Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
1.
Neurosci Biobehav Rev ; 161: 105688, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38670298

RESUMO

Pyramidal neurons have a pivotal role in the cognitive capabilities of neocortex. Though they have been predominantly modeled as integrate-and-fire point processors, many of them have another point of input integration in their apical dendrites that is central to mechanisms endowing them with the sensitivity to context that underlies basic cognitive capabilities. Here we review evidence implicating impairments of those mechanisms in three major neurodevelopmental disabilities, fragile X, Down syndrome, and fetal alcohol spectrum disorders. Multiple dysfunctions of the mechanisms by which pyramidal cells are sensitive to context are found to be implicated in all three syndromes. Further deciphering of these cellular mechanisms would lead to the understanding of and therapies for learning disabilities beyond any that are currently available.


Assuntos
Deficiências da Aprendizagem , Humanos , Animais , Deficiências da Aprendizagem/fisiopatologia , Deficiências da Aprendizagem/etiologia , Células Piramidais/fisiologia , Transtornos do Espectro Alcoólico Fetal/fisiopatologia , Transtornos do Neurodesenvolvimento/fisiopatologia , Síndrome de Down/fisiopatologia , Síndrome do Cromossomo X Frágil/fisiopatologia
2.
Curr Neuropharmacol ; 2023 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-37533245

RESUMO

BACKGROUND: Regional changes in corticostriatal transmission induced by phasic dopaminergic signals are an essential feature of the neural network responsible for instrumental reinforcement during discovery of an action. However, the timing of signals that are thought to contribute to the induction of corticostriatal plasticity is difficult to reconcile within the framework of behavioural reinforcement learning, because the reinforcer is normally delayed relative to the selection and execution of causally-related actions. OBJECTIVE: While recent studies have started to address the relevance of delayed reinforcement signals and their impact on corticostriatal processing, our objective was to establish a model in which a sensory reinforcer triggers appropriately delayed reinforcement signals relayed to the striatum via intact neuronal pathways and to investigate the effects on corticostriatal plasticity. METHODS: We measured corticostriatal plasticity with electrophysiological recordings using a light flash as a natural sensory reinforcer, and pharmacological manipulations were applied in an in vivo anesthetized rat model preparation. RESULTS: We demonstrate that the spiking of striatal neurons evoked by single-pulse stimulation of the motor cortex can be potentiated by a natural sensory reinforcer, operating through intact afferent pathways, with signal timing approximating that required for behavioural reinforcement. The pharmacological blockade of dopamine receptors attenuated the observed potentiation of corticostriatal neurotransmission. CONCLUSION: This novel in vivo model of corticostriatal plasticity offers a behaviourally relevant framework to address the physiological, anatomical, cellular, and molecular bases of instrumental reinforcement learning.

3.
Entropy (Basel) ; 24(8)2022 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-35893001

RESUMO

Partial information decomposition allows the joint mutual information between an output and a set of inputs to be divided into components that are synergistic or shared or unique to each input. We consider five different decompositions and compare their results using data from layer 5b pyramidal cells in two different studies. The first study was on the amplification of somatic action potential output by apical dendritic input and its regulation by dendritic inhibition. We find that two of the decompositions produce much larger estimates of synergy and shared information than the others, as well as large levels of unique misinformation. When within-neuron differences in the components are examined, the five methods produce more similar results for all but the shared information component, for which two methods produce a different statistical conclusion from the others. There are some differences in the expression of unique information asymmetry among the methods. It is significantly larger, on average, under dendritic inhibition. Three of the methods support a previous conclusion that apical amplification is reduced by dendritic inhibition. The second study used a detailed compartmental model to produce action potentials for many combinations of the numbers of basal and apical synaptic inputs. Decompositions of the entire data set produce similar differences to those in the first study. Two analyses of decompositions are conducted on subsets of the data. In the first, the decompositions reveal a bifurcation in unique information asymmetry. For three of the methods, this suggests that apical drive switches to basal drive as the strength of the basal input increases, while the other two show changing mixtures of information and misinformation. Decompositions produced using the second set of subsets show that all five decompositions provide support for properties of cooperative context-sensitivity-to varying extents.

4.
Cell Rep ; 37(1): 109768, 2021 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-34610304

RESUMO

GABA can depolarize immature neurons close to the action potential (AP) threshold in development and adult neurogenesis. Nevertheless, GABAergic synapses effectively inhibit AP firing in newborn granule cells of the adult hippocampus as early as two weeks post-mitosis. The underlying mechanisms are largely unclear. Here, we analyze GABAergic inputs in newborn hippocampal granule cells mediated by soma-targeting parvalbumin and dendrite-targeting somatostatin interneurons. Surprisingly, both interneuron subtypes activate α5-subunit-containing GABAA receptors (α5-GABAARs) in young neurons, showing a nonlinear voltage dependence with increasing conductance around the AP threshold. By contrast, in mature cells, parvalbumin interneurons mediate linear GABAergic synaptic currents lacking α5-subunits, while somatostatin interneurons continue to target nonlinear α5-GABAARs. Computational modeling shows that the voltage-dependent amplification of α5-GABAAR opening in young neurons is crucial for inhibition of AP firing to generate balanced and sparse firing activity, even with depolarized GABA reversal potential.


Assuntos
Potenciais de Ação , Hipocampo/metabolismo , Receptores de GABA-A/metabolismo , Potenciais de Ação/efeitos dos fármacos , Animais , Estimulação Elétrica , Feminino , Hipocampo/citologia , Interneurônios/metabolismo , Masculino , Potenciais da Membrana , Camundongos , Camundongos Transgênicos , Optogenética/métodos , Parvalbuminas/genética , Parvalbuminas/metabolismo , Subunidades Proteicas/genética , Subunidades Proteicas/metabolismo , Receptores de GABA-A/genética , Receptores de N-Metil-D-Aspartato/metabolismo , Somatostatina/genética , Somatostatina/metabolismo , Sinapses/metabolismo , Ácido gama-Aminobutírico/metabolismo , Ácido gama-Aminobutírico/farmacologia
5.
Front Cell Neurosci ; 15: 718413, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34512268

RESUMO

Synergistic interactions between independent synaptic input streams may fundamentally change the action potential (AP) output. Using partial information decomposition, we demonstrate here a substantial contribution of synergy between somatic and apical dendritic inputs to the information in the AP output of L5b pyramidal neurons. Activation of dendritic GABA B receptors (GABA B Rs), known to decrease APs in vivo, potently decreased synergy and increased somatic control of AP output. Synergy was the result of the voltage-dependence of the transfer resistance between dendrite and soma, which showed a two-fold increase per 28.7 mV dendritic depolarization. GIRK channels activated by dendritic GABA B Rs decreased voltage-dependent transfer resistances and AP output. In contrast, inhibition of dendritic L-type Ca2+ channels prevented high-frequency bursts of APs, but did not affect dendro-somatic synergy. Finally, we show that NDNF-positive neurogliaform cells effectively control somatic AP via synaptic activation of dendritic GIRK channels. These results uncover a novel inhibitory mechanism that powerfully gates cellular information flow in the cortex.

6.
Exp Neurol ; 323: 113071, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31669070

RESUMO

Targeting interhemispheric inhibition using brain stimulation has shown potential for enhancing stroke recovery. Following stroke, increased inhibition originating from the contralesional hemisphere impairs motor activation in ipsilesional areas. We have previously reported that low-intensity electrical theta burst stimulation (TBS) applied to an implanted electrode in the contralesional rat motor cortex reduces interhemispheric inhibition, and improves functional recovery when commenced three days after cortical injury. Here we apply this approach at more clinically relevant later time points and measure recovery from photothrombotic stroke, following three weeks of low-intensity intermittent TBS (iTBS), continuous TBS (cTBS) or sham stimulation applied to the contralesional motor cortex. Interhemispheric inhibition and cellular excitability were measured in the same rats from single pyramidal neurons in the peri-infarct area, using in vivo intracellular recording. A minimal dose of iTBS did not enhance motor function when applied beginning one month after stroke. However both a high and a low dose of iTBS improved recovery to a similar degree when applied 10 days after stroke, with the degree of recovery positively correlated with ipsilesional excitability. The final level of interhemispheric inhibition was negatively correlated with excitability, but did not independently correlate with functional recovery. In contrast, contralesional cTBS left recovery unaltered, but decreased ipsilesional excitability. These data support focal contralesional iTBS and not cTBS as an intervention for enhancing stroke recovery and suggest that there is a complex relationship between functional recovery and interhemispheric inhibition, with both independently associated with ipsilesional excitability.


Assuntos
Estimulação Elétrica/métodos , Lateralidade Funcional/fisiologia , Inibição Neural/fisiologia , Recuperação de Função Fisiológica/fisiologia , Acidente Vascular Cerebral/fisiopatologia , Animais , Eletrodos Implantados , Masculino , Córtex Motor/fisiopatologia , Células Piramidais/fisiologia , Ratos , Ratos Wistar , Ritmo Teta/fisiologia
7.
J Neurosci ; 39(26): 5210-5221, 2019 06 26.
Artigo em Inglês | MEDLINE | ID: mdl-31000585

RESUMO

Down syndrome (DS) or Trisomy 21 is a developmental disorder leading to cognitive deficits, including disruption of hippocampus-dependent learning and memory. Enhanced inhibition has been suggested to underlie these deficits in DS based on studies using the Ts65Dn mouse model. Here we show that, in this mouse model, GABAergic synaptic inhibition onto dendrites of hippocampal pyramidal cells is increased. By contrast, somatic inhibition was not altered. In addition, synaptic NMDAR currents were reduced. Furthermore, dendritic inhibition was mediated via nonlinear α5-subunit containing GABAARs that closely matched the kinetics and voltage dependence of NMDARs. Thus, enhanced dendritic inhibition and reduced NMDA currents strongly decreased burst-induced NMDAR-mediated depolarization and impaired LTP induction. Finally, selective reduction of α5-GABAAR-mediated inhibition rescued both burst-induced synaptic NMDAR activation and synaptic plasticity. These results demonstrate that reduced synaptic NMDAR activation and synaptic plasticity in the Ts65Dn mouse model of DS can be corrected by specifically targeting nonlinear dendritic inhibition.SIGNIFICANCE STATEMENT Mild to moderate intellectual disability is a prominent feature of Down syndrome. Previous studies in mouse models suggest that increased synaptic inhibition is a main factor for decreased synaptic plasticity, the cellular phenomenon underlying memory. The present study shows that increased inhibition specifically onto dendrites together with reduced NMDAR content in excitatory synapses may be the cause. Reducing a slow nonlinear component that is specific to dendritic inhibitory inputs and mediated by α5 subunit-containing GABAA receptors rescues both NMDAR activation and synaptic plasticity.


Assuntos
Dendritos/fisiologia , Síndrome de Down/fisiopatologia , Potenciação de Longa Duração/fisiologia , Inibição Neural/fisiologia , Células Piramidais/fisiologia , Receptores de N-Metil-D-Aspartato/metabolismo , Animais , Modelos Animais de Doenças , Síndrome de Down/metabolismo , Masculino , Potenciais da Membrana/fisiologia , Camundongos , Sinapses/fisiologia , Transmissão Sináptica/fisiologia
8.
Nat Commun ; 9(1): 3576, 2018 09 03.
Artigo em Inglês | MEDLINE | ID: mdl-30177704

