Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 69
Filtrar
2.
Autophagy ; 20(1): 45-57, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37614038

RESUMO

Adult stem cells are long-lived and quiescent with unique metabolic requirements. Macroautophagy/autophagy is a fundamental survival mechanism that allows cells to adapt to metabolic changes by degrading and recycling intracellular components. Here we address why autophagy depletion leads to a drastic loss of the stem cell compartment. Using inducible deletion of autophagy specifically in adult hematopoietic stem cells (HSCs) and in mice chimeric for autophagy-deficient and normal HSCs, we demonstrate that the stem cell loss is cell-intrinsic. Mechanistically, autophagy-deficient HSCs showed higher expression of several amino acid transporters (AAT) when compared to autophagy-competent cells, resulting in increased amino acid (AA) uptake. This was followed by sustained MTOR (mechanistic target of rapamycin) activation, with enlarged cell size, glucose uptake and translation, which is detrimental to the quiescent HSCs. MTOR inhibition by rapamycin treatment in vivo was able to rescue autophagy-deficient HSC loss and bone marrow failure and resulted in better reconstitution after transplantation. Our results suggest that targeting MTOR may improve aged stem cell function, promote reprogramming and stem cell transplantation.List of abbreviations: 5FU: fluoracil; AA: amino acids; AKT/PKB: thymoma viral proto-oncogene 1; ATF4: activating transcription factor 4; BafA: bafilomycin A1; BM: bone marrow; EIF2: eukaryotic initiation factor 2; EIF4EBP1/4EBP1: eukaryotic translation initiation factor 4E binding protein 1; KIT/CD117/c-Kit: KIT proto-oncogene receptor tyrosine kinase; HSCs: hematopoietic stem cells; HSPCs: hematopoietic stem and progenitor cells; Kyn: kynurenine; LSK: lineage- (Lin-), LY6A/Sca-1+, KIT/c-Kit/CD117+; LY6A/Sca-1: lymphocyte antigen 6 family member A; MTOR: mechanistic target of rapamycin kinase; MTORC1: MTOR complex 1; MTORC2: MTOR complex 2; OPP: O-propargyl-puromycin; PI3K: phosphoinositide 3-kinase; poly(I:C): polyinosinic:polycytidylic acid; RPS6/S6: ribosomal protein S6; tam: tamoxifen; TCA: tricarboxylic acid; TFEB: transcription factor EB; PTPRC/CD45: Protein Tyrosine Phosphatase Receptor Type C, CD45 antigen.


Assuntos
Autofagia , Transdução de Sinais , Camundongos , Animais , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Células-Tronco Hematopoéticas/metabolismo , Alvo Mecanístico do Complexo 2 de Rapamicina/metabolismo , Sirolimo/farmacologia
3.
Autophagy ; : 1-3, 2023 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-37771244

RESUMO

Glycosphingolipids (GSLs) are key constituents of membrane bilayers playing a role in structural integrity, cell signalling in microdomains, endosomes and lysosomes, and cell death pathways. Conversion of ceramide into GSLs is controlled by GCS (glucosylceramide synthase) and inhibitors of this enzyme for the treatment of lipid storage disorders and specific cancers. With a diverse range of functions attributed to GSLs, the ability of the GSC inhibitor, eliglustat, to reduce myeloma bone disease was investigated. In pre-clinical models of multiple myeloma, osteoclast-driven bone loss was reduced by eliglustat in a mechanistically separate manner to zoledronic acid, a bisphosphonate that prevents osteoclast-mediated bone destruction. Autophagic degradation of TNF receptor-associated factor 3 (TRAF3), a key step for osteoclast differentiation, was inhibited by eliglustat as evidenced by TRAF3 lysosomal and cytoplasmic accumulation. By altering GSL composition, eliglustat prevented lysosomal degradation whilst exogenous addition of missing GSLs rescued TRAF3 degradation to restore osteoclast formation in bone marrow cells from myeloma patients. This work highlights the clinical potential of eliglustat as a therapy for myeloma bone disease. Furthermore, using eliglustat as a lysosomal inhibitor in osteoclasts may widen its therapeutic uses to other bone disorders such as bone metastasis, osteoporosis and inflammatory bone loss.

4.
Semin Immunol ; 70: 101838, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37708826

RESUMO

Aging leads to a decline in immune cell function, which leaves the organism vulnerable to infections and age-related multimorbidities. One major player of the adaptive immune response are T cells, and recent studies argue for a major role of disturbed proteostasis contributing to reduced function of these cells upon aging. Proteostasis refers to the state of a healthy, balanced proteome in the cell and is influenced by synthesis (translation), maintenance and quality control of proteins, as well as degradation of damaged or unwanted proteins by the proteasome, autophagy, lysosome and cytoplasmic enzymes. This review focuses on molecular processes impacting on proteostasis in T cells, and specifically functional or quantitative changes of each of these upon aging. Importantly, we describe the biological consequences of compromised proteostasis in T cells, which range from impaired T cell activation and function to enhancement of inflamm-aging by aged T cells. Finally, approaches to improve proteostasis and thus rejuvenate aged T cells through pharmacological or physical interventions are discussed.


Assuntos
Proteostase , Senescência de Células T , Humanos , Idoso , Envelhecimento , Complexo de Endopeptidases do Proteassoma/metabolismo , Autofagia
5.
Front Aging ; 4: 1202152, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37465119

RESUMO

Ageing is the biggest risk factor for the development of multiple chronic diseases as well as increased infection susceptibility and severity of diseases such as influenza and COVID-19. This increased disease risk is linked to changes in immune function during ageing termed immunosenescence. Age-related loss of immune function, particularly in adaptive responses against pathogens and immunosurveillance against cancer, is accompanied by a paradoxical gain of function of some aspects of immunity such as elevated inflammation and increased incidence of autoimmunity. Of the many factors that contribute to immunosenescence, DNA damage is emerging as a key candidate. In this review, we discuss the evidence supporting the hypothesis that DNA damage may be a central driver of immunosenescence through senescence of both immune cells and cells of non-haematopoietic lineages. We explore why DNA damage accumulates during ageing in a major cell type, T cells, and how this may drive age-related immune dysfunction. We further propose that existing immunosenescence interventions may act, at least in part, by mitigating DNA damage and restoring DNA repair processes (which we term "genoprotection"). As such, we propose additional treatments on the basis of their evidence for genoprotection, and further suggest that this approach may provide a viable therapeutic strategy for improving immunity in older people.

6.
EMBO Rep ; 24(9): e57289, 2023 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-37465980

RESUMO

Over the recent years, it has become apparent that a deeper understanding of cell-to-cell and organ-to-organ communication is necessary to fully comprehend both homeostatic and pathological states. Autophagy is indispensable for cellular development, function, and homeostasis. A crucial aspect is that autophagy can also mediate these processes through its secretory role. The autophagy-derived secretome relays its extracellular signals in the form of nutrients, proteins, mitochondria, and extracellular vesicles. These crosstalk mediators functionally shape cell fate decisions, tissue microenvironment and systemic physiology. The diversity of the secreted cargo elicits an equally diverse type of responses, which span over metabolic, inflammatory, and structural adaptations in disease and homeostasis. We review here the emerging role of the autophagy-derived secretome in the communication between different cell types and organs and discuss the mechanisms involved.


Assuntos
Comunicação Celular , Vesículas Extracelulares , Autofagia/fisiologia , Vesículas Extracelulares/metabolismo , Transporte Biológico , Proteínas/metabolismo
7.
EMBO J ; 42(6): e112202, 2023 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-36795015

RESUMO

Lipids play a major role in inflammatory diseases by altering inflammatory cell functions, either through their function as energy substrates or as lipid mediators such as oxylipins. Autophagy, a lysosomal degradation pathway that limits inflammation, is known to impact on lipid availability, however, whether this controls inflammation remains unexplored. We found that upon intestinal inflammation visceral adipocytes upregulate autophagy and that adipocyte-specific loss of the autophagy gene Atg7 exacerbates inflammation. While autophagy decreased lipolytic release of free fatty acids, loss of the major lipolytic enzyme Pnpla2/Atgl in adipocytes did not alter intestinal inflammation, ruling out free fatty acids as anti-inflammatory energy substrates. Instead, Atg7-deficient adipose tissues exhibited an oxylipin imbalance, driven through an NRF2-mediated upregulation of Ephx1. This shift reduced secretion of IL-10 from adipose tissues, which was dependent on the cytochrome P450-EPHX pathway, and lowered circulating levels of IL-10 to exacerbate intestinal inflammation. These results suggest an underappreciated fat-gut crosstalk through an autophagy-dependent regulation of anti-inflammatory oxylipins via the cytochrome P450-EPHX pathway, indicating a protective effect of adipose tissues for distant inflammation.


Assuntos
Ácidos Graxos não Esterificados , Oxilipinas , Humanos , Adipócitos/metabolismo , Autofagia/fisiologia , Sistema Enzimático do Citocromo P-450/metabolismo , Sistema Enzimático do Citocromo P-450/farmacologia , Ácidos Graxos não Esterificados/metabolismo , Ácidos Graxos não Esterificados/farmacologia , Inflamação/genética , Inflamação/metabolismo , Interleucina-10/genética , Oxilipinas/metabolismo
8.
Nat Commun ; 13(1): 7868, 2022 12 22.
Artigo em Inglês | MEDLINE | ID: mdl-36550101

RESUMO

Patients with multiple myeloma, an incurable malignancy of plasma cells, frequently develop osteolytic bone lesions that severely impact quality of life and clinical outcomes. Eliglustat, a U.S. Food and Drug Administration-approved glucosylceramide synthase inhibitor, reduced osteoclast-driven bone loss in preclinical in vivo models of myeloma. In combination with zoledronic acid, a bisphosphonate that treats myeloma bone disease, eliglustat provided further protection from bone loss. Autophagic degradation of TRAF3, a key step for osteoclast differentiation, was inhibited by eliglustat as evidenced by TRAF3 lysosomal and cytoplasmic accumulation. Eliglustat blocked autophagy by altering glycosphingolipid composition whilst restoration of missing glycosphingolipids rescued autophagy markers and TRAF3 degradation thus restoring osteoclastogenesis in bone marrow cells from myeloma patients. This work delineates both the mechanism by which glucosylceramide synthase inhibition prevents autophagic degradation of TRAF3 to reduce osteoclastogenesis as well as highlighting the clinical translational potential of eliglustat for the treatment of myeloma bone disease.


Assuntos
Doenças Ósseas , Mieloma Múltiplo , Humanos , Mieloma Múltiplo/patologia , Fator 3 Associado a Receptor de TNF/metabolismo , Qualidade de Vida , Osteoclastos/metabolismo , Doenças Ósseas/tratamento farmacológico , Doenças Ósseas/metabolismo , Autofagia , Glicoesfingolipídeos/metabolismo
9.
Nat Commun ; 13(1): 5174, 2022 09 02.
Artigo em Inglês | MEDLINE | ID: mdl-36055998

RESUMO

CD4+ T cells are pivotal cells playing roles in the orchestration of humoral and cytotoxic immune responses. It is known that CD4+ T cell proliferation relies on autophagy, but identification of the autophagosomal cargo involved is missing. Here we create a transgenic mouse model, to enable direct mapping of the proteinaceous content of autophagosomes in primary cells by LC3 proximity labelling. Interleukin-7 receptor-α, a cytokine receptor mostly found in naïve and memory T cells, is reproducibly detected in autophagosomes of activated CD4+ T cells. Consistently, CD4+ T cells lacking autophagy show increased interleukin-7 receptor-α surface expression, while no defect in internalisation is observed. Mechanistically, excessive surface interleukin-7 receptor-α sequestrates the common gamma chain, impairing the interleukin-2 receptor assembly and downstream signalling crucial for T cell proliferation. This study shows that key autophagy substrates can be reliably identified in this mouse model and help mechanistically unravel autophagy's contribution to healthy physiology and disease.


Assuntos
Autofagossomos , Linfócitos T CD4-Positivos , Animais , Autofagossomos/metabolismo , Proliferação de Células , Interleucina-2/metabolismo , Interleucina-7/metabolismo , Ativação Linfocitária , Camundongos , Receptores de Interleucina-7/metabolismo
10.
J Exp Med ; 219(6)2022 06 06.
Artigo em Inglês | MEDLINE | ID: mdl-35551368

RESUMO

Inborn errors of immunity (IEIs) unveil regulatory pathways of human immunity. We describe a new IEI caused by mutations in the GTPase of the immune-associated protein 6 (GIMAP6) gene in patients with infections, lymphoproliferation, autoimmunity, and multiorgan vasculitis. Patients and Gimap6-/- mice show defects in autophagy, redox regulation, and polyunsaturated fatty acid (PUFA)-containing lipids. We find that GIMAP6 complexes with GABARAPL2 and GIMAP7 to regulate GTPase activity. Also, GIMAP6 is induced by IFN-γ and plays a critical role in antibacterial immunity. Finally, we observed that Gimap6-/- mice died prematurely from microangiopathic glomerulosclerosis most likely due to GIMAP6 deficiency in kidney endothelial cells.


Assuntos
GTP Fosfo-Hidrolases , Síndromes de Imunodeficiência , Animais , Autofagia , Células Endoteliais/metabolismo , GTP Fosfo-Hidrolases/genética , GTP Fosfo-Hidrolases/metabolismo , Humanos , Inflamação , Camundongos
11.
Circulation ; 145(14): 1084-1101, 2022 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-35236094

RESUMO

BACKGROUND: In most eukaryotic cells, the mitochondrial DNA (mtDNA) is transmitted uniparentally and present in multiple copies derived from the clonal expansion of maternally inherited mtDNA. All copies are therefore near-identical, or homoplasmic. The presence of >1 mtDNA variant in the same cytoplasm can arise naturally or result from new medical technologies aimed at preventing mitochondrial genetic diseases and improving fertility. The latter is called divergent nonpathologic mtDNA heteroplasmy (DNPH). We hypothesized that DNPH is maladaptive and usually prevented by the cell. METHODS: We engineered and characterized DNPH mice throughout their lifespan using transcriptomic, metabolomic, biochemical, physiologic, and phenotyping techniques. We focused on in vivo imaging techniques for noninvasive assessment of cardiac and pulmonary energy metabolism. RESULTS: We show that DNPH impairs mitochondrial function, with profound consequences in critical tissues that cannot resolve heteroplasmy, particularly cardiac and skeletal muscle. Progressive metabolic stress in these tissues leads to severe pathology in adulthood, including pulmonary hypertension and heart failure, skeletal muscle wasting, frailty, and premature death. Symptom severity is strongly modulated by the nuclear context. CONCLUSIONS: Medical interventions that may generate DNPH should address potential incompatibilities between donor and recipient mtDNA.


Assuntos
Fragilidade , Cardiopatias , Hipertensão Pulmonar , Adulto , Animais , DNA Mitocondrial/genética , Fragilidade/patologia , Cardiopatias/patologia , Heteroplasmia , Humanos , Hipertensão Pulmonar/genética , Hipertensão Pulmonar/patologia , Camundongos , Mitocôndrias/genética
12.
Dis Model Mech ; 15(1)2022 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-35098310

RESUMO

Autophagy, as the key nutrient recycling pathway, enables eukaryotic cells to adapt to surging cellular stress during aging and, thereby, delays age-associated deterioration. Autophagic flux declines with age and, in turn, decreases in autophagy contribute to the aging process itself and promote senescence. Here, we outline how autophagy regulates immune aging and discuss autophagy-inducing interventions that target senescent immune cells, which are major drivers of systemic aging. We examine how cutting-edge technologies, such as single-cell omics methods hold the promise to capture the complexity of molecular and cellular phenotypes associated with aging, driving the development of suitable putative biomarkers and clinical bioassays. Finally, we debate the urgency to initiate large-scale human clinical trials. We give special preference to small molecule probes and to dietary interventions that can extend healthy lifespan and are affordable for most of the world's population.


Assuntos
Autofagia , Longevidade , Senescência Celular/fisiologia
13.
Nat Aging ; 2(12): 1112-1129, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-37118547

RESUMO

Aging involves the systemic deterioration of all known cell types in most eukaryotes. Several recently discovered compounds that extend the healthspan and lifespan of model organisms decelerate pathways that govern the aging process. Among these geroprotectors, spermidine, a natural polyamine ubiquitously found in organisms from all kingdoms, prolongs the lifespan of fungi, nematodes, insects and rodents. In mice, it also postpones the manifestation of various age-associated disorders such as cardiovascular disease and neurodegeneration. The specific features of spermidine, including its presence in common food items, make it an interesting candidate for translational aging research. Here, we review novel insights into the geroprotective mode of action of spermidine at the molecular level, as we discuss strategies for elucidating its clinical potential.


Assuntos
Envelhecimento , Espermidina , Animais , Camundongos , Espermidina/farmacologia , Longevidade , Autofagia , Poliaminas
14.
Nat Aging ; 1(8): 634-650, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34901876

RESUMO

Autophagy is a fundamental cellular process that eliminates molecules and subcellular elements, including nucleic acids, proteins, lipids and organelles, via lysosome-mediated degradation to promote homeostasis, differentiation, development and survival. While autophagy is intimately linked to health, the intricate relationship among autophagy, aging and disease remains unclear. This Review examines several emerging features of autophagy and postulates how they may be linked to aging as well as to the development and progression of disease. In addition, we discuss current preclinical evidence arguing for the use of autophagy modulators as suppressors of age-related pathologies such as neurodegenerative diseases. Finally, we highlight key questions and propose novel research avenues that will likely reveal new links between autophagy and the hallmarks of aging. Understanding the precise interplay between autophagy and the risk of age-related pathologies across organisms will eventually facilitate the development of clinical applications that promote long-term health.


Assuntos
Envelhecimento Saudável , Doenças Neurodegenerativas , Humanos , Autofagia , Envelhecimento/metabolismo , Lisossomos/metabolismo , Doenças Neurodegenerativas/metabolismo
15.
EMBO J ; 40(19): e108863, 2021 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-34459017

RESUMO

Autophagy is a core molecular pathway for the preservation of cellular and organismal homeostasis. Pharmacological and genetic interventions impairing autophagy responses promote or aggravate disease in a plethora of experimental models. Consistently, mutations in autophagy-related processes cause severe human pathologies. Here, we review and discuss preclinical data linking autophagy dysfunction to the pathogenesis of major human disorders including cancer as well as cardiovascular, neurodegenerative, metabolic, pulmonary, renal, infectious, musculoskeletal, and ocular disorders.


Assuntos
Autofagia , Suscetibilidade a Doenças , Animais , Autofagia/efeitos dos fármacos , Autofagia/genética , Autofagia/imunologia , Biomarcadores , Regulação da Expressão Gênica , Predisposição Genética para Doença , Homeostase , Interações Hospedeiro-Patógeno , Humanos , Especificidade de Órgãos , Transdução de Sinais
16.
Nat Commun ; 12(1): 2715, 2021 05 11.
Artigo em Inglês | MEDLINE | ID: mdl-33976157

RESUMO

Efficient immune responses rely on heterogeneity, which in CD8+ T cells, amongst other mechanisms, is achieved by asymmetric cell division (ACD). Here we find that ageing, known to negatively impact immune responses, impairs ACD in murine CD8+ T cells, and that this phenotype can be rescued by transient mTOR inhibition. Increased ACD rates in mitotic cells from aged mice restore the expansion and memory potential of their cellular progenies. Further characterization of the composition of CD8+ T cells reveals that virtual memory cells (TVM cells), which accumulate during ageing, have a unique proliferation and metabolic profile, and retain their ability to divide asymmetrically, which correlates with increased memory potential. The opposite is observed for naive CD8+ T cells from aged mice. Our data provide evidence on how ACD modulation contributes to long-term survival and function of T cells during ageing, offering new insights into how the immune system adapts to ageing.


Assuntos
Envelhecimento/genética , Divisão Celular Assimétrica/genética , Linfócitos T CD8-Positivos/imunologia , Memória Imunológica/genética , Serina-Treonina Quinases TOR/genética , Envelhecimento/imunologia , Animais , Divisão Celular Assimétrica/imunologia , Linfócitos T CD8-Positivos/citologia , Linfócitos T CD8-Positivos/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Regulação da Expressão Gênica , Imunidade Inata , Interferon gama/genética , Interferon gama/imunologia , Interleucina-1beta/genética , Interleucina-1beta/imunologia , Subunidade beta de Receptor de Interleucina-2/genética , Subunidade beta de Receptor de Interleucina-2/imunologia , Lectinas Tipo C/genética , Lectinas Tipo C/imunologia , Ativação Linfocitária , Camundongos , Subfamília K de Receptores Semelhantes a Lectina de Células NK/genética , Subfamília K de Receptores Semelhantes a Lectina de Células NK/imunologia , Receptores CXCR3/genética , Receptores CXCR3/imunologia , Receptores Imunológicos/genética , Receptores Imunológicos/imunologia , Receptores de Interleucina-7/genética , Receptores de Interleucina-7/imunologia , Transdução de Sinais , Sirolimo/farmacologia , Serina-Treonina Quinases TOR/antagonistas & inibidores , Serina-Treonina Quinases TOR/imunologia
17.
Aging Cell ; 20(2): e13316, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33524238

RESUMO

The ageing of the global population brings about unprecedented challenges. Chronic age-related diseases in an increasing number of people represent an enormous burden for health and social care. The immune system deteriorates during ageing and contributes to many of these age-associated diseases due to its pivotal role in pathogen clearance, tissue homeostasis and maintenance. Moreover, in order to develop treatments for COVID-19, we urgently need to acquire more knowledge about the aged immune system, as older adults are disproportionally and more severely affected. Changes with age lead to impaired responses to infections, malignancies and vaccination, and are accompanied by chronic, low-degree inflammation, which together is termed immunosenescence. However, the molecular and cellular mechanisms that underlie immunosenescence, termed immune cell senescence, are mostly unknown. Cellular senescence, characterised by an irreversible cell cycle arrest, is thought to be the cause of tissue and organismal ageing. Thus, better understanding of cellular senescence in immune populations at single-cell level may provide us with insight into how immune cell senescence develops over the life time of an individual. In this review, we will briefly introduce the phenotypic characterisation of aged innate and adaptive immune cells, which also contributes to overall immunosenescence, including subsets and function. Next, we will focus on the different hallmarks of cellular senescence and cellular ageing, and the detection techniques most suitable for immune cells. Applying these techniques will deepen our understanding of immune cell senescence and to discover potential druggable pathways, which can be modulated to reverse immune ageing.


Assuntos
Senescência Celular , Imunossenescência , Leucócitos/fisiologia , Animais , Biomarcadores/metabolismo , Humanos , Estresse Oxidativo , Proteostase
18.
J Allergy Clin Immunol ; 147(1): 335-348.e11, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-32407834

RESUMO

BACKGROUND: The cross-talk between the host and its microbiota plays a key role in the promotion of health. The production of metabolites such as polyamines by intestinal-resident bacteria is part of this symbiosis shaping host immunity. The polyamines putrescine, spermine, and spermidine are abundant within the gastrointestinal tract and might substantially contribute to gut immunity. OBJECTIVE: We aimed to characterize the polyamine spermidine as a modulator of T-cell differentiation and function. METHODS: Naive T cells were isolated from wild-type mice or cord blood from healthy donors and submitted to polarizing cytokines, with and without spermidine treatment, to evaluate CD4+ T-cell differentiation in vitro. Moreover, mice were subjected to oral supplementation of spermidine, or its precursor l-arginine, to assess the frequency and total numbers of regulatory T (Treg) cells in vivo. RESULTS: Spermidine modulates CD4+ T-cell differentiation in vitro, preferentially committing naive T cells to a regulatory phenotype. After spermidine treatment, activated T cells lacking the autophagy gene Atg5 fail to upregulate Foxp3 to the same extent as wild-type cells. These results indicate that spermidine's polarizing effect requires an intact autophagic machinery. Furthermore, dietary supplementation with spermidine promotes homeostatic differentiation of Treg cells within the gut and reduces pathology in a model of T-cell transfer-induced colitis. CONCLUSION: Altogether, our results highlight the beneficial effects of spermidine, or l-arginine, on gut immunity by promoting Treg cell development.


Assuntos
Diferenciação Celular/efeitos dos fármacos , Colite/imunologia , Imunidade nas Mucosas/efeitos dos fármacos , Espermidina/farmacologia , Linfócitos T Reguladores/imunologia , Animais , Diferenciação Celular/imunologia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Knockout
19.
Elife ; 92020 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-33317695

RESUMO

Vaccines are powerful tools to develop immune memory to infectious diseases and prevent excess mortality. In older adults, however vaccines are generally less efficacious and the molecular mechanisms that underpin this remain largely unknown. Autophagy, a process known to prevent aging, is critical for the maintenance of immune memory in mice. Here, we show that autophagy is specifically induced in vaccine-induced antigen-specific CD8+ T cells in healthy human volunteers. In addition, reduced IFNγ secretion by RSV-induced T cells in older vaccinees correlates with low autophagy levels. We demonstrate that levels of the endogenous autophagy-inducing metabolite spermidine fall in human T cells with age. Spermidine supplementation in T cells from old donors recovers their autophagy level and function, similar to young donors' cells, in which spermidine biosynthesis has been inhibited. Finally, our data show that endogenous spermidine maintains autophagy via the translation factor eIF5A and transcription factor TFEB. In summary, we have provided evidence for the importance of autophagy in vaccine immunogenicity in older humans and uncovered two novel drug targets that may increase vaccination efficiency in the aging context.


Assuntos
Envelhecimento/imunologia , Autofagia/imunologia , Linfócitos T CD8-Positivos/imunologia , Vacinas contra Vírus Sincicial Respiratório/imunologia , Espermidina/farmacologia , Adjuvantes Imunológicos/farmacologia , Adulto , Idoso , Animais , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/metabolismo , Linhagem Celular Tumoral , Humanos , Memória Imunológica/imunologia , Interferon gama/sangue , Células Jurkat , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Pessoa de Meia-Idade , Fatores de Iniciação de Peptídeos/metabolismo , Proteínas de Ligação a RNA/metabolismo , Vírus Sinciciais Respiratórios/imunologia , Espermidina/sangue , Vacinação , Adulto Jovem , Fator de Iniciação de Tradução Eucariótico 5A
20.
Science ; 369(6502): 373-374, 2020 07 24.
Artigo em Inglês | MEDLINE | ID: mdl-32703864
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA