically analyze this possibility at a genome-wide scale. Here, we performed RNA sequencing of human fetal cortical slices that were obtained at the late first trimester and exposed to ethanol or control medium. We report 382 events that were identified as changes affecting the ratio of splicing isoforms in the ethanol-exposed fetal human cortex. Additionally, previously unreported novel isoforms of several genes were also identified. These results provide a broad perspective on the post-transcriptional regulatory network underlying ethanol-induced pathogenesis in the developing human cortex.


Assuntos
Processamento Alternativo/efeitos dos fármacos , Córtex Cerebral/efeitos dos fármacos , Córtex Cerebral/embriologia , Etanol/efeitos adversos , Perfilação da Expressão Gênica , RNA Mensageiro/genética , Processamento Alternativo/genética , Córtex Cerebral/química , Etanol/farmacologia , Feminino , Humanos , Troca Materno-Fetal , Gravidez , Primeiro Trimestre da Gravidez , RNA Mensageiro/química , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Alinhamento de Sequência , Análise de Sequência de RNA , Técnicas de Cultura de Tecidos
11.
PLoS One ; 12(6): e0179230, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28640837

RESUMO

Transcriptome complexity is substantially increased by the use of multiple transcription start sites for a given gene. By utilizing a rod photoreceptor-specific chromatin signature, and the RefSeq database of established transcription start sites, we have identified essentially all known rod photoreceptor genes as well as a group of novel genes that have a high probability of being expressed in rod photoreceptors. Approximately half of these novel rod genes are transcribed into multiple mRNA and/or protein isoforms through alternative transcriptional start sites (ATSS), only one of which has a rod-specific epigenetic signature and gives rise to a rod transcript. This suggests that, during retina development, some genes use ATSS to regulate cell type and temporal specificity, effectively generating a rod transcript from otherwise ubiquitously expressed genes. Biological confirmation of the relationship between epigenetic signatures and gene expression, as well as comparison of our genome-wide chromatin signature maps with available data sets for retina, namely a ChIP-on-Chip study of Polymerase-II (Pol-II) binding sites, ChIP-Seq studies for NRL- and CRX- binding sites and DHS (University of Washington data, available on UCSC mouse Genome Browser as a part of ENCODE project) fully support our hypothesis and together accurately identify and predict an array of new rod transcripts. The same approach was used to identify a number of TSS that are not currently in RefSeq. Biological conformation of the use of some of these TSS suggests that this method will be valuable for exploring the range of transcriptional complexity in many tissues. Comparison of mouse and human genome-wide data indicates that most of these alternate TSS appear to be present in both species, indicating that our approach can be useful for identification of regulatory regions that might play a role in human retinal disease.


Assuntos
Biologia Computacional , Células Fotorreceptoras Retinianas Bastonetes/metabolismo , Sítio de Iniciação de Transcrição , Transcriptoma , Animais , Epigênese Genética , Camundongos , Especificidade de Órgãos , Isoformas de Proteínas/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
12.
Nat Commun ; 8: 15157, 2017 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-28462912

RESUMO

Repetitive prenatal exposure to identical or similar doses of harmful agents results in highly variable and unpredictable negative effects on fetal brain development ranging in severity from high to little or none. However, the molecular and cellular basis of this variability is not well understood. This study reports that exposure of mouse and human embryonic brain tissues to equal doses of harmful chemicals, such as ethanol, activates the primary stress response transcription factor heat shock factor 1 (Hsf1) in a highly variable and stochastic manner. While Hsf1 is essential for protecting the embryonic brain from environmental stress, excessive activation impairs critical developmental events such as neuronal migration. Our results suggest that mosaic activation of Hsf1 within the embryonic brain in response to prenatal environmental stress exposure may contribute to the resulting generation of phenotypic variations observed in complex congenital brain disorders.


