RESUMO
Ferroptosis, a kind of programmed cell death, is characterized with iron-dependent lipid ROS buildup, which is considered as an important cellular immunity in resisting intracellular bacterial infection in mammalian macrophages. In this process, lipid ROS oxidizes the bacterial biofilm to inhibit intracellular bacteria. However, the function of ferroptosis in invertebrate remains unknown. In this study, the existence of ferroptosis in Apostichopus japonicus coelomocytes was confirmed, and its antibacterial mechanism was investigated. First, our results indicated that the expression of glutathione peroxidase (AjGPX4) was significantly inhibited by 0.21-fold (p < 0.01) after injecting A. japonicus with the ferroptosis inducer RSL3, and the contents of MDA (3.93-fold, p < 0.01), ferrous iron (1.40-fold, p < 0.01), and lipid ROS (3.10-fold, p < 0.01) were all significantly increased under this condition and simultaneously accompanied with mitochondrial contraction and disappearance of cristae, indicating the existence of ferroptosis in the coelomocytes of A. japonicus. Subsequently, the contents of ferrous iron (1.40-fold, p < 0.05), MDA (2.10-fold, p < 0.01), ROS (1.70-fold, p < 0.01), and lipid ROS (2.50-fold, p < 0.01) were all significantly increased, whereas the mitochondrial membrane potential and GSH/GSSG were markedly decreased by 0.68-fold (p < 0.05) and 0.69-fold (p < 0.01) under Vibrio splendidus (AJ01) infection. This process could be reversed by the iron-chelating agent deferoxamine mesylate, which indicated that AJ01 could induce coelomocytic ferroptosis. Moreover, the results demonstrated that the intracellular AJ01 load was clearly decreased to 0.49-fold (p < 0.05) and 0.06-fold (p < 0.01) after treating coelomocytes with RSL3 and ferrous iron, which indicated that enhanced ferroptosis could inhibit bacterial growth. Finally, subcellular localization demonstrated that ferrous iron efflux protein ferroportin (AjFPN) and intracellular AJ01 were co-localized in coelomocytes. After AjFPN interference (0.58-fold, p < 0.01), the signals of ferrous iron and lipid ROS levels in intracellular AJ01 were significantly reduced by 0.38-fold (p < 0.01) and 0.48-fold (p < 0.01), indicating that AjFPN was an important factor in the introduction of ferroptosis into intracellular bacteria. Overall, our findings indicated that ferroptosis could resist intracellular AJ01 infection via AjFPN. These findings provide a novel defense mechanism for aquatic animals against intracellular bacterial infection.
Assuntos
Ferroptose , Stichopus , Vibrio , Animais , Vibrio/fisiologia , Ferroptose/efeitos dos fármacos , Stichopus/imunologia , Stichopus/microbiologia , Proteínas de Transporte de Cátions/metabolismo , Proteínas de Transporte de Cátions/genética , Imunidade Inata , Ferro/metabolismo , Vibrioses/veterinária , Vibrioses/imunologiaRESUMO
Akirin2 is pivotal for regulating host immunological responses in vertebrates, including antibacterial immunity and inflammation. However, the functional significance of Akirin2 in invertebrates remains largely unexplored. In this study, we cloned the complete cDNA sequence of Akirin2 from A. japonicus (AjAkirin2) and elucidated its immunological mechanism upon pathogen infection. The whole AjAkirin2 cDNA sequence spanned 1014 bp, which comprised a 630 bp open reading frame encoding 209 amino acids, a 230 bp 5'-untranslated region (UTR), and a 154 bp 3'-UTR. Spatial expression analysis displayed constitutive expression of AjAkirin2 in all examined tissues. Both mRNA and protein expression abundance of the AjAkirin2 showed considerably high in coelomocytes of sea cucumbers challenged with Vibrio splendidus or stimulated with lipopolysaccharide. In addition, we found that sea cucumbers with 107 CFU/mL V. splendidus infection had a lower survival rate upon AjAkirin2 knockdown. Mechanistically, the result of GST-pull down and co-IP assays indicated that AjAkirin2 directly interacted with Aj14-3-3ζ. Moreover, we also detected that AjAkirin2 positively regulated Aj14-3-3ζ expression in sea cucumber coelomocytes. Furthermore, the knockdown of AjAkirin2 or Aj14-3-3ζ resulted in increasing intracellular bacteria load and suppressed the expression of key genes of the NF-κB signaling pathway (p65 and p105) and inflammatory cytokines including IL-17, VEGF, and MMP-1. In summary, these results confirmed the critical role of AjAkirin2 in mediating innate immune responses against V. splendidus infection via interaction with Aj14-3-3ζ and thereby exerting antibacterial function.
Assuntos
Imunidade Inata , Filogenia , Stichopus , Vibrio , Animais , Vibrio/fisiologia , Stichopus/imunologia , Stichopus/genética , Imunidade Inata/genética , Sequência de Aminoácidos , Proteínas 14-3-3/genética , Proteínas 14-3-3/imunologia , Proteínas 14-3-3/metabolismo , Regulação da Expressão Gênica/imunologia , Alinhamento de Sequência/veterinária , Perfilação da Expressão Gênica/veterinária , Sequência de BasesRESUMO
N 6-methyladenosine (m6A), the most prevalent internal modification in eukaryotic RNA, was able to mediate circular RNA (circRNA) function in many immune processes. Nevertheless, the functional role of m6A-modified circRNAs in innate immunity of invertebrates remained unclear. In this study, we identified m6A-modified circRNA388 from cultured sea cucumber (Apostichopus japonicus) coelomocytes, which was mainly detected in cytoplasm after Vibrio splendidus infection. A knockdown assay indicated that cytoplasm circRNA388 promoted coelomocyte autophagy and decreased the number of intracellular V. splendidus. Mechanistically, the circRNA388 in the cytoplasm directly sponged miR-2008 to block its interaction with Unc-51-like kinase 1 from A. japonicus (AjULK) and further promoted autophagy to resist V. splendidus infection. More importantly, we found that m6A modification was vital to circRNA388 nuclear export with YTH domain-containing protein 1 from A. japonicus (AjYTHDC1) as the reader. AjYTHDC1 facilitated the nuclear export of m6A-modified circRNA388 via interaction with exportin-1 (chromosomal maintenance 1) from A. japonicus (AjCRM1). Knockdown of AjCRM1 could significantly decrease the content of cytoplasm circRNA388. Overall, our results provide the first evidence that nuclear export of m6A-modified circRNA388 is dependent on the novel AjCRM1 to our knowledge, which was further promoted coelomocyte autophagy by miR-2008/AjULK axis to clear intracellular V. splendidus.
Assuntos
Adenina/análogos & derivados , MicroRNAs , Stichopus , Vibrioses , Vibrio , Animais , Stichopus/genética , Transporte Ativo do Núcleo Celular , Imunidade Inata/genética , Autofagia , MicroRNAs/genética , MicroRNAs/metabolismoRESUMO
Alpha-2-macroglobulin (A2M) is an extracellular macromolecule mainly known for its role as a broad-spectrum protease inhibitor in mammals. However, the immune recognition and regulation mechanisms of A2M in invertebrates are still not well investigated. In the current study, the role of sea cucumber Apostichopus japonicus A2M in the regulation of innate immune responses was explored. We found that AjA2M promotes phagocytosis of Vibrio splendidus in coelomocytes of sea cucumber. Then two major functional structural domains of AjA2M, the thioester domain (TED) and the receptor-binding structural domain (RBD) were cloned. It was found that the AjA2M-TED binds to pathogens while causing Vibrio splendidus aggregation; the AjA2M-RBD interacts with the Glucose Regulated Protein 78 (AjGRP78), subsequently AjGRP78 accelerates the degradation of Vibrio splendidus in lysosomes by facilitating polymerisation and rearrangement of the cytoskeleton. Collectively, the findings together suggest that A2M-GRP78 axis mediates immune signaling pathway of phagocytosis and AjA2M has been characterized to play an essential crucial role in antibacterial immune responses of invertebrates.
Assuntos
alfa 2-Macroglobulinas Associadas à Gravidez , Pepinos-do-Mar , Stichopus , Vibrio , Animais , Feminino , Gravidez , Chaperona BiP do Retículo Endoplasmático , Fagocitose , Imunidade Inata , MamíferosRESUMO
Toll-like receptor 2 (TLR2) is a member of TLR family that plays important roles in the innate immune system, such as pathogen recognition and inflammation regulation. In this study, the TLR2 homologue was cloned from razor clam Sinonovacula constricta (denoted as ScTLR2) and its immune function was explored. The full-length cDNA of ScTLR2 comprised 2890 nucleotides with a 5'-UTR of 218 bp, an open reading frame of 2169 bp encoding 722 amino acids and a 3'-UTR of 503 bp. The deduced amino acid of ScTLR2 showed similar structure to TLR2 homologue with a conserved signal peptide, four LRR domains, one LRR-TYP domain, one LRR-CT domain, one transmembrane domain and a conserved TIR domain. ScTLR2 mRNA was detected in all examined tissues with the highest expression in the gill. After Vibrio parahaemolyticus challenge, the mRNA expression of ScTLR2 was significantly induced both in gill and haemocytes. The recombinant ScTLR2-LRR protein could bind all tested PAMPs including LPS, PGN and MAN. Bacterial agglutination assay showed that rScTLR2 could agglutinate the six tested bacteria with a calcium dependent manner. More importantly, ScTLR2 silencing by siRNA transfection could significantly depress the mRNA expression of Myd88, NF-κB, Tollip, IRF1, and IRF8. The survival rate of S. constricta was markedly decreased after V. parahaemolyticus challenge under this condition. Our current study demonstrated that ScTLR2 served as a pattern recognition receptor to induce immune response against invasive pathogen.
Assuntos
Bivalves , Receptor 2 Toll-Like , Humanos , Animais , Receptor 2 Toll-Like/genética , Receptor 2 Toll-Like/metabolismo , Imunidade Inata/genética , Receptores de Reconhecimento de Padrão/metabolismo , Bactérias/genética , Proteínas Recombinantes/genética , Bivalves/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , FilogeniaRESUMO
This study aimed to investigate the effects of Bacillus cereus LS2 on the growth performance, innate immunity, intestinal microbiota, and disease resistance of sea cucumber Apostichopus japonicus. After feeding with LS2 for 30 days, results showed that dietary with LS2 had a significant improvement in the growth rate and immune parameters (including total coelomocytes counts, phagocytosis, respiratory burst, and immune-related enzymes) of juvenile sea cucumbers. Subsequently, transcriptome sequencing and qRT-PCR verification were performed to analyze the potential mechanism of LS2 diet and thus improve the immune response of A. japonicus. GO and KEGG pathway analysis indicated that LS2 can primarily activate the "Lectins" and "complement and coagulation cascades" pathways to modulate the innate immunity of the sea cucumbers. Furthermore, 16S rRNA sequencing was used to analyze the intestinal microbial composition of sea cucumbers after dietary with LS2. Results showed that Proteobacteria, Actinobacteria, Firmicutes, and Bacteroidetes were the most prevalent phyla in A. japonicus intestinal microbiota. The abundance of Actinobacteria (46.20%) and Bacteroidetes (12.80%) were significantly higher in the LS2 group, whereas the relative abundance of Proteobacteria (49.98%) and Firmicutes (14.97%) were higher in the control group. The LDA scores of Nocardiaceae and Rhodococcus were also the highest taxa after the dietary administration of LS2, indicating that Actinobacteria phylum played a pivotal role in the intestinal microbial function of A. japonicus. Overall, these results suggested that feeding with Bacillus LS2 may be beneficial for A. japonicus farming.
Assuntos
Probióticos , Pepinos-do-Mar , Stichopus , Vibrioses , Vibrio , Animais , Bacillus cereus , Probióticos/farmacologia , RNA Ribossômico 16S , Dieta/veterinária , Vibrio/fisiologia , Imunidade Inata , Resistência à DoençaRESUMO
Cell death is the irreversible stop of life. It is also the basic physiological process of all organisms which involved in the embryonic development, organ maintenance and autoimmunity of the body. In recent years, we have gained more comprehension of the mechanism in cell death and have basically clarified the different types of "programmed cell death", such as apoptosis, necroptosis, autophagy, and pyroptosis, and identified some key genes in these processes. However, in these previous studies, the conversion between different cell death modes and their application in diseases are rarely explored. To sum up, although many valued discoveries have been discovered in the field of cell death in recent years, there are still many unknown problems to be solved in this field. Facts have proved that cell death is a very complex game, and a series of core players have the ability to destroy the delicate balance of the cell environment, from survival to death, from anti-inflammatory to pro-inflammatory. With the thorough research of the complex regulatory mechanism of cell death, there will certainly be exciting new research in this field in the next few years. The sake of this paper is to emphasize the complex mechanism of overturning the balance between different cell fates and provide relevant theoretical basis for the connection between cell death transformation and disease treatment in the future.
RESUMO
Mitophagy, the selective degradation of damaged mitochondria by autophagy, plays a crucial role in the survival of coelomocytes in Apostichopus japonicus following Vibrio splendidus infection by suppressing the generation of reactive oxygen species (ROS) and attenuating cell apoptosis. A recent study revealed that reducing the expression of the neural precursor cell-expressed developmentally downregulated gene 4 (NEDD4), an enzyme 3 (E3) ubiquitin ligase, significantly affects mitochondrial degradation. Prior to the present study, the functional role of NEDD4 in marine invertebrates was largely unexplored. Therefore, we investigated the role of NEDD4 in the activation of mitophagy, modulation of ROS levels, and induction of apoptosis in A. japonicus infected with V. splendidus. The results demonstrated that V. splendidus infection and lipopolysaccharide (LPS) challenge significantly increased the mRNA levels of NEDD4 in A. japonicus coelomocytes, which was consistent with changes in mitophagy under the same conditions. Knockdown of AjNEDD4 using specific small interfering RNAs (siRNAs) impaired mitophagy and caused accumulation of damaged mitochondria, as observed using transmission electron microscopy (TEM) and confocal microscopy. Furthermore, AjNEDD4 was localized to the mitochondria in both coelomocytes and HEK293T cells. Simultaneously, coelomocytes were treated with the inhibitor indole-3-carbinol (I3C) to confirm the regulatory role of AjNEDD4 in mitophagy. The accumulation of AjNEDD4 in the mitochondria and the level of mitophagy decreased. Subsequent investigations demonstrated that AjNEDD4 interacts directly with the microtubule-associated protein light chain 3 (LC3), a key regulator of autophagy and mitophagy, indicating its involvement in the mitophagy pathway. Moreover, AjNEDD4 interference hindered the interaction between AjNEDD4 and LC3, thereby impairing the engulfment and subsequent clearance of damaged mitochondria. Finally, AjNEDD4 interference led to a significant increase in intracellular ROS levels, followed by increased apoptosis. Collectively, these findings suggest that NEDD4 acts as a crucial regulator of mitophagy in A. japonicus and plays a vital role in maintaining cellular homeostasis following V. splendidus infection. NEDD4 suppresses ROS production and subsequent apoptosis by promoting mitophagy, thereby safeguarding the survival of A. japonicus under pathogenic conditions. Further investigation of the mechanisms underlying NEDD4-mediated mitophagy may provide valuable insights into the development of novel strategies for disease control in aquaculture farms.
Assuntos
Stichopus , Vibrioses , Vibrio , Humanos , Animais , Mitofagia/genética , Stichopus/genética , Espécies Reativas de Oxigênio/metabolismo , Células HEK293 , Vibrio/metabolismo , Vibrioses/veterinária , ApoptoseRESUMO
Microorganisms, occupying the largest biomass in deep sea, play essential roles in deep-sea ecosystem. It is believed that the microbes in deep-sea sediments are more representative of deep-sea microbial communities, the microbial composition of which is seldom affected by ocean currents. However, the community of benthic microbes on a global scale has not been adequately explored. Herein, we build a comprehensive global dataset determined by 16S rRNA gene sequencing to characterize the biodiversity of microorganisms in benthic sediment. The dataset comprised 212 records from 106 sites, included sequencing of bacteria and archaea for each site and yielded 4,766,502 and 1,562,989 reads, respectively. Through annotation, a total of 110,073 and 15,795 OTUs of bacteria and archaea were obtained, and 61 bacterial phyla and 15 archaeal phyla were identified, of which the dominant phyla were Proteobacteria and Thaumarchaeota in deep-sea sediment. Therefore, our findings provided a biodiversity data of microbial communities in deep-sea sediment at global-scale and laid a foundation to further reveal the structures of microorganism communities in deep sea.
Assuntos
Microbiota , RNA Ribossômico 16S , Archaea/genética , Bactérias/genética , Biodiversidade , Filogenia , RNA Ribossômico 16S/genética , Água do Mar/microbiologiaRESUMO
We previously demonstrated that the flagellin of intracellular Vibrio splendidus AJ01 could be specifically identified by tropomodulin (Tmod) and further mediate p53-dependent coelomocyte apoptosis in the sea cucumber Apostichopus japonicus. In higher animals, Tmod serves as a regulator in stabilizing the actin cytoskeleton. However, the mechanism on how AJ01 breaks the AjTmod-stabilized cytoskeleton for internalization remains unclear. Here, we identified a novel AJ01 Type III secretion system (T3SS) effector of leucine-rich repeat-containing serine/threonine-protein kinase (STPKLRR) with five LRR domains and a serine/threonine kinase (STYKc) domain, which could specifically interact with tropomodulin domain of AjTmod. Furthermore, we found that STPKLRR directly phosphorylated AjTmod at serine 52 (S52) to reduce the binding stability between AjTmod and actin. After AjTmod dissociated from actin, the F-actin/G-actin ratio decreased to induce cytoskeletal rearrangement, which in turn promoted the internalization of AJ01. The STPKLRR knocked out strain could not phosphorylated AjTmod and displayed lower internalization capacity and pathogenic effect compared to AJ01. Overall, we demonstrated for the first time that the T3SS effector STPKLRR with kinase activity was a novel virulence factor in Vibrio and mediated self-internalization by targeting host AjTmod phosphorylation dependent cytoskeleton rearrangement, which provided a candidate target to control AJ01 infection in practice.
Assuntos
Tropomodulina , Vibrio , Animais , Tropomodulina/genética , Actinas , Fosforilação , CitoesqueletoRESUMO
N6-Methyladenosine (m6A) modification is one of the most abundant post-transcriptional modifications that can mediate autophagy in various pathological processes. However, the functional role of m6A in autophagy regulation is not well-documented during Vibrio splendidus infection of Apostichopus japonicus. In this study, the inhibition of m6A level by knockdown of methyltransferase-like 3 (AjMETTL3) significantly decreased V. splendidus-induced coelomocyte autophagy and led to an increase in the intracellular V. splendidus burden. In this condition, Unc-51-like kinase 1 (AjULK) displayed the highest differential expression of m6A level. Moreover, knockdown of AjULK can reverse the V. splendidus-mediated autophagy in the condition of AjMETTL3 overexpression. Furthermore, knockdown of AjMETTL3 did not change the AjULK mRNA transcript levels but instead decreased protein levels. Additionally, YTH domain-containing family protein (AjYTHDF) was identified as a reader protein of AjULK and promoted AjULK expression in an m6A-dependent manner. Furthermore, the AjYTHDF-mediated AjULK expression depended on its interaction with translation elongation factor 1-alpha (AjEEF-1α). Altogether, our findings suggest that m6A is involved in resisting V. splendidus infection via facilitating coelomocyte autophagy in AjULK-AjYTHDF/AjEEF-1α-dependent manner, which provides a theoretical basis for disease prevention and therapy in A. japonicus.
Assuntos
Stichopus , Vibrioses , Animais , Stichopus/genética , AutofagiaRESUMO
N6-methyladenosine (m6A) plays an important role in regulating many physiological and disease processes in vertebrates, in which methyltransferase-like 3 (METTL3) is the best-known m6A methyltransferase. However, the functional roles of invertebrate METTL3 have not yet been highlighted. In this study, we found that METTL3 from Apostichopus japonicus (AjMETTL3) was significantly induced in coelomocytes accompanied by higher levels of m6A modification in response to Vibrio splendidus challenge. Overexpression or silencing of AjMETTL3 in coelomocytes increased or decreased the m6A levels and promoted or inhibited V. splendidus-induced coelomocyte apoptosis, respectively. To further explore the molecular mechanism of AjMETTL3-mediated coelomic immunity, m6A-seq analysis revealed that the endoplasmic reticulum-related degradation (ERAD) pathway was significantly enriched, in which suppressor/enhancer of Lin-12-like (AjSEL1L) was suggested to be a target of AjMETTL3 in a negative regulatory manner. Functional analysis revealed that the increased AjMETTL3 reduced the stability of AjSEL1L mRNA by targeting the m6A modification site of 2004 bp-GGACA-2008 bp. The decreased AjSEL1L was further confirmed to be involved in AjMETTL3-mediated coelomocyte apoptosis. Mechanistically, the inhibited AjSEL1L increased the transcription of AjOS9 and Ajp97 in the EARD pathway to promote ubiquitin protein accumulation and ER stress, which further activated AjPERK-AjeIF2α pathway dependent coelomocyte apoptosis, but not the AjIRE1 or AjATF6 pathway. Taken together, our results supported invertebrate METTL3-mediated coelomocyte apoptosis by regulating the PERK-eIF2α pathway.
Assuntos
Apoptose , Metiltransferases , Animais , Metiltransferases/genética , Metiltransferases/metabolismo , Retículo Endoplasmático/metabolismoRESUMO
Circular RNAs (circRNAs) are novel endogenous non-coding RNAs (ncRNAs) and can be acted as competing endogenous RNAs (ceRNAs) to regulate microRNA (miRNA) and downstream gene expression. Recently, m6A modification has been found in circRNA, and m6A circRNAs also play important roles in various biological processes and a variety of diseases. Our previous study had been demonstrated that circRNAs were differentially expressed in skin ulceration syndrome (SUS) diseased sea cucumber Apostichopus japonicus. However, whether the function of circRNAs are dependent on m6A levels are largely unknown. Here, we firstly investigated the genome-wide map of m6A circRNAs in sea cucumbers with different stages of Vibrio splendidus challenge, that's Control group, SUS-diseased group, and SUS-resistant group. MeRIP-seq revealed that m6A abundances were enriched in circRNAs in all three groups, especially for SUS-resistant group. Among them, more than 62% of modified circRNAs harbor only a single m6A peak and about 55% of m6A sites in circRNAs were derived from sense overlapping in each group. After V. splendidus infection, we found that most of m6A peaks in circRNAs were upregulated and less were downregulated in both SUS-diseased and SUS-resistant groups when compared with Control. Furthermore, GO analysis indicated that the host genes of circRNAs with dysregulated m6A peaks in SUS-diseased and SUS-resistant groups were both mainly enriched in the adhesion pathway. More importantly, we discovered that more than 50% m6A circRNAs showed a positive correlation between the circRNAs expression and m6A methylation levels both in SUS-diseased and SUS-resistant groups. Therefore, a core circRNA-miRNA-mRNA (ceRNA) network whether influenced by m6A modification was constructed based on conjoint analysis. Our results indicated that several selected m6A circRNAs bind with miRNAs were mainly targeting to ubiquitylation system and adhesion pathway. What's more, three candidate m6A circRNAs and three target genes were validated by MeRIP-qPCR and qPCR, whose m6A levels in circRNA and mRNA expressions were consistent with disease occurrence or disease resistance. All of our current findings suggested that m6A circRNAs could play important roles during pathogen infection and might be served as a new molecular biomarker in SUS disease diagnose of A. japonicus.
Assuntos
MicroRNAs , Pepinos-do-Mar , Stichopus , Animais , Perfilação da Expressão Gênica , MicroRNAs/genética , RNA Circular/genética , RNA Mensageiro , Pepinos-do-Mar/genética , Stichopus/genética , Stichopus/metabolismoRESUMO
As a typical pathogen-associated molecular pattern, bacterial flagellin can bind Toll-like receptor 5 and the intracellular NAIP5 receptor component of the NLRC4 inflammasome to induce immune responses in mammals. However, these flagellin receptors are generally poorly understood in lower animal species. In this study, we found that the isolated flagellum of Vibrio splendidus AJ01 destroyed the integrity of the tissue structure of coelomocytes and promoted apoptosis in the sea cucumber Apostichopus japonicus. To further investigate the molecular mechanism, the novel intracellular LRR domain-containing protein tropomodulin (AjTmod) was identified as a protein that interacts with flagellin C (FliC) with a dissociation constant (Kd) of 0.0086 ± 0.33 µM by microscale thermophoresis assay. We show that knockdown of AjTmod also depressed FliC-induced apoptosis of coelomocytes. Further functional analysis with different inhibitor treatments revealed that the interaction between AjTmod and FliC could specifically activate p38 MAPK, but not JNK or ERK MAP kinases. We demonstrate that the transcription factor p38 is then translocated into the nucleus, where it mediates the expression of p53 to induce coelomocyte apoptosis. Our findings provide the first evidence that intracellular AjTmod serves as a novel receptor of FliC and mediates p53-dependent coelomocyte apoptosis by activating the p38 MAPK signaling pathway in Echinodermata.
Assuntos
Apoptose , Equinodermos , Flagelina , Tropomodulina , Vibrio , Proteínas Quinases p38 Ativadas por Mitógeno , Animais , Equinodermos/citologia , Flagelina/metabolismo , Transdução de Sinais , Tropomodulina/metabolismo , Proteína Supressora de Tumor p53/genética , Proteínas Quinases p38 Ativadas por Mitógeno/genéticaRESUMO
MicroRNAs (miRNAs), as important regulators of host immune responses, play an crucial position in the interaction between host and pathogen by inhibiting the target gene's transcriptional and post-transcriptional expression. A well-validated tumor suppressor, Previously, miR-137 was found to be variably expressed in the sick sea cucumber Apostichopus japonicus specimens by high-throughput sequencing. To further investigate the mechanism of miR-137 regulation of SUS, we identified Atg13 from sea cucumber by dual luciferase reporter assay and RACE (designated as AjAtg13) and was able to serve as a target gene for miR-137. The full-length cDNA of AjAtg13 is a 2197 bp fragment containing an ORF (open reading frame) of 1149 bp and encodes a total of 382 amino acid polypeptides with a predicted molecular weight of 41.7 kDa. Further expression profiling analysis showed increased mRNA levels of AjAtg13 and reduced expression levels of miR-137 in LPS-stimulated sea cucumber coelomocytes, hinting that miR-137 may negatively regulate AjAtg13. MiR-137 targets AjAtg13 through binding to the 3'UTR region by dual-luciferase reporter gene analysis. MiR-137 overexpression in coelomocytes repressed the expression of autophagy related genes, such as AjAtg13, AjLC3, at the same time, it significantly inhibited autophagy and reduced the ability to clear Vibrio splendidus. Conversely, inhibition of miR-137 significantly upregulated the expression of AjAtg13, promoted autophagy and increased clearance of V. splendidus. Subsequent interference with AjAtg13 also significantly inhibits autophagy. In summary, our results suggested that miR-137 could promote coelomocytes autophagy to restrict bacterial invasion by aiming at AjAtg13 in pathogen-stimulated sea cucumbers.
Assuntos
MicroRNAs , Pepinos-do-Mar , Stichopus , Vibrioses , Vibrio , Animais , Autofagia/genética , Regulação da Expressão Gênica , Imunidade Inata/genética , MicroRNAs/genética , MicroRNAs/metabolismo , Fatores de Transcrição/genéticaRESUMO
N6-methyladenosine (m6A), the most abundant epitranscriptomic modification in eukaryotic messenger RNA (mRNA), plays important roles in regulation of gene expression for fundamental biological processes and diverse physiological functions, including combating with pathogen infection. Here, we were first profile transcriptome-wide m6A sequencing in four stages of skin ulceration syndrome-diseased Apostichopus japonicus following Vibrio splendidus infection, including Control (healthy), Early (small ulcer), Later (extensive ulcer), and Resistant (no ulcer) groups. Our results revealed that three experimental groups were all extensively methylated by m6A and the proportion of the m6A modified genes were also significantly increased to 28.90% (Early), 27.97% (Later), and 29.98% (Resistant) when compared with Control group (15.15%), indicating m6A modification could be induced by V. splendidus infection. Intriguingly, we discovered a positive correlation between the m6A methylation level and mRNA abundance, indicating a positive regulatory role of m6A in sea cucumber gene expression during V. splendidus infection. Moreover, genes with specific and differentially expressed m6A methylation in Later group were both enriched in cell adhesion, while Early and Resistant groups were both mainly involved in DNA conformation change and chromosome organization when compared with Control, suggesting the higher-methylated m6A might serve as "conformational marker" and associated to the initiation of related anti-disease genes transcription in order to improve disease resistance of sea cucumber. Subsequently, we selected the pivotal genes enriched in cell adhesion pathway and found that the IggFc-binding protein (FcGBP) and Fibrocystin-L both had higher levels of m6A methylation and higher level of mRNA expressions in Later group. Conversely, Fibrinogen C domain-containing protein 1 (F1BCD1) gene presented as an antibacterial role in sea cucumber and showed higher mRNA expression and higher m6A methylation in Resistant group and lower mRNA level in Later group. The levels of m6A methylation and mRNA abundance of FcGBP and F1BCD1 genes indicates disease occurrence or disease resistant were also verified by MeRIP-qPCR. Overall, our study presents the first comprehensive characterize of dynamic m6A methylation modification in the different stages of disease in sea cucumber. These data provide an invaluable resource for future studies of function and biological significance of m6A in mRNA in marine invertebrates.
Assuntos
Pepinos-do-Mar , Stichopus , Vibrioses , Vibrio , Adenosina/análogos & derivados , Animais , Metilação , RNA Mensageiro/genética , Pepinos-do-Mar/genética , Stichopus/genética , Stichopus/microbiologia , Úlcera , Vibrio/fisiologiaRESUMO
Long non-coding RNAs (lncRNAs) are novel functional non-coding RNAs which engaged in many aspects of biological processes. N6-methyladenosine (m6A) as a kind of abundant epitranscriptomic modification in eukaryotes, plays important roles in regulation of gene expression for various physiological functions. Our previous study demonstrated that sea cucumber lncRNAs were differentially expressed during bacterial infection. However, whether the post-transcriptional regulation of lncRNAs influenced by m6A modification in sea cucumbers with different stages of skin ulceration syndrome (SUS) are largely unknown. Here, we generated the genome-wide map of m6A lncRNAs in SUS-diseased and SUS-resistant sea cucumbers for the first time, revealed that m6A levels in lncRNAs were mainly upregulated in SUS-resistant group. Intriguingly, most of the m6A lncRNAs showed a positive correlation between the expression levels and m6A levels based on conjoint analysis, suggesting that m6A modification on a lncRNA may contribute to its RNA stability. Furthermore, the host genes of lncRNAs with dysregulated m6A peaks were enriched in immune pathway. More importantly, methyltransferase METTL3 was required for m6A methylation modification and played positive roles in lncRNA expression. Collectively, this study presents the comprehensive characters of m6A lncRNAs in marine invertebrate. These m6A modified lncRNAs may be served as potential regulators associated with SUS and provide a promising avenue for disease therapy through targeting METTL3.
Assuntos
Infecções Bacterianas , RNA Longo não Codificante , Adenosina/análogos & derivados , Adenosina/genética , Adenosina/metabolismo , Animais , Metilação , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismoRESUMO
Organisms produce high levels of reactive oxygen species (ROS) to kill pathogens or act as signaling molecules to induce immune responses; however, excessive ROS can result in cell death. To maintain ROS balance and cell survival, mitophagy selectively eliminates damaged mitochondria via mitophagy receptors in vertebrates. In marine invertebrates, however, mitophagy and its functions remain largely unknown. In the current study, Vibrio splendidus infection damaged mitochondrial morphology in coelomocytes and reduced mitochondrial membrane potential (ΔΨm) and mitophagosome formation. The colocalization of mitochondria and lysosomes further confirmed that lipopolysaccharide (LPS) treatment increased mitophagy flux. To explore the regulatory mechanism of mitophagy, we cloned Bcl2/adenovirus E1B 19 kDa protein-interacting protein 3 (BNIP3), a common mitophagy receptor, from sea cucumber Apostichopus japonicus (AjBNIP3) and confirmed that AjBNIP3 was significantly induced and accumulated in mitochondria after V. splendidus infection and LPS exposure. At the mitochondrial membrane, AjBNIP3 interacts with microtubule-associated protein 1 light chain 3 (LC3) on phagophore membranes to mediate mitophagy. After AjBNIP3 interference, mitophagy flux decreased significantly. Furthermore, AjBNIP3-mediated mitophagy was activated by ROS following the addition of exogenous hydrogen peroxide (H2O2), ROS scavengers, and ROS inhibitors. Finally, inhibition of BNIP3-mediated mitophagy by AjBNIP3 small interfering RNA (siRNA) or high concentrations of lactate increased apoptosis and decreased coelomocyte survival. These findings highlight the essential role of AjBNIP3 in damaged mitochondrial degradation during mitophagy. This mitophagy activity is required for coelomocyte survival in A. japonicus against V. splendidus infection.
Assuntos
Stichopus , Animais , Peróxido de Hidrogênio , Mitofagia/genética , Espécies Reativas de Oxigênio/metabolismo , Stichopus/genética , Stichopus/metabolismo , VibrioRESUMO
In marine environments, organisms are confronted with numerous microbial challenges, although the differential regulation of xenophagy in response to different pathogenic bacterial species remains relatively unknown. Here, we addressed this issue using Apostichopus japonicus as a model. We identified 39 conserved autophagy-related genes by genome-wide screening, which provided a molecular basis for autophagy regulation in sea cucumbers. Furthermore, xenophagy of two Gram-negative bacteria, Vibrio splendidus and Escherichia coli, but not a Gram-positive bacteria, Micrococcus luteus, was observed in different autophagy assays. Surprisingly, a significantly higher autophagy capacity was found in the E. coli-challenged group than in the V. splendidus-challenged group. To confirm these findings, two different lipopolysaccharides, LPSV. splendidus and LPSE. coli, were isolated; we found that these LPS species differentially activated coelomocyte xenophagy. To explore the molecular mechanism mediating differential levels of xenophagy, we used an siRNA knockdown assay and confirmed that LPSV. splendidus-mediated xenophagy was dependent on an AjTLR3-mediated pathway, whereas LPSE. coli-mediated xenophagy was dependent on AjToll. Moreover, the activation of different AjTLRs resulted in AjTRAF6 ubiquitination and subsequent activation of K63-linked ubiquitination of AjBeclin1. Inversely, the LPSV. splendidus-induced AjTLR3 pathway simultaneously activated the expression of AjA20, which reduced the extent of K63-linked ubiquitination of AjBeclin1 and impaired the induction of autophagy; however, this finding was no t evident with LPSE. coli. Our present results provide the first evidence showing that xenophagy could be differentially induced by different bacterial species to yield differential autophagy levels in echinoderms.
Assuntos
Proteína Beclina-1 , Equinodermos , Fator 6 Associado a Receptor de TNF , Receptores Toll-Like , Vibrio , Animais , Proteína Beclina-1/genética , Proteína Beclina-1/metabolismo , Equinodermos/metabolismo , Equinodermos/microbiologia , Escherichia coli/genética , Escherichia coli/metabolismo , Lipopolissacarídeos/farmacologia , Macroautofagia , Transdução de Sinais , Fator 6 Associado a Receptor de TNF/genética , Fator 6 Associado a Receptor de TNF/metabolismo , Receptores Toll-Like/metabolismo , Vibrio/metabolismoRESUMO
Glutaminolysis has been proved to play an irreplaceable role in vertebrate immunity, including effects on cytokine production, bacterial killing, and redox homeostasis maintenance. Our previous metabolomics analysis indicated that glutaminolysis metabolic substrates glutamine (Gln) and metabolites glutamate (Glu) were significantly lower in Skin ulceration syndrome (SUS)-diseased Apostichopus japonicus. To further delineate the role of glutaminolysis, we assayed the levels of Gln and Glu. We found that their contents in coelomocytes were decreased, accompanied by an increase in glutathione (GSH) in pathogen-challenged Apostichopus japonicus. Consistently, the mRNA transcripts of three key genes in glutaminolysis (AjASCT2, AjGOT, and AjGCS) were significantly induced. Moreover, the increased MDA and NADPH/NADP + levels in response to pathogen infection indicated that oxidative stress occurs during the immune response. The metabolic regulator AMPKß could regulate glutaminolysis in vertebrates by inducing cells to take up extracellular Gln. To explore the underlying regulatory mechanism behind glutaminolysis that occurred in coelomocytes, the full-length cDNA of AMPKß was identified from A. japonicus (designated as AjAMPKß). AjAMPKß expression was significantly induced in the coelomocytes after pathogen challenge, which was consistent with the expression of key genes of glutaminolysis. A functional assay indicated that AjAMPKß silencing by siRNA transfection could increase the levels of Gln and Glu and depress the production of GSH. Moreover, the expression of glutaminolysis-related genes was significantly inhibited, and the reduction of redox homeostasis indexes (MDA and NADPH/NADP+) was also observed. Contrastingly, AjAMPKß overexpression promoted redox homeostasis balance. Intracellular ROS is mostly responsible for breaking redox homeostasis and leading to oxidative stress, contributing to cell fate changes in immune cells. Exogenous Gln and GSH treatments could significantly reduce ROS level while the AjAMPKß silencing induced the level of ROS and accelerated the necrosis rate. All these results collectively revealed that AjAMPKß could modulate cellular redox homeostasis by affecting the glutaminolysis in A. japonicus.