RESUMO

Dendrite-targeting GABAergic interneurons powerfully control postsynaptic integration, synaptic plasticity, and learning. However, the mechanisms underlying the efficient GABAergic control of dendritic electrogenesis are not well understood. Using subtype-selective blockers for GABAA receptors, we show that dendrite-targeting somatostatin interneurons and NO-synthase-positive neurogliaform cells preferentially activate α5-subunit- containing GABAA receptors (α5-GABAARs), generating slow inhibitory postsynaptic currents (IPSCs) in hippocampal CA1 pyramidal cells. By contrast, only negligible contribution of these receptors could be found in perisomatic IPSCs, generated by fast-spiking parvalbumin interneurons. Remarkably, α5-GABAAR-mediated IPSCs were strongly outward-rectifying generating 4-fold larger conductances above -50 mV than at rest. Experiments and modeling show that synaptic activation of these receptors can very effectively control voltage-dependent NMDA-receptor activation as well as Schaffer-collateral evoked burst firing in pyramidal cells. Taken together, nonlinear-rectifying α5-GABAARs with slow kinetics match functional NMDA-receptor properties and thereby mediate powerful control of dendritic postsynaptic integration and action potential firing by dendrite-targeting interneurons.


Assuntos
Dendritos/metabolismo , Potenciais Pós-Sinápticos Inibidores , Interneurônios/metabolismo , Células Piramidais/metabolismo , Receptores de GABA-A/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Sinapses/metabolismo , Potenciais de Ação , Animais , Região CA1 Hipocampal/citologia , Camundongos , Camundongos Transgênicos , Parvalbuminas , Técnicas de Patch-Clamp , Transmissão Sináptica
10.
Front Cell Neurosci ; 9: 116, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25914618

RESUMO

Pauses in the tonic firing of striatal cholinergic interneurons (CINs) emerge during reward-related learning in response to conditioning of a neutral cue. We have previously reported that augmenting the postsynaptic response to cortical afferents in CINs is coupled to the emergence of a cell-intrinsic afterhyperpolarization (AHP) underlying pauses in tonic activity. Here we investigated in a bihemispheric rat-brain slice preparation the mechanisms of synaptic plasticity of excitatory afferents to CINs and the association with changes in the AHP. We found that high frequency stimulation (HFS) of commissural corticostriatal afferents from the contralateral hemisphere induced a robust long-term depression (LTD) of postsynaptic potentials (PSP) in CINs. Depression of the PSP of smaller magnitude and duration was observed in response to HFS of the ipsilateral white matter or cerebral cortex. In Mg(2+)-free solution HFS induced NMDA receptor-dependent potentiation of the PSP, evident in both the maximal slope and amplitude of the PSP. The increase in maximal slope corroborates previous findings, and was blocked by antagonism of either D1-like dopamine receptors with SCH23390 or D2-like dopamine receptors with sulpiride during HFS in Mg(2+)-free solution. Potentiation of the slower PSP amplitude component was due to augmentation of the NMDA receptor-mediated potential as this was completely reversed on subsequent application of the NMDA receptor antagonist AP5. HFS similarly potentiated NMDA receptor currents isolated by blockade of AMPA/kainate receptors with CNQX. The plasticity-induced increase in the slow PSP component was directly associated with an increase in the subsequent AHP. Thus plasticity of cortical afferent synapses is ideally suited to influence the cue-induced firing dynamics of CINs, particularly through potentiation of NMDA receptor-mediated synaptic transmission.

11.
Commun Integr Biol ; 6(3): e23545, 2013 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-23713083

RESUMO

Processing of sensory information from both sides of the body requires coordination of sensory input between the two hemispheres. This coordination is achieved by transcallosal (interhemispheric) fibers that course though the upper cortical layers. In a recent study by Palmer et al. (2012), we investigated the role of this interhemispheric input on the dendritic and somatic activity of cortical pyramidal neurons. This study showed that interhemispheric input evokes GABAB-mediated inhibition in the distal dendrites of layer 5 pyramidal neurons, decreasing the action potential output when paired with contralateral sensory stimulation. In contrast, layer 2/3 pyramidal neurons were not inhibited by interhemispheric input, possibly due to transcallosal fibers evoking more excitation in these neurons than layer 5 neurons. These results highlight both the precise nature of the microcircuitry of interhemispheric inhibition and how the balance between excitation and inhibition is different in the different layers of the cortex. Identifying the cellular and molecular elements involved in interhemipsheric inhibition is crucial not only for understanding higher brain function and but also dysfunction in the diseased brain.