Assuntos
Encéfalo/efeitos dos fármacos , Fatores de Transcrição de Choque Térmico/genética , Células-Tronco Neurais/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Efeitos Tardios da Exposição Pré-Natal/genética , Adulto , Animais , Encéfalo/crescimento & desenvolvimento , Encéfalo/metabolismo , Encéfalo/patologia , Movimento Celular/efeitos dos fármacos , Embrião de Mamíferos , Etanol/farmacologia , Feminino , Regulação da Expressão Gênica no Desenvolvimento , Fatores de Transcrição de Choque Térmico/metabolismo , Humanos , Peróxido de Hidrogênio/farmacologia , Injeções Intraperitoneais , Masculino , Exposição Materna/efeitos adversos , Camundongos , Camundongos Transgênicos , Células-Tronco Neurais/citologia , Células-Tronco Neurais/metabolismo , Neurônios/citologia , Neurônios/metabolismo , Fenótipo , Gravidez , Efeitos Tardios da Exposição Pré-Natal/induzido quimicamente , Efeitos Tardios da Exposição Pré-Natal/metabolismo , Efeitos Tardios da Exposição Pré-Natal/patologia , Cultura Primária de Células , Transdução de Sinais
13.
PLoS One ; 12(3): e0174778, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28358914

RESUMO

Human hemochromatosis protein (HFE) is involved in iron metabolism. Two major HFE polymorphisms, H63D and C282Y, have been associated with an increased risk of cancers. Previously, we reported decreased gender effects in overall survival based on H63D or C282Y HFE polymorphisms patients with glioblastoma multiforme (GBM). However, the effect of other single nucleotide variation (SNV) in the HFE gene on the cancer development and progression has not been systematically studied. To expand our finding in a larger sample, and to identify other HFE SNV, we analyzed the frequency of somatic SNV in HFE gene and its relationship to survival in GBM patients using The Cancer Genome Atlas (TCGA) GBM (Caucasian only) database. We found 9 SNVs with increased frequency in blood normal of TCGA GBM patients compared to the 1000Genome. Among 9 SNVs, 7 SNVs were located in the intron and 2 SNVs (i.e., H63D, C282Y) in the exon of HFE gene. The statistical analysis demonstrated that blood normal samples of TCGA GBM have more H63D (p = 0.0002, 95% Confidence interval (CI): 0.2119-0.3223) or C282Y (p = 0.0129, 95% CI: 0.0474-0.1159) HFE polymorphisms than 1000Genome. The Kaplan-Meier survival curve for the 264 GBM samples revealed no difference between wild type (WT) HFE and H63D, and WT HFE and C282Y GBM patients. In addition, there was no difference in the survival of male/female GBM patients based on HFE genotype. There was no correlation between HFE expression and survival. In conclusion, the current results suggest that somatic HFE polymorphisms do not impact GBM patients' survival in the TCGA data set of GBM.


Assuntos
Glioblastoma/genética , Hemocromatose/genética , Polimorfismo de Nucleotídeo Único/genética , Adulto , Idoso , Idoso de 80 Anos ou mais , Feminino , Genótipo , Glioblastoma/mortalidade , Hemocromatose/mortalidade , Humanos , Estimativa de Kaplan-Meier , Masculino , Pessoa de Meia-Idade , Adulto Jovem
14.
PLoS One ; 12(3): e0173723, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28301528

RESUMO

A facultative heterochromatin mark, histone H3 lysine 9 dimethylation (H3K9me2), which is mediated by histone methyltransferases G9a/GLP (EHMT2/1), undergoes dramatic rearrangements during myeloid cell differentiation as observed by chromatin imaging. To determine whether these structural transitions also involve genomic repositioning of H3K9me2, we used ChIP-sequencing to map genome-wide topography of H3K9me2 in normal human granulocytes, normal CD34+ hematopoietic progenitors, primary myeloblasts from acute myeloid leukemia (AML) patients, and a model leukemia cell line K562. We observe that H3K9me2 naturally repositions from the previously designated "repressed" chromatin state in hematopoietic progenitors to predominant association with heterochromatin regions in granulocytes. In contrast, AML cells accumulate H3K9me2 on previously undefined large (> 100 Kb) genomic blocks that are enriched with AML-specific single nucleotide variants, sites of chromosomal translocations, and genes downregulated in AML. Specifically, the AML-specific H3K9me2 blocks are enriched with genes regulated by the proto-oncogene ERG that promotes stem cell characteristics. The AML-enriched H3K9me2 blocks (in contrast to the heterochromatin-associated H3K9me2 blocks enriched in granulocytes) are reduced by pharmacological inhibition of the histone methyltransferase G9a/GLP in K562 cells concomitantly with transcriptional activation of ERG and ETS1 oncogenes. Our data suggest that G9a/GLP mediate formation of transient H3K9me2 blocks that are preserved in AML myeloblasts and may lead to an increased rate of AML-specific mutagenesis and chromosomal translocations.


Assuntos
Mapeamento Cromossômico , Inativação Gênica , Instabilidade Genômica , Histonas/genética , Leucemia Mieloide Aguda/genética , Diferenciação Celular , Humanos , Células K562 , Leucemia Mieloide Aguda/patologia , Polimorfismo de Nucleotídeo Único , Proto-Oncogene Mas , Transcrição Gênica
15.
Oncotarget ; 8(18): 29887-29905, 2017 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-28187452

RESUMO

Previous studies have linked increased frequency of glycosylphosphatidylinositol-anchor protein (GPI-AP) deficiency with genomic instability and the risk of carcinogenesis. However, the underlying mechanism is still not clear. A randomForest analysis of the gene expression array data from 55 MDS patients (GSE4619) demonstrated a significant (p = 0.0007) correlation (Pearson r =-0.4068) between GPI-anchor biosynthesis gene expression and genomic instability, in which PIGN, a gene participating in GPI-AP biosynthesis, was ranked as the third most important in predicting risk of MDS progression. Furthermore, we observed that PIGN gene expression aberrations (increased transcriptional activity but diminished to no protein production) were associated with increased frequency of GPI-AP deficiency in leukemic cells during leukemic transformation/progression. PIGN gene expression aberrations were attributed to partial intron retentions between exons 14 and 15 resulting in frameshifts and premature termination which were confirmed by examining the RNA-seq data from a group of AML patients (phs001027.v1.p1). PIGN gene expression aberration correlated with the elevation of genomic instability marker expression that was independent of the TP53 regulatory pathway. Suppression/elimination of PIGN protein expression caused a similar pattern of genomic instability that was rescued by PIGN restoration. Finally, we found that PIGN bound to the spindle assembly checkpoint protein, MAD1, and regulated its expression during the cell cycle. In conclusion, PIGN gene is crucial in regulating mitotic integrity to maintain chromosomal stability and prevents leukemic transformation/progression.


Assuntos
Regulação Leucêmica da Expressão Gênica , Instabilidade Genômica , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/patologia , Síndromes Mielodisplásicas/genética , Síndromes Mielodisplásicas/patologia , Fosfotransferases/genética , Medula Óssea/patologia , Proteínas de Ciclo Celular/metabolismo , Transformação Celular Neoplásica/genética , Biologia Computacional/métodos , Progressão da Doença , Éxons , Feminino , Perfilação da Expressão Gênica , Técnicas de Silenciamento de Genes , Genes p53 , Humanos , Íntrons , Leucemia Mieloide Aguda/metabolismo , Masculino , Modelos Biológicos , Mutação , Proteínas Nucleares/metabolismo , Análise de Sequência de DNA , Transdução de Sinais , Fuso Acromático/metabolismo
16.
BMC Genomics ; 17(1): 936, 2016 11 17.
Artigo em Inglês | MEDLINE | ID: mdl-27855634

RESUMO

BACKGROUND: Diabetic nephropathy (DN) is a major complication of type1 and type 2 diabetes. Understanding how diabetes regulate transcriptome dynamics in DN is important for understanding the biology of the disease and for guiding development of new treatments. RESULTS: We analyzed the kidney transcriptome of a DN mouse model, D2.B6-Ins2 Akita /MatbJ, before/after treatment with P78-PEDF. Age, weight, and gender-matched mice and wild-type (wt) littermates were treated at 6 weeks (early treatment) or 12 weeks (late treatment) of age for the duration of 6 weeks. Animals were implanted with an osmotic mini pump delivering 0.3 ug/g/day P78-PEDF or vehicle. Using RNA-seq, we identified14,316 transcripts (12,328 coding;1,988 non-coding) that were significant and reliably expressed (FPKM > =1) in diabetic kidneys. Expression of 1,129 (7.9%) including 901 coding genes was altered by diabetes with log2 fold changes (FC) between -86.2 and +86.0 (q < 0.05) compared to wt. Of these, 164 (14.5%) showed increased and 965 (85.5%) decreased expression with FC > 1.5. Coding genes with highest FC in diabetic kidneys include Nhej1 (32.04), Ept1 (8.6), Srd5a2 (-6.55), Aif1 (-6.05), and Angptl7 (-4.71). Early and late stage diabetic groups receiving continuous infusion of P78 showed altered expression of 316/14,316 (2.2%) transcripts, including 121 coding genes compared to non-treated diabetic controls. Of these, 183 were upregulated and 133 downregulated with FC +50.9--93.3 (q < 0.05). P78 reversed diabetes-induced changes in 138/1129 (12.2%) transcripts, including 49/901 (5.44%) coding genes. Nhej1 (-37.94), Tceanc2 (5.76), Ept1 (-4.45), Ugt1a2 (3.03), and Tmsb15l (-3.0) showed the highest FC with treatment. The DNA repair gene, Nhej1 with the greatest FC in diabetic kidneys was completely restored to control levels by both early and late P78 treatments. Expression of other coding genes regulated by diabetes with FC > =(+/-) 1.5 and completely reversed by P78 include Mamdc4, Kdm4b, Tmem252, Selm, and Hpd. RT and QRT-PCR validated expression of gene with FC > (+/-)2.0. Transcriptome changes were also observed between early and late-stage treatments. Precursor non-coding miRNAs showed the highest fold changes in expression in the diabetic and P78 treatment groups. Several diabetic-induced changes were reversed in direction of expression by treatment including Gm24083, GM25953, miR1905, Gm25535, Gm27903, and miR196a1 with FC > =(+/-)20. From Ingenuity pathway analysis (IPA), mitochondrial dysfunction, Nrf-2- mediated oxidative stress and renal injury pathways emerged as key mechanisms in DN. DN-enriching genes in these pathways were reduced in number or regulated in the opposite direction by treatment. CONCLUSIONS: Unique biomarkers and canonical pathways identified in this study may hold the key to understanding mechanisms of DN pathobiology with value for clinical translation. Our data suggest that mitochondrial dysfunction, genotoxicity and oxidative stress are principal events in DN and that P78-PEDF holds promise for its management.


Assuntos
Nefropatias Diabéticas/genética , Proteínas do Olho/química , Regulação da Expressão Gênica/efeitos dos fármacos , Fatores de Crescimento Neural/química , Peptídeos/farmacologia , Serpinas/química , Transcriptoma , Animais , Análise por Conglomerados , Diabetes Mellitus Experimental , Nefropatias Diabéticas/tratamento farmacológico , Nefropatias Diabéticas/metabolismo , Modelos Animais de Doenças , Descoberta de Drogas , Perfilação da Expressão Gênica , Masculino , Camundongos , Camundongos Transgênicos , MicroRNAs/genética , MicroRNAs/metabolismo , Peptídeos/química , Mapeamento de Interação de Proteínas , Transdução de Sinais
17.
Mol Cell Neurosci ; 74: 78-86, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-27073125

RESUMO

Transmission of olfactory information to higher brain regions is mediated by olfactory bulb (OB) projection neurons, the mitral and tufted cells. Although mitral/tufted cells are often characterized as the OB counterpart of cortical projection neurons (also known as pyramidal neurons), they possess several unique morphological characteristics and project specifically to the olfactory cortices. Moreover, the molecular networks contributing to the generation of mitral/tufted cells during development are largely unknown. To understand the developmental patterns of gene expression in mitral/tufted cells in the OB, we performed transcriptome analyses targeting purified OB projection neurons at different developmental time points with next-generation RNA sequencing (RNA-seq). Through these analyses, we found 1202 protein-coding genes that are temporally differentially-regulated in developing projection neurons. Among them, 388 genes temporally changed their expression level only in projection neurons. The data provide useful resource to study the molecular mechanisms regulating development of mitral/tufted cells. We further compared the gene expression profiles of developing mitral/tufted cells with those of three cortical projection neuron subtypes, subcerebral projection neurons, corticothalamic projection neurons, and callosal projection neurons, and found that the molecular signature of developing olfactory projection neuron bears resemblance to that of subcerebral neurons. We also identified 3422 events that change the ratio of splicing isoforms in mitral/tufted cells during maturation. Interestingly, several genes expressed a novel isoform not previously reported. These results provide us with a broad perspective of the molecular networks underlying the development of OB projection neurons.


Assuntos
Neurônios/metabolismo , Bulbo Olfatório/metabolismo , Transcriptoma , Animais , Regulação da Expressão Gênica no Desenvolvimento , Camundongos , Bulbo Olfatório/citologia , Bulbo Olfatório/embriologia , Fases de Leitura Aberta
18.
Mol Neurobiol ; 53(7): 4563-81, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-26298666

RESUMO

Epigenetic modifiers can work in concert with transcription factors to control the transition of cells from proliferating progenitors into quiescent terminally differentiated cells. This transition involves changes in histone methylation and one of the key regulators of this is the H3K4me2/1 histone demethylase LSD1. Here, we show that the highest expression of LSD1 occurs in postmitotic retinal cells during the peak period of rod photoreceptor differentiation. Pharmacological inhibition of LSD1 in retinal explants cultured from PN1 to PN8 had three major effects. It prevented the normal decrease in expression of genes associated with progenitor function, it blocked rod photoreceptor development, and it increased expression of genes associated with other retinal cell types. The maintained expression of progenitor genes was associated with a maintained level of H3K4me2 over the gene and its promoter. Among the genes whose expression was maintained was Hes1, a repressor known to block rod photoreceptor development. The inhibition of rod photoreceptor gene expression occurred in spite of the normal expression of transcription factors CRX and NRL, and the normal accumulation of H3K4me2 marks over the promoter and gene body. We suggest that LSD1 acts in concert with a series of nuclear receptors to modify chromatin structure and repress progenitor genes as well as to inhibit ectopic patterns of gene expression in the differentiating postmitotic retinal cells.


Assuntos
Diferenciação Celular/fisiologia , Desmetilação , Histona Desmetilases/biossíntese , Histonas/biossíntese , Células-Tronco Neurais/metabolismo , Células Fotorreceptoras Retinianas Bastonetes/metabolismo , Animais , Animais Recém-Nascidos , Redes Reguladoras de Genes/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Neurogênese/fisiologia , Técnicas de Cultura de Órgãos
19.
Genom Data ; 5: 184-8, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26484253

RESUMO

Type 1 diabetes (T1D) is a T cell-mediated autoimmune disease resulting from the destruction of insulin-producing pancreatic beta cells and is fatal unless treated with insulin. During the last four decades, multiple insulin-dependent diabetes (Idd) susceptibility/resistance loci that regulate T1D development have been identified in humans and non-obese diabetic (NOD) mice, an established animal model for T1D. However, the exact mechanisms by which these loci confer diabetes risk and the identity of the causative genes remain largely elusive. To identify genes and molecular mechanisms that control the function of diabetogenic T cells, we conducted DNA microarray analysis in islet-specific CD4 + T cells from BDC2.5 TCR transgenic NOD mice that contain the Idd9 locus from T1D-susceptible NOD mice or T1D-resistant C57BL/10 mice. Here we describe in detail the contents and analyses for these gene expression data associated with our previous study [1]. Gene expression data are available at the Gene Expression Omnibus (GEO) repository from the National Center for Biotechnology Information (accession number GSE64674).

20.
Physiol Genomics ; 47(11): 569-80, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26351290

RESUMO

Consumption of a protein-containing meal by a fasted animal promotes protein accretion in skeletal muscle, in part through leucine stimulation of protein synthesis and indirectly through repression of protein degradation mediated by its metabolite, α-ketoisocaproate. Mice lacking the mitochondrial branched-chain aminotransferase (BCATm/Bcat2), which interconverts leucine and α-ketoisocaproate, exhibit elevated protein turnover. Here, the transcriptomes of gastrocnemius muscle from BCATm knockout (KO) and wild-type mice were compared by next-generation RNA sequencing (RNA-Seq) to identify potential adaptations associated with their persistently altered nutrient signaling. Statistically significant changes in the abundance of 1,486/∼39,010 genes were identified. Bioinformatics analysis of the RNA-Seq data indicated that pathways involved in protein synthesis [eukaryotic initiation factor (eIF)-2, mammalian target of rapamycin, eIF4, and p70S6K pathways including 40S and 60S ribosomal proteins], protein breakdown (e.g., ubiquitin mediated), and muscle degeneration (apoptosis, atrophy, myopathy, and cell death) were upregulated. Also in agreement with our previous observations, the abundance of mRNAs associated with reduced body size, glycemia, plasma insulin, and lipid signaling pathways was altered in BCATm KO mice. Consistently, genes encoding anaerobic and/or oxidative metabolism of carbohydrate, fatty acids, and branched chain amino acids were modestly but systematically reduced. Although there was no indication that muscle fiber type was different between KO and wild-type mice, a difference in the abundance of mRNAs associated with a muscular dystrophy phenotype was observed, consistent with the published exercise intolerance of these mice. The results suggest transcriptional adaptations occur in BCATm KO mice that along with altered nutrient signaling may contribute to their previously reported protein turnover, metabolic and exercise phenotypes.


Assuntos
Deleção de Genes , Proteínas Musculares/metabolismo , Músculo Esquelético/metabolismo , Transaminases/genética , Animais , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA