RESUMO
The middle (MID) domain of eukaryotic Argonaute (Ago) proteins and archaeal and bacterial homologues mediates the interaction with the 5'-terminal nucleotide of miRNA and siRNA guide strands. The MID domain of human Ago2 (hAgo2) is comprised of 139 amino acids with a molecular weight of 15.56 kDa. MID adopts a Rossman-like beta1-alpha1-beta2-alpha2-beta3-alpha3-beta4-alpha4 fold with a nucleotide specificity loop between beta3 and alpha3. Multiple crystal structures of nucleotides bound to hAgo2 MID have been reported, whereby complexes were obtained by soaking ligands into crystals of MID domain alone. This protocol describes a simplified one-step approach to grow well-diffracting crystals of hAgo2 MID-nucleotide complexes by mixing purified His6-SUMO-MID fusion protein, Ulp1 protease, and excess nucleotide in the presence of buffer and precipitant. The crystal structures of MID complexes with UMP, UTP and 2'-3' linked α-L-threofuranosyl thymidine-3'-triphosphate (tTTP) are presented. This article also describes fluorescence-based assays to measure dissociation constants (Kd) of MID-nucleotide interactions for nucleoside 5'-monophosphates and nucleoside 3',5'-bisphosphates. © 2024 The Authors. Current Protocols published by Wiley Periodicals LLC. Basic Protocol 1: Crystallization of Ago2 MID-nucleotide complexes Basic Protocol 2: Measurement of dissociation constant Kd between Ago2 MID and nucleotides.
Assuntos
Proteínas Argonautas , Humanos , Proteínas Argonautas/química , Proteínas Argonautas/metabolismo , Cristalografia por Raios X , Nucleotídeos/metabolismo , Nucleotídeos/química , Ligação Proteica , Histidina/química , Histidina/metabolismo , Cristalização , Domínios Proteicos , OligopeptídeosRESUMO
Homology Directed Repair (HDR)-based genome editing is an approach that could permanently correct a broad range of genetic diseases. However, its utility is limited by inefficient and imprecise DNA repair mechanisms in terminally differentiated tissues. Here, we tested "Repair Drive", a novel method for improving targeted gene insertion in the liver by selectively expanding correctly repaired hepatocytes in vivo. Our system consists of transient conditioning of the liver by knocking down an essential gene, and delivery of an untargetable version of the essential gene in cis with a therapeutic transgene. We show that Repair Drive dramatically increases the percentage of correctly targeted hepatocytes, up to 25%. This resulted in a five-fold increased expression of a therapeutic transgene. Repair Drive was well-tolerated and did not induce toxicity or tumorigenesis in long term follow up. This approach will broaden the range of liver diseases that can be treated with somatic genome editing.
RESUMO
Chemical modifications are necessary to ensure the metabolic stability and efficacy of oligonucleotide-based therapeutics. Here, we describe analyses of the α-(l)-threofuranosyl nucleic acid (TNA) modification, which has a shorter 3'-2' internucleotide linkage than the natural DNA and RNA, in the context of small interfering RNAs (siRNAs). The TNA modification enhanced nuclease resistance more than 2'-O-methyl or 2'-fluoro ribose modifications. TNA-containing siRNAs were prepared as triantennary N-acetylgalactosamine conjugates and were tested in cultured cells and mice. With the exceptions of position 2 of the antisense strand and position 11 of the sense strand, the TNA modification did not inhibit the activity of the RNA interference machinery. In a rat toxicology study, TNA placed at position 7 of the antisense strand of the siRNA mitigated off-target effects, likely due to the decrease in the thermodynamic binding affinity relative to the 2'-O-methyl residue. Analysis of the crystal structure of an RNA octamer with a single TNA on each strand showed that the tetrose sugar adopts a C4'-exo pucker. Computational models of siRNA antisense strands containing TNA bound to Argonaute 2 suggest that TNA is well accommodated in the region kinked by the enzyme. The combined data indicate that the TNA nucleotides are promising modifications expected to increase the potency, duration of action, and safety of siRNAs.
Assuntos
Ácidos Nucleicos , Animais , Camundongos , Ratos , RNA Interferente Pequeno , Nucleotídeos , Interferência de RNA , AcetilgalactosaminaRESUMO
Adeno-associated virus (AAV)-based gene therapy could be facilitated by the development of molecular switches to control the magnitude and timing of expression of therapeutic transgenes. RNA interference (RNAi)-based approaches hold unique potential as a clinically proven modality to pharmacologically regulate AAV gene dosage in a sequence-specific manner. We present a generalizable RNAi-based rheostat wherein hepatocyte-directed AAV transgene expression is silenced using the clinically validated modality of chemically modified small interfering RNA (siRNA) conjugates or vectorized co-expression of short hairpin RNA (shRNA). For transgene induction, we employ REVERSIR technology, a synthetic high-affinity oligonucleotide complementary to the siRNA or shRNA guide strand to reverse RNAi activity and rapidly recover transgene expression. For potential clinical development, we report potent and specific siRNA sequences that may allow selective regulation of transgenes while minimizing unintended off-target effects. Our results establish a conceptual framework for RNAi-based regulatory switches with potential for infrequent dosing in clinical settings to dynamically modulate expression of virally-delivered gene therapies.
Assuntos
Dependovirus , Terapia Genética , Interferência de RNA , Dependovirus/genética , Dependovirus/metabolismo , RNA Interferente Pequeno/metabolismo , Transgenes , RNA de Cadeia Dupla , Vetores Genéticos/genéticaRESUMO
Glycol nucleic acid (GNA) is an acyclic nucleic acid analog connected via phosphodiester bonds. Crystal structures of RNA-GNA chimeric duplexes indicated that nucleotides of the right-handed (S)-GNA were better accommodated in the right-handed RNA duplex than were the left-handed (R)-isomers. GNA nucleotides adopt a rotated nucleobase orientation within all duplex contexts, pairing with complementary RNA in a reverse Watson-Crick mode, which explains the inabilities of GNA C and G to form strong base pairs with complementary nucleotides. Transposition of the hydrogen bond donor and acceptor pairs using novel (S)-GNA isocytidine and isoguanosine nucleotides resulted in stable base-pairing with the complementary G and C ribonucleotides, respectively. GNA nucleotide or dinucleotide incorporation into an oligonucleotide increased resistance against 3'-exonuclease-mediated degradation. Consistent with the structural observations, small interfering RNAs (siRNAs) modified with (S)-GNA had greater in vitro potencies than identical sequences containing (R)-GNA. (S)-GNA is well tolerated in the seed regions of antisense and sense strands of a GalNAc-conjugated siRNA in vitro. The siRNAs containing a GNA base pair in the seed region had in vivo potency when subcutaneously injected into mice. Importantly, seed pairing destabilization resulting from a single GNA nucleotide at position 7 of the antisense strand mitigated RNAi-mediated off-target effects in a rodent model. Two GNA-modified siRNAs have shown an improved safety profile in humans compared with their non-GNA-modified counterparts, and several additional siRNAs containing the GNA modification are currently in clinical development.
Assuntos
Ácidos Nucleicos , Humanos , Animais , Camundongos , Ácidos Nucleicos/química , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/química , Terapêutica com RNAi , Glicóis/química , Nucleotídeos/química , Conformação de Ácido NucleicoRESUMO
Preclinical mechanistic studies have pointed towards RNA interference-mediated off-target effects as a major driver of hepatotoxicity for GalNAc-siRNA conjugates. Here, we demonstrate that a single glycol nucleic acid or 2'-5'-RNA modification can substantially reduce small interfering RNA (siRNA) seed-mediated binding to off-target transcripts while maintaining on-target activity. In siRNAs with established hepatotoxicity driven by off-target effects, these novel designs with seed-pairing destabilization, termed enhanced stabilization chemistry plus (ESC+), demonstrated a substantially improved therapeutic window in rats. In contrast, siRNAs thermally destabilized to a similar extent by the incorporation of multiple DNA nucleotides in the seed region showed little to no improvement in rat safety suggesting that factors in addition to global thermodynamics play a role in off-target mitigation. We utilized the ESC+ strategy to improve the safety of ALN-HBV, which exhibited dose-dependent, transient and asymptomatic alanine aminotransferase elevations in healthy volunteers. The redesigned ALN-HBV02 (VIR-2218) showed improved specificity with comparable on-target activity and the program was reintroduced into clinical development.
Assuntos
RNA Interferente Pequeno , Animais , Ratos , RNA Interferente Pequeno/genéticaRESUMO
Therapeutics based on short interfering RNAs (siRNAs) delivered to hepatocytes have been approved, but new delivery solutions are needed to target additional organs. Here we show that conjugation of 2'-O-hexadecyl (C16) to siRNAs enables safe, potent and durable silencing in the central nervous system (CNS), eye and lung in rodents and non-human primates with broad cell type specificity. We show that intrathecally or intracerebroventricularly delivered C16-siRNAs were active across CNS regions and cell types, with sustained RNA interference (RNAi) activity for at least 3 months. Similarly, intravitreal administration to the eye or intranasal administration to the lung resulted in a potent and durable knockdown. The preclinical efficacy of an siRNA targeting the amyloid precursor protein was evaluated through intracerebroventricular dosing in a mouse model of Alzheimer's disease, resulting in amelioration of physiological and behavioral deficits. Altogether, C16 conjugation of siRNAs has the potential for safe therapeutic silencing of target genes outside the liver with infrequent dosing.
Assuntos
Precursor de Proteína beta-Amiloide , Terapêutica com RNAi , Animais , Camundongos , Primatas/genética , Primatas/metabolismo , Interferência de RNA , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/uso terapêuticoRESUMO
Toward the goal of evaluation of carbocyclic ribonucleoside-containing oligonucleotide therapeutics, we developed convenient, scalable syntheses of all four carbocyclic ribonucleotide phosphoramidites and the uridine solid-support building block. Crystallographic analysis confirmed configuration and stereochemistry of these building blocks. Duplexes with carbocyclic RNA (car-RNA) modifications in one strand were less thermodynamically stable than duplexes with unmodified RNA. However, circular dichroism spectroscopy indicated that global conformations of the duplexes containing car-RNAs were similar to those in the unmodified duplexes.
Assuntos
RibonucleotídeosRESUMO
We recently reported that RNAi-mediated off-target effects are important drivers of the hepatotoxicity observed for a subset of GalNAc-siRNA conjugates in rodents, and that these findings could be mitigated by seed-pairing destabilization using a single GNA nucleotide placed within the seed region of the guide strand. Here, we report further investigation of the unique and poorly understood GNA/RNA cross-pairing behavior to better inform GNA-containing siRNA design. A reexamination of published GNA homoduplex crystal structures, along with a novel structure containing a single (S)-GNA-A residue in duplex RNA, indicated that GNA nucleotides universally adopt a rotated nucleobase orientation within all duplex contexts. Such an orientation strongly affects GNA-C and GNA-G but not GNA-A or GNA-T pairing in GNA/RNA heteroduplexes. Transposition of the hydrogen-bond donor/acceptor pairs using the novel (S)-GNA-isocytidine and -isoguanosine nucleotides could rescue productive base-pairing with the complementary G or C ribonucleotides, respectively. GalNAc-siRNAs containing these GNA isonucleotides showed an improved in vitro activity, a similar improvement in off-target profile, and maintained in vivo activity and guide strand liver levels more consistent with the parent siRNAs than those modified with isomeric GNA-C or -G, thereby expanding our toolbox for the design of siRNAs with minimized off-target activity.
Assuntos
Adenosina/química , Citidina/química , Glicóis/química , Guanosina/química , Oligorribonucleotídeos/química , RNA de Cadeia Dupla/química , RNA Interferente Pequeno/química , Acetilgalactosamina , Oxirredutases do Álcool/antagonistas & inibidores , Oxirredutases do Álcool/genética , Oxirredutases do Álcool/metabolismo , Animais , Pareamento de Bases , Células COS , Chlorocebus aethiops , Dimetilformamida/análogos & derivados , Dimetilformamida/química , Etilaminas/química , Feminino , Hepatócitos/citologia , Hepatócitos/metabolismo , Ligação de Hidrogênio , Camundongos , Camundongos Endogâmicos C57BL , Oligorribonucleotídeos/genética , Oligorribonucleotídeos/metabolismo , Compostos Organofosforados/química , Pré-Albumina/antagonistas & inibidores , Pré-Albumina/genética , Pré-Albumina/metabolismo , Cultura Primária de Células , Estabilidade de RNA , RNA de Cadeia Dupla/genética , RNA de Cadeia Dupla/metabolismo , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismoRESUMO
We recently reported the synthesis of 2'-fluorinated Northern-methanocarbacyclic (2'-F-NMC) nucleotides, which are based on a bicyclo[3.1.0]hexane scaffold. Here, we analyzed RNAi-mediated gene silencing activity in cell culture and demonstrated that a single incorporation of 2'-F-NMC within the guide or passenger strand of the tri-N-acetylgalactosamine-conjugated siRNA targeting mouse Ttr was generally well tolerated. Exceptions were incorporation of 2'-F-NMC into the guide strand at positions 1 and 2, which resulted in a loss of the in vitro activity. Activity at position 1 was recovered when the guide strand was modified with a 5' phosphate, suggesting that the 2'-F-NMC is a poor substrate for 5' kinases. In mice, the 2'-F-NMC-modified siRNAs had comparable RNAi potencies to the parent siRNA. 2'-F-NMC residues in the guide seed region position 7 and at positions 10, 11 and 12 were well tolerated. Surprisingly, when the 5'-phosphate mimic 5'-(E)-vinylphosphonate was attached to the 2'-F-NMC at the position 1 of the guide strand, activity was considerably reduced. The steric constraints of the bicyclic 2'-F-NMC may impair formation of hydrogen-bonding interactions between the vinylphosphonate and the MID domain of Ago2. Molecular modeling studies explain the position- and conformation-dependent RNAi-mediated gene silencing activity of 2'-F-NMC. Finally, the 5'-triphosphate of 2'-F-NMC is not a substrate for mitochondrial RNA and DNA polymerases, indicating that metabolites should not be toxic.
Assuntos
Nucleotídeos/química , Interferência de RNA , RNA Interferente Pequeno/química , Animais , Proteínas Argonautas/química , Células COS , Células Cultivadas , Chlorocebus aethiops , DNA Polimerase gama/metabolismo , RNA Polimerases Dirigidas por DNA/metabolismo , Camundongos , Mitocôndrias/enzimologia , Proteínas Mitocondriais/metabolismo , Modelos Moleculares , Compostos Organofosforados/síntese química , Compostos Organofosforados/química , Pré-Albumina/genética , Nucleotídeos de Pirimidina/síntese química , Nucleotídeos de Pirimidina/química , Uridina/análogos & derivadosRESUMO
GNRA (N = A, C, G, or U; R = A or G) tetraloops are common RNA secondary structural motifs and feature a phosphate stacked atop a nucleobase. The rRNA sarcin/ricin loop (SRL) is capped by GApGA, and the phosphate p stacks on G. We recently found that regiospecific incorporation of a single dithiophosphate (PS2) but not a monothiophosphate (PSO) instead of phosphate in the backbone of RNA aptamers dramatically increases the binding affinity for their targets. In the RNA:thrombin complex, the key contribution to the 1000-fold tighter binding stems from an edge-on contact between PS2 and a phenylalanine ring. Here we investigated the consequences of replacing the SRL phosphate engaged in a face-on interaction with guanine with either PS2 or PSO for stability. We found that PS2···G and Rp-PSO···G contacts stabilize modified SRLs compared to the parent loop to unexpected levels: up to 6.3 °C in melting temperature Tm and -4.7 kcal/mol in ΔΔG°. Crystal structures demonstrate that the vertical distance to guanine for the closest sulfur is just 0.05 Å longer on average compared to that of oxygen despite the larger van der Waals radius of the former (1.80 Å for S vs 1.52 Å for O). The higher stability is enthalpy-based, and the negative charge as assessed by a neutral methylphosphonate modification plays only a minor role. Quantum mechanical/molecular mechanical calculations are supportive of favorable dispersion attraction interactions by sulfur making the dominant contribution. A stacking interaction between phosphate and guanine (SRL) or uracil (U-turn) is also found in newly classified RNA tetraloop families besides GNRA.
Assuntos
Motivos de Nucleotídeos , RNA/química , Cristalografia por Raios X , Interações Hidrofóbicas e Hidrofílicas , Modelos Moleculares , Conformação de Ácido Nucleico , Fosfatos/química , RNA/genética , Estabilidade de RNA , RNA Bacteriano/química , RNA Bacteriano/genética , RNA Ribossômico 23S/química , RNA Ribossômico 23S/genética , TermodinâmicaRESUMO
Various chemical modifications have been identified that enhance potency of small interfering RNAs (siRNAs) and that reduce off-target effects, immune stimulation, and toxicities of metabolites of these therapeutic agents. We previously described 5'-C-methyl pyrimidine nucleotides also modified at the 2' position of the sugar. Here, we describe the synthesis of 2'-position unmodified 5'-(R)- and 5'-(S)-C-methyl guanosine and evaluation of these nucleotides in the context of siRNA. The (R) isomer provided protection from 5' exonuclease and the (S) isomer provided protection from 3' exonuclease in the context of a terminally modified oligonucleotide. siRNA potency was maintained when these modifications were incorporated at the tested positions of sense and antisense strands. Moreover, the corresponding 5' triphosphates were not substrates for mitochondrial DNA polymerase. Models generated based on crystal structures of 5' and 3' exonuclease oligonucleotide complexes with 5'-(R)- and 5'-(S)-C-methyl substituents attached to the 5'- and 3'-terminal nucleotides, respectively, provided insight into the origins of the observed protections. Structural properties of 5'-(R)-C-methyl guanosine incorporated into an RNA octamer were analysed by X-ray crystallography, and the structure explains the loss in duplex thermal stability for the (R) isomer compared with the (S) isomer. Finally, the effect of 5'-C-methylation on endoribonuclease activity has been explained.
Assuntos
Guanosina/análogos & derivados , RNA Interferente Pequeno , Isomerismo , Modelos Moleculares , Conformação de Ácido Nucleico , RNA Interferente Pequeno/síntese química , RNA Interferente Pequeno/químicaRESUMO
One hallmark of trivalent N-acetylgalactosamine (GalNAc)-conjugated siRNAs is the remarkable durability of silencing that can persist for months in preclinical species and humans. Here, we investigated the underlying biology supporting this extended duration of pharmacological activity. We found that siRNA accumulation and stability in acidic intracellular compartments is critical for long-term activity. We show that functional siRNA can be liberated from these compartments and loaded into newly generated Argonaute 2 protein complexes weeks after dosing, enabling continuous RNAi activity over time. Identical siRNAs delivered in lipid nanoparticles or as GalNAc conjugates were dose-adjusted to achieve similar knockdown, but only GalNAc-siRNAs supported an extended duration of activity, illustrating the importance of receptor-mediated siRNA trafficking in the process. Taken together, we provide several lines of evidence that acidic intracellular compartments serve as a long-term depot for GalNAc-siRNA conjugates and are the major contributor to the extended duration of activity observed in vivo.
Assuntos
Acetilgalactosamina/metabolismo , Receptor de Asialoglicoproteína/metabolismo , Portadores de Fármacos , Inativação Gênica , Pré-Albumina/genética , RNA Interferente Pequeno/metabolismo , Acetilgalactosamina/química , Animais , Proteínas Argonautas/genética , Receptor de Asialoglicoproteína/genética , Transporte Biológico , Estabilidade de Medicamentos , Feminino , Glicoconjugados/química , Glicoconjugados/metabolismo , Hepatócitos/citologia , Hepatócitos/metabolismo , Humanos , Concentração de Íons de Hidrogênio , Fígado/citologia , Fígado/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Nanopartículas/química , Nanopartículas/metabolismo , Pré-Albumina/antagonistas & inibidores , Pré-Albumina/metabolismo , RNA Interferente Pequeno/genética , Fatores de TempoRESUMO
In this report, we investigated the hexopyranose chemical modification Altriol Nucleic Acid (ANA) within small interfering RNA (siRNA) duplexes that were otherwise fully modified with the 2'-deoxy-2'-fluoro and 2'-O-methyl pentofuranose chemical modifications. The siRNAs were designed to silence the transthyretin (Ttr) gene and were conjugated to a trivalent N-acetylgalactosamine (GalNAc) ligand for targeted delivery to hepatocytes. Sense and antisense strands of the parent duplex were synthesized with single ANA residues at each position on the strand, and the resulting siRNAs were evaluated for their ability to inhibit Ttr mRNA expression in vitro. Although ANA residues were detrimental at the 5' end of the antisense strand, the siRNAs with ANA at position 6 or 7 in the seed region had activity comparable to the parent. The siRNA with ANA at position 7 in the seed region was active in a mouse model. An Oligonucleotide with ANA at the 5' end was more stable in the presence of 5'-exonuclease than an oligonucleotide of the same sequence and chemical composition without the ANA modification. Modeling studies provide insight into the origins of regiospecific changes in potency of siRNAs and the increased protection against 5'-exonuclease degradation afforded by the ANA modification.
Assuntos
Acetilgalactosamina/química , Carboidratos/química , Interferência de RNA , RNA Interferente Pequeno/química , Álcoois Açúcares/química , Animais , Células COS , Chlorocebus aethiops , Exorribonucleases , Hepatócitos/metabolismo , Camundongos , Conformação de Ácido Nucleico , Pré-Albumina/genética , Ribonucleotídeos/químicaRESUMO
For oligonucleotide therapeutics, chemical modifications of the sugar-phosphate backbone are frequently used to confer drug-like properties. Because 2'-deoxy-2'-fluoro (2'-F) nucleotides are not known to occur naturally, their safety profile was assessed when used in revusiran and ALN-TTRSC02, two short interfering RNAs (siRNAs), of the same sequence but different chemical modification pattern and metabolic stability, conjugated to an N-acetylgalactosamine (GalNAc) ligand for targeted delivery to hepatocytes. Exposure to 2'-F-monomer metabolites was low and transient in rats and humans. In vitro, 2'-F-nucleoside 5'-triphosphates were neither inhibitors nor preferred substrates for human polymerases, and no obligate or non-obligate chain termination was observed. Modest effects on cell viability and mitochondrial DNA were observed in vitro in a subset of cell types at high concentrations of 2'-F-nucleosides, typically not attained in vivo. No apparent functional impact on mitochondria and no significant accumulation of 2'-F-monomers were observed after weekly administration of two GalNAc-siRNA conjugates in rats for â¼2 years. Taken together, the results support the conclusion that 2'-F nucleotides can be safely applied for the design of metabolically stabilized therapeutic GalNAc-siRNAs with favorable potency and prolonged duration of activity allowing for low dose and infrequent dosing.
Assuntos
Acetilgalactosamina/efeitos adversos , Acetilgalactosamina/química , Desoxirribonucleotídeos/efeitos adversos , Desoxirribonucleotídeos/química , Flúor/química , RNA Interferente Pequeno/efeitos adversos , RNA Interferente Pequeno/química , Animais , Feminino , Flúor/efeitos adversos , Humanos , Masculino , Ratos , Ratos Sprague-DawleyRESUMO
Interactions between glycans and glycan binding proteins are essential for numerous processes in all kingdoms of life. Glycan microarrays are an excellent tool to examine protein-glycan interactions. Here, we present a microbe-focused glycan microarray platform based on oligosaccharides obtained by chemical synthesis. Glycans were generated by combining different carbohydrate synthesis approaches including automated glycan assembly, solution-phase synthesis, and chemoenzymatic methods. The current library of more than 300 glycans is as diverse as the mammalian glycan array from the Consortium for Functional Glycomics and, due to its microbial focus, highly complementary. This glycan platform is essential for the characterization of various classes of glycan binding proteins. Applications of this glycan array platform are highlighted by the characterization of innate immune receptors and bacterial virulence factors as well as the analysis of human humoral immunity to pathogenic glycans.
Assuntos
Proteínas de Transporte/química , Análise em Microsséries/métodos , Polissacarídeos/química , Polissacarídeos/imunologia , Animais , Antígenos de Bactérias/química , Antígenos de Bactérias/imunologia , Células CHO , Cricetulus , Glicômica , Humanos , Sistema Imunitário , Lectinas , Oligossacarídeos , Polissacarídeos/classificação , Ligação Proteica , Proteínas Recombinantes , Especificidade da EspécieRESUMO
We report rapid, potent reversal of GalNAc-siRNA-mediated RNA interference (RNAi) activity in vivo with short, synthetic, high-affinity oligonucleotides complementary to the siRNA guide strand. We found that 9-mers with five locked nucleic acids (LNAs) have the highest potency across several targets. Our modular, sequence-specific approach, named REVERSIR, may enhance the therapeutic profile of any long-acting GalNAc-siRNA (short interfering RNA) conjugate by enabling control of RNAi pharmacology.
Assuntos
Inativação Gênica , RNA Interferente Pequeno/genética , Acetilgalactosamina/genética , Animais , Sequência de Bases , Biotecnologia , Células Cultivadas , Feminino , Hepatócitos/metabolismo , Humanos , Ligantes , Camundongos , Camundongos Endogâmicos C57BL , Oligonucleotídeos/química , Oligonucleotídeos/genética , Interferência de RNA , RNA Interferente Pequeno/químicaRESUMO
Significant progress has been made in the advancement of RNAi therapeutics by combining a synthetic triantennary N-acetylgalactosamine ligand targeting the asialoglycoprotein receptor with chemically modified small interfering RNA (siRNA) designs, including the recently described Enhanced Stabilization Chemistry. This strategy has demonstrated robust RNAi-mediated gene silencing in liver after subcutaneous administration across species, including human. Here we demonstrate that substantial efficacy improvements can be achieved through further refinement of siRNA chemistry, optimizing the positioning of 2'-deoxy-2'-fluoro and 2'-O-methyl ribosugar modifications across both strands of the double-stranded siRNA duplex to enhance stability without compromising intrinsic RNAi activity. To achieve this, we employed an iterative screening approach across multiple siRNAs to arrive at advanced designs with low 2'-deoxy-2'-fluoro content that yield significantly improved potency and duration in preclinical species, including non-human primate. Liver exposure data indicate that the improvement in potency is predominantly due to increased metabolic stability of the siRNA conjugates.
Assuntos
Acetilgalactosamina , Interferência de RNA , RNA Interferente Pequeno , Acetilgalactosamina/química , Animais , Proteínas Argonautas/genética , Regulação da Expressão Gênica , Inativação Gênica , Hepatócitos/metabolismo , Fígado/metabolismo , Masculino , Camundongos , Camundongos Transgênicos , RNA Mensageiro/genética , RNA Interferente Pequeno/administração & dosagem , RNA Interferente Pequeno/química , RNA Interferente Pequeno/genéticaRESUMO
Small interfering RNAs (siRNAs) conjugated to a trivalent N-acetylgalactosamine (GalNAc) ligand are being evaluated in investigational clinical studies for a variety of indications. The typical development candidate selection process includes evaluation of the most active compounds for toxicity in rats at pharmacologically exaggerated doses. The subset of GalNAc-siRNAs that show rat hepatotoxicity is not advanced to clinical development. Potential mechanisms of hepatotoxicity can be associated with the intracellular accumulation of oligonucleotides and their metabolites, RNA interference (RNAi)-mediated hybridization-based off-target effects, and/or perturbation of endogenous RNAi pathways. Here we show that rodent hepatotoxicity observed at supratherapeutic exposures can be largely attributed to RNAi-mediated off-target effects, but not chemical modifications or the perturbation of RNAi pathways. Furthermore, these off-target effects can be mitigated by modulating seed-pairing using a thermally destabilizing chemical modification, which significantly improves the safety profile of a GalNAc-siRNA in rat and may minimize the occurrence of hepatotoxic siRNAs across species.
Assuntos
Acetilgalactosamina/química , Fígado/efeitos dos fármacos , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/toxicidade , Acetilgalactosamina/toxicidade , Animais , Fígado/metabolismo , Masculino , Interferência de RNA , RNA Interferente Pequeno/química , RNA Interferente Pequeno/metabolismo , Ratos , Ratos Sprague-DawleyRESUMO
Here we report the investigation of glycol nucleic acid (GNA), an acyclic nucleic acid analogue, as a modification of siRNA duplexes. We evaluated the impact of (S)- or (R)-GNA nucleotide incorporation on RNA duplex structure by determining three individual crystal structures. These structures indicate that the (S)-nucleotide backbone adopts a conformation that has little impact on the overall duplex structure, while the (R)-nucleotide disrupts the phosphate backbone and hydrogen bonding of an adjacent base pair. In addition, the GNA-T nucleobase adopts a rotated conformation in which the 5-methyl group points into the minor groove, rather than the major groove as in a normal Watson-Crick base pair. This observation of reverse Watson-Crick base pairing is further supported by thermal melting analysis of GNA-C and GNA-G containing duplexes where it was demonstrated that a higher thermal stability was associated with isoguanine and isocytosine base pairing, respectively, over the canonical nucleobases. Furthermore, it was also shown that GNA nucleotide or dinucleotide incorporation increases resistance against snake venom phosphodiesterase. Consistent with the structural data, modification of an siRNA with (S)-GNA resulted in greater in vitro potencies over identical sequences containing (R)-GNA. A walk of (S)-GNA along the guide and passenger strands of a GalNAc conjugate duplex targeting mouse transthyretin (TTR) indicated that GNA is well tolerated in the seed region of both strands in vitro, resulting in an approximate 2-fold improvement in potency. Finally, these conjugate duplexes modified with GNA were capable of maintaining in vivo potency when subcutaneously injected into mice.