12.
Trends Neurosci ; 36(1): 41-50, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23073210

RESUMO

Cholinergic interneurons have emerged as one of the key players controlling network functions in the striatum. Extracellularly recorded cholinergic interneurons acquire characteristic responses to sensory stimuli during reward-related learning, including a pause and subsequent rebound in spiking. However, the precise underlying cellular mechanisms have remained elusive. Here, we review recent advances in our understanding of the regulation of cholinergic interneuron activity. We discuss evidence of mechanisms that have been proposed to underlie sensory responses, including antagonistic actions by dopamine, recurrent inhibition via local interneurons, and an intrinsically generated membrane hyperpolarization in response to excitatory inputs. The review highlights outstanding questions and concludes with a model of the sensory responses and their downstream effects through dynamic acetylcholine receptor activation.


Assuntos
Neurônios Colinérgicos/fisiologia , Corpo Estriado/fisiologia , Interneurônios/fisiologia , Transdução de Sinais/fisiologia , Animais , Humanos
13.
Science ; 335(6071): 989-93, 2012 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-22363012

RESUMO

Interhemispheric inhibition is thought to mediate cortical rivalry between the two hemispheres through callosal input. The long-lasting form of this inhibition is believed to operate via γ-aminobutyric acid type B (GABA(B)) receptors, but the process is poorly understood at the cellular level. We found that the firing of layer 5 pyramidal neurons in rat somatosensory cortex due to contralateral sensory stimulation was inhibited for hundreds of milliseconds when paired with ipsilateral stimulation. The inhibition acted directly on apical dendrites via layer 1 interneurons but was silent in the absence of pyramidal cell firing, relying on metabotropic inhibition of active dendritic currents recruited during neuronal activity. The results not only reveal the microcircuitry underlying interhemispheric inhibition but also demonstrate the importance of active dendritic properties for cortical output.


Assuntos
Cérebro/fisiologia , Dendritos/fisiologia , Inibição Neural , Células Piramidais/fisiologia , Receptores de GABA-B/metabolismo , Córtex Somatossensorial/fisiologia , Potenciais de Ação , Animais , Cálcio/metabolismo , Corpo Caloso/fisiologia , Estimulação Elétrica , Membro Posterior , Interneurônios/fisiologia , Técnicas de Patch-Clamp , Ratos , Ratos Wistar , Córtex Somatossensorial/citologia
14.
J Neurosci ; 31(31): 11133-43, 2011 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-21813675

RESUMO

Tonically active neurons in the primate striatum, believed to be cholinergic interneurons (CINs), respond to sensory stimuli with a pronounced pause in firing. Although inhibitory and neuromodulatory mechanisms have been implicated, it is not known how sensory stimuli induce firing pauses in CINs in vivo. Here, we used intracellular recordings in anesthetized rats to investigate the effectiveness of a visual stimulus at modulating spike activity in CINs. Initially, no neuron was visually responsive. However, following pharmacological activation of tecto-thalamic pathways, the firing pattern of most CINs was significantly modulated by a light flashed into the contralateral eye. Typically, this induced an excitation followed by a pause in spike firing, via an underlying depolarization-hyperpolarization membrane sequence. Stimulation of thalamic afferents in vitro evoked similar responses that were independent of synaptic inhibition. Thus, visual stimulation likely induces an initial depolarization via a subcortical tecto-thalamo-striatal pathway, pausing CIN firing through an intrinsic afterhyperpolarization.


Assuntos
Potenciais de Ação/fisiologia , Colinérgicos/metabolismo , Corpo Estriado/citologia , Potenciais Evocados Visuais/fisiologia , Interneurônios/fisiologia , Luz , 6-Ciano-7-nitroquinoxalina-2,3-diona/farmacologia , Animais , Animais Recém-Nascidos , Bicuculina/farmacologia , Relação Dose-Resposta a Droga , Estimulação Elétrica/métodos , Eletroencefalografia , Antagonistas de Aminoácidos Excitatórios/farmacologia , Lateralidade Funcional , Antagonistas de Receptores de GABA-A/farmacologia , Técnicas In Vitro , Interneurônios/efeitos dos fármacos , Masculino , Modelos Biológicos , Ácidos Fosfínicos/farmacologia , Estimulação Luminosa/métodos , Propanolaminas/farmacologia , Piridazinas/farmacologia , Ratos , Ratos Long-Evans , Análise de Regressão , Estatísticas não Paramétricas , Tálamo/fisiologia , Valina/análogos & derivados , Valina/farmacologia , Vias Visuais/fisiologia
15.
J Physiol ; 589(17): 4365-81, 2011 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-21746788

RESUMO

Fast-spiking interneurones (FSIs) constitute a prominent part of the inhibitory microcircuitry of the striatum; however, little is known about their recruitment by synaptic inputs in vivo. Here, we report that, in contrast to cholinergic interneurones (CINs), FSIs (n = 9) recorded in urethane-anaesthetized rats exhibit Down-to-Up state transitions very similar to spiny projection neurones (SPNs). Compared to SPNs, the FSI Up state membrane potential was noisier and power spectra exhibited significantly larger power at frequencies in the gamma range (55-95 Hz). The membrane potential exhibited short and steep trajectories preceding spontaneous spike discharge, suggesting that fast input components controlled spike output in FSIs. Spontaneous spike data contained a high proportion (43.6 ± 32.8%) of small inter-spike intervals (ISIs) of <30 ms, setting FSIs clearly apart from SPNs and CINs. Cortical-evoked inputs had slower dynamics in SPNs than FSIs, and repetitive stimulation entrained SPN spike output only if the stimulation was delivered at an intermediate frequency (20 Hz), but not at a high frequency (100 Hz). Pharmacological induction of an activated ECoG state, known to promote rapid FSI spiking, mildly increased the power (by 43 ± 55%, n = 13) at gamma frequencies in the membrane potential of SPNs, but resulted in few small ISIs (<30 ms; 4.3 ± 6.4%, n = 8). The gamma frequency content did not change in CINs (n = 8). These results indicate that FSIs are uniquely responsive to high-frequency input sequences. By controlling the spike output of SPNs, FSIs could serve gating of top-down signals and long-range synchronisation of gamma-oscillations during behaviour.


Assuntos
Interneurônios , Potenciais da Membrana , Potenciais de Ação , Animais , Corpo Estriado , Neostriado , Neurônios
16.
J Neurosci ; 30(44): 14854-61, 2010 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-21048144

RESUMO

Inhibitory projections from the striatum and globus pallidus converge onto GABAergic projection neurons of the substantia nigra pars reticulata (SNr). Based on existing structural and functional evidence, these pathways are likely to differentially regulate the firing of SNr neurons. We sought to investigate the functional differences in inhibitory striatonigral and pallidonigral traffic using whole-cell voltage clamp in brain slices with these pathways preserved. We found that striatonigral IPSCs exhibited a high degree of paired-pulse facilitation. We tracked this facilitation over development and found the facilitation as the animal aged, but stabilized by postnatal day 17 (P17), with a paired pulse ratio of 2. We also found that the recovery from facilitation accelerated over development, again, reaching a stable phenotype by P17. In contrast, pallidonigral synapses show paired-pulse depression, and this depression could be solely explained by presynaptic changes. The mean paired-pulse ratio of 0.67 did not change over development, but the recovery from depression slowed over development. Pallidonigral IPSCs were significantly faster than striatonigral IPSCs when measured at the soma. Finally, under current clamp, prolonged bursts of striatal IPSPs were able to consistently silence the pacemaker activity of nigral neurons, whereas pallidal inputs depressed, allowing nigral neurons to reinstate firing. These findings highlight the importance of differential dynamics of neurotransmitter release in regulating the circuit behavior of the basal ganglia.


Assuntos
Inibição Neural/fisiologia , Plasticidade Neuronal/fisiologia , Substância Negra/fisiologia , Sinapses/fisiologia , Transmissão Sináptica/fisiologia , Vias Aferentes/crescimento & desenvolvimento , Vias Aferentes/fisiologia , Animais , Animais Recém-Nascidos , Globo Pálido/crescimento & desenvolvimento , Globo Pálido/fisiologia , Potenciais Pós-Sinápticos Inibidores/fisiologia , Depressão Sináptica de Longo Prazo/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Neostriado/crescimento & desenvolvimento , Neostriado/fisiologia , Técnicas de Cultura de Órgãos , Tempo de Reação/fisiologia , Substância Negra/crescimento & desenvolvimento , Ácido gama-Aminobutírico/fisiologia
17.
Artigo em Inglês | MEDLINE | ID: mdl-21423509

RESUMO

Cortico-striatal spike-timing dependent plasticity (STDP) is modulated by dopamine in vitro. The present study investigated STDP in vivo using alternative procedures for modulating dopaminergic inputs. Postsynaptic potentials (PSP) were evoked in intracellularly recorded spiny neurons by electrical stimulation of the contralateral motor cortex. PSPs often consisted of up to three distinct components, likely representing distinct cortico-striatal pathways. After baseline recording, bicuculline (BIC) was ejected into the superior colliculus (SC) to disinhibit visual pathways to the dopamine cells and striatum. Repetitive cortical stimulation (∼60; 0.2 Hz) was then paired with postsynaptic spike discharge induced by an intracellular current pulse, with each pairing followed 250 ms later by a light flash to the contralateral eye (n = 13). Changes in PSPs, measured as the maximal slope normalized to 5-min pre, ranged from potentiation (∼120%) to depression (∼80%). The determining factor was the relative timing between PSP components and spike: PSP components coinciding or closely following the spike tended towards potentiation, whereas PSP components preceding the spike were depressed. Importantly, STDP was only seen in experiments with successful BIC-mediated disinhibition (n = 10). Cortico-striatal high-frequency stimulation (50 pulses at 100 Hz) followed 100 ms later by a light flash did not induce more robust synaptic plasticity (n = 9). However, an elevated post-light spike rate correlated with depression across plasticity protocols (R(2) = 0.55, p = 0.009, n = 11 active neurons). These results confirm that the direction of cortico-striatal plasticity is determined by the timing of pre- and postsynaptic activity and that synaptic modification is dependent on the activation of additional subcortical inputs.

18.
19.
J Physiol ; 587(Pt 24): 5879-97, 2009 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-19884321

RESUMO

Pauses in the tonic firing of striatal cholinergic interneurons emerge during reward-related learning and are triggered by neutral cues which develop behavioural significance. In a previous in vivo study we have proposed that these pauses in firing may be due to intrinsically generated afterhyperpolarisations (AHPs) evoked by excitatory synaptic inputs, including those below the threshold for action potential firing. The aim of this study was to investigate the mechanism of the AHPs using a brain slice preparation which preserved both cerebral hemispheres. Augmenting cortically evoked postsynaptic potentials (PSPs) by repetitive stimulation of cortical afferents evoked AHPs that were unaffected by blocking either GABA(A) receptors with bicuculline, or GABA(B) receptors with saclofen or CGP55845. Apamin (a blocker of small conductance Ca(2+)-activated K(+) channels) had minimal effects, while chelation of intracellular Ca(2+) with BAPTA reduced the AHP by about 30%. In contrast, blocking hyperpolarisation and cyclic nucleotide activated (HCN) cation current (I(H)) with ZD7288 or Cs(+) diminished the size of the AHPs by 60% and reduced the proportion of episodes that contained this hyperpolarisation. The reversal potential (20 mV) and voltage dependence of the AHPs were consistent with the hypothesis that a transient deactivation of I(H) caused most of the AHP at hyperpolarised potentials, while the slow AHP-type Ca(2+)-activated K(+) channels increasingly contributed at more depolarised membrane potentials. Subthreshold somatic current injections yielded similar AHPs with a median duration of approximately 700 ms that were not affected by firing of a single action potential. These results indicate that transient deactivation of HCN channels evokes pauses in tonic firing of cholinergic interneurons, an event likely to be elicited by augmentation of afferent synaptic inputs during learning.


Assuntos
Potenciais de Ação/fisiologia , Córtex Cerebral/fisiologia , Corpo Estriado/fisiologia , Canais de Cátion Regulados por Nucleotídeos Cíclicos/fisiologia , Interneurônios/fisiologia , Transmissão Sináptica/fisiologia , Animais , Células Cultivadas , Limiar Diferencial/fisiologia , Ativação do Canal Iônico/fisiologia , Masculino , Potenciais da Membrana/fisiologia , Ratos , Ratos Wistar
20.
J Neurosci ; 29(19): 6336-47, 2009 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-19439610

RESUMO

The striatum is a site of integration of neural pathways involved in reinforcement learning. Traditionally, inputs from cerebral cortex are thought to be reinforced by dopaminergic afferents signaling the occurrence of biologically salient sensory events. Here, we detail an alternative route for short-latency sensory-evoked input to the striatum requiring neither dopamine nor the cortex. Using intracellular recording techniques, we measured subthreshold inputs to spiny projection neurons (SPNs) in urethane-anesthetized rats. Contralateral whole-field light flashes evoked weak membrane potential responses in approximately two-thirds of neurons. However, after local disinhibitory injections of the GABA(A) antagonist bicuculline into the deep layers of the superior colliculus (SC), but not the overlying visual cortex, strong, light-evoked, depolarizations to the up state emerged at short latency (115 +/- 14 ms) in all neurons tested. Dopamine depletion using alpha-methyl-para-tyrosine had no detectable effect on striatal visual responses during SC disinhibition. In contrast, local inhibitory injections of GABA agonists, muscimol and baclofen, into the parafascicular nucleus of the thalamus blocked the early, visual-evoked up-state transitions in SPNs. Comparable muscimol-induced inhibition of the visual cortex failed to suppress the visual responsiveness of SPNs induced by SC disinhibition. Together, these results suggest that short-latency, preattentive visual input can reach the striatum not only via the tecto-nigro-striatal route but also through tecto-thalamo-striatal projections. Thus, after the onset of a biologically significant visual event, closely timed short-latency thalamostriatal (glutamate) and nigrostriatal (dopamine) inputs are likely to converge on striatal SPNs, providing depolarizing and neuromodulator signals necessary for synaptic plasticity mechanisms.


Assuntos
Corpo Estriado/fisiologia , Neurônios/fisiologia , Vias Visuais/fisiologia , Animais , Baclofeno/farmacologia , Bicuculina/farmacologia , Corpo Estriado/citologia , Dopamina/metabolismo , Inibidores Enzimáticos/farmacologia , Moduladores GABAérgicos/farmacologia , Masculino , Potenciais da Membrana/fisiologia , Muscimol/farmacologia , Estimulação Luminosa , Ratos , Ratos Long-Evans , Ratos Wistar , Colículos Superiores/efeitos dos fármacos , Tálamo/efeitos dos fármacos , Tempo , Córtex Visual/efeitos dos fármacos , Vias Visuais/efeitos dos fármacos , alfa-Metiltirosina/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA