Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Matrix Biol Plus ; 9: 100053, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33718859

RESUMO

Alport syndrome (AS) is a severe inherited glomerulopathy caused by mutations in the genes encoding the α-chains of type-IV collagen, the most abundant component of the extracellular glomerular basement membrane (GBM). Currently most AS mouse models are knockout models for one of the collagen-IV genes. In contrast, about half of AS patients have missense mutations, with single aminoacid substitutions of glycine being the most common. The only mouse model for AS with a homozygous knockin missense mutation, Col4a3-p.Gly1332Glu, was partly described before by our group. Here, a detailed in-depth description of the same mouse is presented, along with another compound heterozygous mouse that carries the glycine substitution in trans with a knockout allele. Both mice recapitulate essential features of AS, including shorten lifespan by 30-35%, increased proteinuria, increased serum urea and creatinine, pathognomonic alternate GBM thinning and thickening, and podocyte foot process effacement. Notably, glomeruli and tubuli respond differently to mutant collagen-IV protomers, with reduced expression in tubules but apparently normal in glomeruli. However, equally important is the fact that in the glomeruli the mutant α3-chain as well as the normal α4/α5 chains seem to undergo a cleavage at, or near the point of the mutation, possibly by the metalloproteinase MMP-9, producing a 35 kDa C-terminal fragment. These mouse models represent a good tool for better understanding the spectrum of molecular mechanisms governing collagen-IV nephropathies and could be used for pre-clinical studies aimed at better treatments for AS.

2.
Nephrol Dial Transplant ; 34(10): 1780-1788, 2019 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-30844074

RESUMO

BACKGROUND: Complement factor H-related protein 5 (CFHR5) nephropathy is an inherited renal disease characterized by microscopic and synpharyngitic macroscopic haematuria, C3 glomerulonephritis and renal failure. It is caused by an internal duplication of exons 2-3 within the CFHR5 gene resulting in dysregulation of the alternative complement pathway. The clinical characteristics and outcomes of transplanted patients with this rare familial nephropathy remain unknown. METHODS: This is a retrospective case series study of 17 kidney transplant patients with the established founder mutation, followed-up over a span of 30 years. RESULTS: The mean (±SD) age of patients at the time of the study and at transplantation was 58.6 ± 9.9 and 46.7 ± 8.8 years, respectively. The 10- and 15-year patient survival rates were 100 and 77.8%, respectively. Proteinuria was present in 33.3% and microscopic haematuria in 58.3% of patients with a functional graft. Serum complement levels were normal in all. 'Confirmed' and 'likely' recurrence of CFHR5 nephropathy were 16.6 and 52.9%, respectively; however, 76.5% of patients had a functional graft after a median of 120 months post-transplantation. Total recurrence was not associated with graft loss (P = 0.171), but was associated with the presence of microscopic haematuria (P = 0.001) and proteinuria (P = 0.018). Graft loss was associated with the presence of proteinuria (P = 0.025). CONCLUSIONS: We describe for the first time the clinical characteristics and outcome of patients with CFHR5 nephropathy post-transplantation. Despite the recurrence of CFHR5 nephropathy, we provide evidence for a long-term favourable outcome and support the continued provision of kidney transplantation as a renal replacement option in patients with CFHR5 nephropathy.


Assuntos
Proteínas do Sistema Complemento/genética , Glomerulonefrite/mortalidade , Nefropatias/complicações , Transplante de Rim/mortalidade , Mutação , Adulto , Idoso , Feminino , Glomerulonefrite/etiologia , Glomerulonefrite/cirurgia , Humanos , Nefropatias/genética , Masculino , Pessoa de Meia-Idade , Prognóstico , Estudos Retrospectivos , Taxa de Sobrevida
3.
BMC Nephrol ; 19(1): 114, 2018 05 16.
Artigo em Inglês | MEDLINE | ID: mdl-29764427

RESUMO

BACKGROUND: About 40-50% of patients with familial microscopic hematuria (FMH) caused by thin basement membrane nephropathy (TBMN) inherit heterozygous mutations in collagen IV genes (COL4A3, COL4A4). On long follow-up, the full phenotypic spectrum of these patients varies a lot, ranging from isolated MH or MH plus low-grade proteinuria to chronic renal failure of variable degree, including end-stage renal disease (ESRD). METHODS: Here, we performed Whole Exome Sequencing (WES) in patients of six families, presenting with autosomal dominant FMH, with or without progression to proteinuria and loss of renal function, all previously found negative for severe collagen IV mutations. Hierarchical filtering of the WES data was performed, followed by mutation prediction analysis, Sanger sequencing and genetic segregation analysis. RESULTS: In one family with four patients, we found evidence for the contribution of two co-inherited variants in two crucial genes expressed in the glomerular basement membrane (GBM); LAMA5-p.Pro1243Leu and COL4A5-p.Asp654Tyr. Mutations in COL4A5 cause classical X-linked Alport Syndrome, while rare mutations in the LAMA5 have been reported in patients with focal segmental glomerulosclerosis. The phenotypic spectrum of the patients includes hematuria, proteinuria, focal segmental glomerulosclerosis, loss of kidney function and renal cortical cysts. CONCLUSIONS: A modifier role of LAMA5 on the background of a hypomorphic Alport syndrome causing mutation is a possible explanation of our findings. Digenic inheritance is another scenario, following the concept that mutations at both loci more accurately explain the spectrum of symptoms, but further investigation is needed under this concept. This is the third report linking a LAMA5 variant with human renal disease and expanding the spectrum of genes involved in glomerular pathologies accompanied by familial hematurias. The cystic phenotype overlaps with that of a mouse model, which carried a Lama5 hypomorphic mutation that caused severely reduced Lama5 protein levels and produced kidney cysts.


Assuntos
Colágeno Tipo IV/genética , Sequenciamento do Exoma/métodos , Variação Genética/genética , Hematúria/diagnóstico por imagem , Hematúria/genética , Laminina/genética , Adulto , Feminino , Testes Genéticos/métodos , Glomerulonefrite Membranosa/diagnóstico por imagem , Glomerulonefrite Membranosa/genética , Humanos , Masculino , Pessoa de Meia-Idade , Linhagem
4.
Nephrol Dial Transplant ; 32(6): 916-924, 2017 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-27190345

RESUMO

Alport syndrome (AS) is a genetic disease characterized by haematuric glomerulopathy variably associated with hearing loss and anterior lenticonus. It is caused by mutations in the COL4A3, COL4A4 or COL4A5 genes encoding the α3α4α5(IV) collagen heterotrimer. AS is rare, but it accounts for >1% of patients receiving renal replacement therapy. Angiotensin-converting enzyme inhibition slows, but does not stop, the progression to renal failure; therefore, there is an urgent requirement to expand and intensify research towards discovering new therapeutic targets and new therapies. The 2015 International Workshop on Alport Syndrome targeted unmet needs in basic science, genetics and diagnosis, clinical research and current clinical care. In three intensive days, more than 100 international experts including physicians, geneticists, researchers from academia and industry, and patient representatives from all over the world participated in panel discussions and breakout groups. This report summarizes the most important priority areas including (i) understanding the crucial role of podocyte protection and regeneration, (ii) targeting mutations by new molecular techniques for new animal models and potential gene therapy, (iii) creating optimal interaction between nephrologists and geneticists for early diagnosis, (iv) establishing standards for mutation screening and databases, (v) improving widespread accessibility to current standards of clinical care, (vi) improving collaboration with the pharmaceutical/biotech industry to investigate new therapies, (vii) research in hearing loss as a huge unmet need in Alport patients and (viii) the need to evaluate the risk and benefit of novel (including 'repurposing') therapies on an international basis.


Assuntos
Nefrite Hereditária/genética , Animais , Colágeno Tipo IV/genética , Terapia Genética , Humanos , Mutação , Avaliação das Necessidades , Nefrite Hereditária/terapia , Podócitos , Melhoria de Qualidade
5.
Case Rep Genet ; 2016: 5208312, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27123349

RESUMO

Fabry disease is an X-linked lysosomal storage disorder resulting from a deficiency of the hydrolytic enzyme α-galactosidase A (α-Gal-A). It is characterized by progressive lysosomal accumulation of globotriaosylceramide (Gb3) and multisystem pathology, affecting the skin, nervous and cerebrovascular systems, kidneys, and heart. Heterozygous females typically exhibit milder symptoms and a later age of onset than males. Rarely, they may be relatively asymptomatic throughout a normal life span or may have symptoms as severe as those observed in males with the classic phenotype. We report on a 17-year-old female in whom cornea verticillata was found during a routine ophthalmological examination but with no other clinical symptoms. Leucocyte α-galactosidase activity was within the overlap range between Fabry heterozygotes and normal controls. Sanger sequencing of the GLA gene failed to reveal any pathogenic variants. Multiplex Ligation-dependent Probe Amplification (MLPA) analysis revealed a deletion of exon 7. Using a long-range PCR walking approach, we managed to identify the deletion breakpoints. The deletion spans 1182 bp, with its 5' end located within exon 6 of the GLA gene and its 3' end located 612 bp downstream of exon 7. This finding represents a novel deletion identified in the first reported Cypriot female carrier of Fabry disease.

6.
Pharmacol Res ; 107: 205-210, 2016 05.
Artigo em Inglês | MEDLINE | ID: mdl-26995302

RESUMO

Alport syndrome (AS) is a hereditary progressive glomerulonephritis with a high life-time risk for end-stage renal disease (ESRD). Most patients will reach ESRD before the age of 30 years, while a subset of them with milder mutations will do so at older ages, even after 50 years. Frequent extrarenal manifestations are hearing loss and ocular abnormalities. AS is a genetically heterogeneous collagen IV nephropathy, with 85% of the cases caused by mutations in the X-linked COL4A5 gene and the rest by homozygous or compound heterozygous mutations in either the COL4A3 or the COL4A4 gene on chromosome 2q36-37. There is no radical cure for the disease and attempts to use various stem cell therapies in animal models have been met with ambiguous success. However, effective treatment has been accomplished with pharmacological intervention at the renin-angiotensin-aldosterone system (RAAS), first in animal models of AS and more recently in humans. Angiotensin converting enzyme inhibitors (ACEis) and angiotensin receptor blockers (ARBs) have been shown to significantly delay the progression of chronic kidney disease and the onset of ESRD. Also, renin inhibitors and aldosterone blockade were used with positive results, while the combination of ACEis and ARBs was met with mixed success. An important study, the EARLY-PROTECT, aims at evaluating the efficacy of ACEis when administered very early on in children with AS. Novel therapies are also tested experimentally or are under design in animal models by several groups, including the use of amniotic fluid stem cells and synthetic chaperones.


Assuntos
Antagonistas de Receptores de Angiotensina/farmacologia , Inibidores da Enzima Conversora de Angiotensina/farmacologia , Nefrite Hereditária/tratamento farmacológico , Sistema Renina-Angiotensina/efeitos dos fármacos , Antagonistas de Receptores de Angiotensina/uso terapêutico , Inibidores da Enzima Conversora de Angiotensina/uso terapêutico , Animais , Colágeno Tipo IV/genética , Humanos , Nefrite Hereditária/genética
7.
Nephron ; 130(3): 200-12, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26138234

RESUMO

BACKGROUND/AIMS: A subset of patients who present with proteinuria and are diagnosed with focal segmental glomerulosclerosis (FSGS) have inherited heterozygous COL4A3/A4 mutations and are also diagnosed with thin basement membrane nephropathy (TBMN-OMIM: 141200). Two studies showed that co-inheritance of NPHS2-p.Arg229Gln, a podocin variant, may increase the risk for proteinuria and renal function decline. METHODS: We hypothesized that additional podocin variants may exert a similar effect. We studied genetically a well-characterized Cypriot TBMN patient cohort by re-sequencing the NPHS2 coding region. We also performed functional studies in cell culture experiments, investigating the interaction of podocin variants with itself and with nephrin. RESULTS: Potentially disease-modifying podocin variants were searched for by analyzing NPHS2 in 35 'severe' TBMN patients. One non-synonymous variant, p.Glu237Gln, was detected. Both variants, p.Arg229Gln and p.Glu237Gln, were tested in a larger cohort of 122 TBMN patients, who were categorized as 'mild' or 'severe' based on the presence of microscopic hematuria alone or combined with chronic renal failure and/or proteinuria. Seven 'severe' patients carried either of the 2 variants; none was present in the 'mild' patients (p = 0.05, Pearson χ(2)). The 7 carriers belong in 2 families segregating mutation COL4A3-p.Gly1334Glu. Inheritance of the wild-type (WT) and mutant alleles correlated with the phenotype (combined concordance probability 0.003). Immunofluorescence (IF) experiments after dual co-transfection of WT and mutant podocin suggested altered co-localization of mutant homodimers. IF experiments after co-transfection of WT podocin and nephrin showed normal membrane localization, while both podocin variants interfered with normal trafficking, demonstrating perinuclear staining. Immunoprecipitation experiments showed stronger binding of mutant podocin to WT podocin or nephrin. CONCLUSION: The results support the hypothesis that certain hypomorphic podocin variants may act as adverse genetic modifiers when co-inherited with COL4A3/A4 mutations, thus predisposing to FSGS and severe kidney function decline.


Assuntos
Autoantígenos/genética , Colágeno Tipo IV/genética , Peptídeos e Proteínas de Sinalização Intracelular/genética , Falência Renal Crônica/genética , Proteínas de Membrana/genética , Idoso , Alelos , Estudos de Coortes , Progressão da Doença , Feminino , Membrana Basal Glomerular/patologia , Glomerulosclerose Segmentar e Focal/genética , Glomerulosclerose Segmentar e Focal/patologia , Heterozigoto , Humanos , Falência Renal Crônica/epidemiologia , Falência Renal Crônica/patologia , Masculino , Pessoa de Meia-Idade , Mutação/genética , Linhagem , Proteinúria/epidemiologia , Proteinúria/genética , Fatores Sexuais
8.
Nephron ; 130(4): 271-80, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26201269

RESUMO

Collagen IV nephropathies (COL4Ns) comprise benign familial microscopic hematuria, thin basement membrane nephropathy (TBMN), X-linked Alport syndrome (AS) and also autosomal recessive and dominant AS. Apart from the X-linked form of AS, which is caused by hemizygous mutations in the COL4A5 gene, the other entities are caused by mutations in the COL4A3 or COL4A4 genes. The diagnosis of these conditions used to be based on clinical and/or histological findings of renal biopsies, but it is the new molecular genetics approach that revolutionised their investigation and proved particularly instrumental, especially, in many not so clear-cut cases. More recently, the spectrum of COL4N has expanded to include late onset focal segmental glomerulosclerosis (FSGS) that develops on top of TBMN in later life. Also, other reports showed that some patients with a primary diagnosis of familial FSGS proved to have variants in COL4 genes. In the presence of a renal biopsy picture of FSGS and in the absence of either electron microscopy studies or molecular genetic studies that point to TBMN and COL4N, the patient and his family may be mistakenly diagnosed with hereditary FSGS leading to unnecessary further investigations, erroneous family counselling and improper corticosteroid treatment. TBMN is a frequent finding in the general population, and according to several recent reports, it may be the underlying cause and the explanation for many familial and sporadic cases of late-onset FSGS with non-nephrotic proteinuria. This is an important new finding that needs widespread recognition. It is anticipated that the molecular genetic analysis with next generation sequencing will certainly offer timely correct diagnosis.


Assuntos
Glomerulonefrite Membranosa/genética , Glomerulonefrite Membranosa/patologia , Glomerulosclerose Segmentar e Focal/genética , Glomerulosclerose Segmentar e Focal/patologia , Heterozigoto , Nefrite Hereditária/genética , Nefrite Hereditária/patologia , Colágeno Tipo IV/genética , Progressão da Doença , Humanos
9.
PLoS One ; 9(12): e115015, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25514610

RESUMO

Familial glomerular hematuria(s) comprise a genetically heterogeneous group of conditions which include Alport Syndrome (AS) and thin basement membrane nephropathy (TBMN). Here we investigated 57 Greek-Cypriot families presenting glomerular microscopic hematuria (GMH), with or without proteinuria or chronic kidney function decline, but excluded classical AS. We specifically searched the COL4A3/A4 genes and identified 8 heterozygous mutations in 16 families (28,1%). Eight non-related families featured the founder mutation COL4A3-p.(G1334E). Renal biopsies from 8 patients showed TBMN and focal segmental glomerulosclerosis (FSGS). Ten patients (11.5%) reached end-stage kidney disease (ESKD) at ages ranging from 37-69-yo (mean 50,1-yo). Next generation sequencing of the patients who progressed to ESKD failed to reveal a second mutation in any of the COL4A3/A4/A5 genes, supporting that true heterozygosity for COL4A3/A4 mutations predisposes to CRF/ESKD. Although this could be viewed as a milder and late-onset form of autosomal dominant AS, we had no evidence of ultrastructural features or extrarenal manifestations that would justify this diagnosis. Functional studies in cultured podocytes transfected with wild type or mutant COL4A3 chains showed retention of mutant collagens and differential activation of the unfolded protein response (UPR) cascade. This signifies the potential role of the UPR cascade in modulating the final phenotype in patients with collagen IV nephropathies.


Assuntos
Autoantígenos/genética , Colágeno Tipo IV/genética , Membrana Basal Glomerular/patologia , Glomerulosclerose Segmentar e Focal/genética , Hematúria/genética , Adulto , Idoso , Envelhecimento , Sequência de Bases , Linhagem Celular , Feminino , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Falência Renal Crônica/genética , Falência Renal Crônica/patologia , Masculino , Pessoa de Meia-Idade , Mutação/genética , Nefrite Hereditária/genética , Podócitos/metabolismo , Análise de Sequência de DNA , Resposta a Proteínas não Dobradas/genética
10.
J Am Soc Nephrol ; 25(2): 260-75, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24262798

RESUMO

Thin-basement-membrane nephropathy (TBMN) and Alport syndrome (AS) are progressive collagen IV nephropathies caused by mutations in COL4A3/A4/A5 genes. These nephropathies invariably present with microscopic hematuria and frequently progress to proteinuria and CKD or ESRD during long-term follow-up. Nonetheless, the exact molecular mechanisms by which these mutations exert their deleterious effects on the glomerulus remain elusive. We hypothesized that defective trafficking of the COL4A3 chain causes a strong intracellular effect on the cell responsible for COL4A3 expression, the podocyte. To this end, we overexpressed normal and mutant COL4A3 chains (G1334E mutation) in human undifferentiated podocytes and tested their effects in various intracellular pathways using a microarray approach. COL4A3 overexpression in the podocyte caused chain retention in the endoplasmic reticulum (ER) that was associated with activation of unfolded protein response (UPR)-related markers of ER stress. Notably, the overexpression of normal or mutant COL4A3 chains differentially activated the UPR pathway. Similar results were observed in a novel knockin mouse carrying the Col4a3-G1332E mutation, which produced a phenotype consistent with AS, and in biopsy specimens from patients with TBMN carrying a heterozygous COL4A3-G1334E mutation. These results suggest that ER stress arising from defective localization of collagen IV chains in human podocytes contributes to the pathogenesis of TBMN and AS through activation of the UPR, a finding that may pave the way for novel therapeutic interventions for a variety of collagenopathies.


Assuntos
Colágeno Tipo IV/deficiência , Estresse do Retículo Endoplasmático/fisiologia , Membrana Basal Glomerular/metabolismo , Nefrite Hereditária/metabolismo , Podócitos/metabolismo , Resposta a Proteínas não Dobradas/fisiologia , Animais , Autoantígenos/genética , Autoantígenos/fisiologia , Biópsia , Células Cultivadas , Colágeno Tipo IV/genética , Colágeno Tipo IV/fisiologia , Proteínas de Ligação a DNA/metabolismo , Modelos Animais de Doenças , Chaperona BiP do Retículo Endoplasmático , Perfilação da Expressão Gênica , Técnicas de Introdução de Genes , Membrana Basal Glomerular/patologia , Proteínas de Choque Térmico/biossíntese , Proteínas de Choque Térmico/genética , Heterozigoto , Humanos , Rim/metabolismo , Rim/patologia , Camundongos , Mutação de Sentido Incorreto , Nefrite Hereditária/genética , Nefrite Hereditária/patologia , Análise de Sequência com Séries de Oligonucleotídeos , Podócitos/patologia , Mutação Puntual , Análise Serial de Proteínas , Transporte Proteico , Interferência de RNA , RNA Interferente Pequeno/farmacologia , Proteínas Recombinantes de Fusão , Fatores de Transcrição de Fator Regulador X , Fatores de Transcrição/metabolismo , Transfecção
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA