Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
1.
Int J Sports Physiol Perform ; 19(2): 95-104, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-37931616

RESUMO

PURPOSE: To investigate performance-determining variables of an on-snow sprint cross-country skiing competition and the evolvement in their relationship with performance as the competition progresses from the individual time trial (TT) to the final. METHODS: Sixteen national-level male junior skiers (mean [SD] age, 18.6 [0.8] y; peak oxygen uptake [VO2peak], 67.6 [5.5] mL·min-1·kg-1) performed a simulated sprint competition (1.3 km) in the skating style, comprising a TT followed by 3 finals (quarterfinals, semifinals, and final) completed by all skiers. In addition, submaximal and incremental roller-ski treadmill tests, on-snow maximal speed tests, and strength/power tests were performed. RESULTS: VO2peak and peak treadmill speed during incremental testing and relative heart rate, rating of perceived exertion, blood lactate concentrations, and gross efficiency during submaximal testing were all significantly correlated with performance in the TT and subsequent finals (mean [range] r values: .67 [.53-.86], all P < .05). Relative VO2peak and submaximal relative heart rate and blood lactate concentration were more strongly correlated with performance in the semifinals and final compared with the TT (r values: .74 [.60-.83] vs 0.55 [.51-.60], all P < .05). Maximal speed in uphill and flat terrain was significantly correlated with performance in the TT and subsequent finals (r values: .63 [.38-.70], all P < .05), while strength/power tests did not correlate significantly with sprint performance. CONCLUSIONS: VO2peak and high-speed abilities were the most important determinants of sprint cross-country skiing performance, with an increased importance of VO2peak as the competition format progressed toward the final.


Assuntos
Patinação , Esqui , Humanos , Masculino , Adolescente , Esqui/fisiologia , Consumo de Oxigênio/fisiologia , Teste de Esforço , Ácido Láctico
2.
Front Sports Act Living ; 5: 1277228, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37964775

RESUMO

Introduction: This study (i) examined Norwegian and Swedish sports coaches' employment, practices, and beliefs during the first wave of the COVID-19 pandemic, (ii) compared these aspects between coaches in Norway and Sweden, two countries with clearly different movement restrictions strategies in this period. Methods: An online survey was distributed to coaches via email and social media. The survey was open between June and August 2020. In total, 348 coaches responded, 141 from Norway, and 207 from Sweden. Results: Among responders, 2% had lost their job due to the pandemic, 17% had been furloughed, 28% worked from home office, and 39% worked as usual. Norwegian coaches were more likely to work from home (48% vs. 15%, p < .001), while Swedish coaches were more likely to work as usual (60% vs. 9%, p < .001). Coaches in both countries communicated less frequently with their athletes (p < .001) and had less in-person communication (p < .001) compared to pre-Covid levels. Larger declines existed among Norwegian coaches regarding communication frequency (p < .001) and in-person communication (p < .001). Video calls and phone calls usage increased (p < .001 and p = .009 respectively). We recorded low levels of concern among coaches about the effects of the pandemic on their relationship with their athletes. There were considerable levels of concern about athletes' maintaining their motivation to train (Norway: 43.3%, Sweden: 50.7%), and low levels of concern about the coaches' relationships with their athletes (Norway: 14.1%, Sweden: 17.8%). Discussion: Overall, this study showed the imposed movement restrictions had several negative consequences for the employment and work practices of sports coaches in Norway and Sweden. However, it also highlighted that coaches were able to adapt their work practices to the constraints and were able to maintain relationships with their athletes. The consequences raised in this paper can act as a guide during possible future lockdowns.

3.
Eur Heart J Cardiovasc Imaging ; 24(6): 721-729, 2023 05 31.
Artigo em Inglês | MEDLINE | ID: mdl-37073553

RESUMO

AIMS: Cardiovascular structures adapt to meet metabolic demands, but current methodology for indexing by body size does not accurately reflect such variations. Therefore, we aimed to investigate how left ventricular end-diastolic volume (LVEDV) and left atrial maximal volume (LAVmax) are associated with absolute (L/min) peak oxygen uptake (VO2peak) and fat-free mass (FFM) compared to body surface area (BSA). We subsequently assessed the impact of indexing by absolute VO2peak, FFM, and BSA to discriminate pathological from physiological remodeling. METHODS AND RESULTS: We used data from 1190 healthy adults to explore relationships for BSA, FFM, and absolute VO2peak with LVEDV and LAVmax by regression and correlation analyses. We then compared these indexing methods for classification to normalcy/pathology in 61 heart failure patients and 71 endurance athletes using the chi-squared and Fisher exact tests and the net reclassification and integrated discrimination indices. Absolute VO2peak correlated strongly with LVEDV, explaining 52% of variance vs. 32% for BSA and 44% for FFM. Indexing LVEDV for VO2peak improved discrimination between heart failure patients and athletes on top of indexing to BSA. Seventeen out of 18 athletes classified to pathology by BSA were reclassified to normalcy by VO2peak indexing (P < 0.001), while heart failure patients were reclassified to pathology (39-95%, P < 0.001). All indexing methods explained below 20% of the variance in LAVmax in univariate models. CONCLUSIONS: Indexing LVEDV to VO2peak improves the ability to differentiate physiological and pathological enlargement. The LVEDV to absolute VO2peak ratio may be a key index in diagnosing heart failure and evaluating the athlete's heart.


Assuntos
Volume Cardíaco , Insuficiência Cardíaca , Adulto , Humanos , Insuficiência Cardíaca/diagnóstico por imagem , Atletas , Átrios do Coração/diagnóstico por imagem , Oxigênio
4.
PLoS One ; 18(3): e0283794, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37000799

RESUMO

In cross-country skiing, athletes use different techniques akin to locomotor gaits such as walking and running. Transitions between these techniques generally depend on speed and incline, in a similar way as walk-run transitions. Previous studies have examined the roles of incline, speed, and mechanical power demand in triggering transitions. However, it is still not known if mechanical power demand, as an isolated factor, has any role on the choice of technique. The aim of this study was to examine the isolated role of mechanical power on the choice of technique during classic cross-country roller skiing by changing mechanical power demand at fixed speeds and inclines. Six male and eight female athletes performed classical roller skiing on a treadmill at the four combinations of two speeds (10 and 12 km h-1) and two inclines (5 and 8%) while additional resistive forces were applied via a weight-pulley system. Athletes were free to choose between three techniques: double poling, double poling with kick, and diagonal stride. Power and resistive forces at transition were compared using repeated measure (2x2) ANOVA. At a given incline, technique transitions occurred at similar additional resistive force magnitudes at the two speeds. On the steeper incline, the transitions occurred at smaller additional resistive forces. Importantly, transitions were not triggered at similar mechanical power demands across the different incline/speed/resistive force conditions. This suggests that mechanical power itself is not a key technique transition trigger. Both total and additional resistive force (i.e., the manipulated mechanism to regulate power) may be transition triggers when incline is fixed and speed is changed. In combination with previous findings, the current results suggest that no single factor triggers technique transitions in classic cross-country skiing.


Assuntos
Corrida , Esqui , Humanos , Masculino , Feminino , Esqui/fisiologia , Fenômenos Biomecânicos/fisiologia , Corrida/fisiologia , Marcha , Teste de Esforço/métodos , Consumo de Oxigênio/fisiologia
5.
Int J Sports Physiol Perform ; 17(12): 1664-1671, 2022 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-36343622

RESUMO

PURPOSE: To critically appraise the utility of heart rate (HR) and power output (PO) to predict metabolic rate (MR) and oxygen consumption (V˙O2) during variable-intensity roller skiing and cycling. METHODS: National-level cyclists (n = 8) and cross-country skiers (n = 9) completed a preliminary session to determine V˙O2max, and a variable-intensity protocol with 3 high-intensity stages at 90% V˙O2max for 3 minutes interspersed with 3 moderate-intensity stages at 70% V˙O2max for 6 minutes. Cardiorespiratory measures were recorded throughout. Linear HR-MR, HR-V˙O2, PO-MR, and PO-V˙O2 regressions were computed from the preliminary session, individually, for all athletes and used to predict MR and V˙O2 from both HR and PO, separately, during the variable-intensity protocol. Mean differences with 95% limits of agreement (LOA) between measured and predicted MR and V˙O2 were calculated. RESULTS: MR and V˙O2 estimated from HR displayed a mean bias close to zero but wide LOA. HR overestimated MR and V˙O2 during moderate intensity but underestimated MR and V˙O2 during high intensity, for both roller skiing and cycling. MR and V˙O2 estimated from PO were more consistent across the experimental trial, displaying a mean bias farther from zero but with tighter LOA. CONCLUSIONS: This study has demonstrated that HR has limited utility to predict metabolic intensity during variable-intensity roller skiing and cycling because of wide LOA. On the other hand, metabolic intensity predicted from PO had tighter LOA, suggesting better consistency. PO might provide a better prediction of metabolic intensity compared with HR, particularly when longer-duration steps are performed during preliminary testing.


Assuntos
Esqui , Humanos , Esqui/fisiologia , Frequência Cardíaca/fisiologia , Ciclismo/fisiologia , Consumo de Oxigênio/fisiologia , Atletas , Teste de Esforço/métodos
6.
Front Physiol ; 13: 837634, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35299664

RESUMO

The purpose of this study was to compare the effects of 12 weeks load-matched block periodization (BP, n = 14), using weekly concentration of high- (HIT), moderate- (MIT), and low- (LIT) intensity training, with traditional periodization (TP, n = 16) using a weekly, cyclic progressive increase in training load of HIT-, MIT-, and LIT-sessions in trained cyclists (peak oxygen uptake: 58 ± 8 ml·kg-1·min-1). Red blood cell volume increased 10 ± 16% (p = 0.029) more in BP compared to TP, while capillaries around type I fibers increased 20 ± 12% (p = 0.002) more in TP compared to BP from Pre to Post12. No other group differences were found in time-trial (TT) performances or muscular-, or hematological adaptations. However, both groups improved 5 and 40-min TT power by 9 ± 9% (p < 0.001) and 8 ± 9% (p < 0.001), maximal aerobic power (Wmax) and power output (PO) at 4 mmol·L-1 blood lactate (W4mmol), by 6 ± 7 (p = 0.001) and 10 ± 12% (p = 0.001), and gross efficiency (GE) in a semi-fatigued state by 0.5 ± 1.1%-points (p = 0.026). In contrast, GE in fresh state and VO2peak were unaltered in both groups. The muscle protein content of ß-hydroxyacyl (HAD) increased by 55 ± 58% in TP only, while both TP and BP increased the content of cytochrome c oxidase subunit IV (COXIV) by 72 ± 34%. Muscle enzyme activities of citrate synthase (CS) and phosphofructokinase (PFK) were unaltered. TP increased capillary-to-fiber ratio and capillary around fiber (CAF) type I by 36 ± 15% (p < 0.001) and 17 ± 8% (p = 0.025), respectively, while BP increased capillary density (CD) by 28 ± 24% (p = 0.048) from Pre to Post12. The present study shows no difference in performance between BP and "best practice"-TP of endurance training intensities using a cyclic, progressively increasing training load in trained cyclists. However, hematological and muscle capillary adaptations may differ.

7.
Front Physiol ; 12: 741573, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34707511

RESUMO

The purposes of our study were to investigate the physiological and biomechanical responses to low-intensity (LI) and high-intensity (HI) roller ski skating on varying terrain and compare these responses between training intensities. Nine elite male skiers performed treadmill roller skiing consisting of two 21 min sessions (7 × 3 min laps) at LI and HI with the same set inclines and intensity-dependent speeds (LI/HI: distance: 5.8/7.5 km, average speed: 16.7/21.3 km/h). Physiological and biomechanical variables were measured continuously, and each movement cycle and sub-technique employed were detected and classified with a machine learning model. Both the LI and HI sessions induced large terrain-dependent fluctuations (relative to the maximal levels) in heart rate (HR, 17.7 vs. 12.2%-points), oxygen uptake ( V . O 2 , 33.0 vs. 31.7%-points), and muscle oxygen saturation in the triceps brachii (23.9 vs. 33.4%-points) and vastus lateralis (12.6 vs. 24.3%-points). A sub-technique dependency in relative power contribution from poles and skis exhibited a time-dependent shift from Lap 1 to Lap 7 toward gradually more ski power (6.6 vs. 7.8%-points, both p < 0.01). The terrain-dependent fluctuations did not differ between LI and HI for V . O 2 (p = 0.50), whereas HR fluctuated less (p < 0.01) and displayed a time-dependent increase from Lap 2 to Lap 7 (7.8%-points, p > 0.01) during HI. Oxygen saturation shifted 2.4% points more for legs than arms from LI to HI (p > 0.05) and regarding sub-technique, 14.7% points more G3 on behalf of G2 was employed on the steepest uphill during HI (p < 0.05). Within all sub-techniques, cycle length increased two to three times more than cycle rate from LI to HI in the same terrains, while the corresponding poling time decreased more than ski contact time (all p > 0.05). In sum, both LI and HI cross-country (XC) skiing on varying terrain induce large terrain-dependent physiological and biomechanical fluctuations, similar to the patterns found during XC skiing competitions. The primary differences between training intensities were the time-dependent increase in HR, reduced relative oxygen saturation in the legs compared to the arms, and greater use of G3 on steep uphill terrain during HI training, whereas sub-technique selection, cycle rate, and pole vs. ski power distribution were similar across intensities on flat and moderately uphill terrain.

8.
Front Sports Act Living ; 3: 695052, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34308347

RESUMO

The purposes of this study were: 1) to investigate the anaerobic energy contribution during a simulated cross-country (XC) skiing mass-start competition while roller-ski skating on a treadmill; 2) to investigate the relationship between the recovery of the anaerobic energy reserves and performance; and 3) to compare the gross efficiency (GE) method and maximal accumulated oxygen deficit (MAOD) to determine the anaerobic contribution. Twelve male XC skiers performed two testing days while roller skiing on a treadmill. To collect submaximal data necessary for the GE and MAOD method, participants performed a resting metabolism measurement, followed by low-intensity warm up, 12 submaximal 4-min bouts, performed using three different skating sub-techniques (G2 on a 12% incline, G3 on 5% and G4 on 2%) on three submaximal intensities on day 1. On day 2, participants performed a 21-min simulated mass-start competition on varying terrain to determine the anaerobic energy contribution. The speed was fixed, but when participants were unable to keep up, a 30-s rest bout was included. Performance was established by the time to exhaustion (TTE) during a sprint at the end of the 21-min protocol. Skiers were ranked based on the number of rest bouts needed to finish the protocol and TTE. The highest GE of day 1 for each of the different inclines/sub-techniques was used to calculate the aerobic and anaerobic contribution during the simulated mass start using the GE method and two different MAOD approaches. About 85-90% of the required energy during the simulated mass-start competition (excluding downhill segments) came from the aerobic energy system and ~10-15% from the anaerobic energy systems. Moderate to large Spearman correlation coefficients were found between recovery of anaerobic energy reserves and performance rank (r s = 0.58-0.71, p < 0.025). No significant difference in anaerobic work was found between methods/approaches (F (1.2,8.5) = 3.2, p = 0.10), while clear individual differences existed. In conclusion, about 10-15% of the required energy during the periods of active propulsion of a 21-min simulated mass-start competition came from the anaerobic energy systems. Due to the intermittent nature of XC skiing, the recovery of anaerobic energy reserves seems highly important for performance. To assess the anaerobic contribution methods should not be used interchangeably.

9.
Front Physiol ; 12: 638499, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33841176

RESUMO

The most common race format in cross-country (XC) skiing is the mass-start event, which is under-explored in the scientific literature. To explore factors important for XC skiing mass-starts, the main purpose of this study was to investigate physiological and biomechanical determinants of sprint ability following variable intensity exercise when roller ski skating. Thirteen elite male XC skiers performed a simulated mass-start competition while roller ski skating on a treadmill. The protocol consisted of an initial 21-min bout with a varying track profile, designed as a competition track with preset inclines and speeds, directly followed by an all-out sprint (AOS) with gradually increased speed to rank their performance. The initial part was projected to simulate the "stay-in-the-group" condition during a mass-start, while the AOS was designed to assess the residual physiological capacities required to perform well during the final part of a mass-start race. Cardiorespiratory variables, kinematics and pole forces were measured continuously, and the cycles were automatically detected and classified into skating sub-techniques through a machine learning model. Better performance ranking was associated with higher VO2Max (r = 0.68) and gross efficiency (r = 0.70) measured on separate days, as well as the ability to ski on a lower relative intensity [i.e., %HR Max (r = 0.87), %VO2Max (r = 0.89), and rating of perceived exertion (r = 0.73)] during the initial 21-min of the simulated mass-start (all p-values < 0.05). Accordingly, the ability to increase HR (r = 0.76) and VO2 (r = 0.72), beyond the corresponding values achieved during the initial 21-min, in the AOS correlated positively with performance (both p < 0.05). In addition, greater utilization of the G3 sub-technique in the steepest uphill (r = 0.69, p < 0.05), as well as a trend for longer cycle lengths (CLs) during the AOS (r = 0.52, p = 0.07), were associated with performance. In conclusion, VO2Max and gross efficiency were the most significant performance-determining variables of simulated mass-start performance, enabling lower relative intensity and less accumulation of fatigue before entering the final AOS. Subsequently, better performance ranking was associated with more utilization of the demanding G3 sub-technique in the steepest uphill, and physiological reserves allowing better-performing skiers to utilize a larger portion of their aerobic potential and achieve longer CLs and higher speed during the AOS.

10.
Int J Sports Physiol Perform ; 16(10): 1502-1509, 2021 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-33819914

RESUMO

PURPOSE: To investigate the effects of including repeated sprints in a weekly low-intensity (LIT) session during a 3-week transition period on cycling performance 6 weeks into the subsequent preparatory period (PREP) in elite cyclists. METHODS: Eleven elite male cyclists (age = 22.0 [3.8] y, body mass = 73.0 [5.8] kg, height = 186 [7] cm, maximal oxygen uptake [VO2max] = 5469 [384] mL·min-1) reduced their training load by 64% and performed only LIT sessions (CON, n = 6) or included 3 sets of 3 × 30-second maximal sprints in a weekly LIT session (SPR, n = 5) during a 3-week transition period. There was no difference in the reduction in training load during the transition period between groups. Physiological and performance measures were compared between the end of the competitive period and 6 weeks into the PREP. RESULTS: SPR demonstrated a 7.3% (7.2%) improvement in mean power output during a 20-minute all-out test at PREP, which was greater than CON (-1.3% [4.6%]) (P = .048). SPR had a corresponding 7.0% (3.6%) improvement in average VO2 during the 20-minute all-out test, which was larger than the 0.7% (6.0%) change in CON (P = .042). No change in VO2max, gross efficiency, or power output at blood lactate concentration of 4 mmol·L-1 from competitive period to PREP occurred in either group. CONCLUSION: Including sprints in a weekly LIT session during the transition period of elite cyclists provided a performance advantage 6 weeks into the subsequent PREP, which coincided with a higher performance VO2.


Assuntos
Desempenho Atlético , Resistência Física , Adulto , Desempenho Atlético/fisiologia , Ciclismo/fisiologia , Humanos , Ácido Láctico , Masculino , Consumo de Oxigênio/fisiologia , Resistência Física/fisiologia , Adulto Jovem
11.
Front Physiol ; 11: 1000, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33041839

RESUMO

The purpose of this study was to investigate the effects of including 30-s sprints in one weekly low-intensity training (LIT) session during a 3-week transition period in elite cyclists. Sixteen male elite cyclists (maximal oxygen uptake, VO2max: 72 ± 5 ml·kg-1·min-1) reduced their training load by ~60% for 3 weeks from the end of competitive season and performed only LIT or included 30-s sprints (SPR) in one weekly LIT-session. Performance and physiological capacities were evaluated during a prolonged (~2.5 h) test-session, including a strength test, a submaximal blood lactate profile test, an incremental test to exhaustion to determine VO2max, 1 h continuous cycling including four maximal 30-s sprints, and a 20-min all-out test. In addition, mental recovery was evaluated using the Athlete Burnout Questionnaire (ARQ). The only significant between-group change during the transition period was an 8 ± 11% larger improvement in 30-s sprint performance in SPR compared to control (CON; SPR: 4 ± 5%, CON: -4 ± 5%, p = 0.01). Although not different from CON, SPR maintained 20-min all-out performance (-1 ± 5%, p = 0.37) and fractional utilization of VO2max (1.9 ± 6.1%-points, p = 0.18) during the 20-min all-out test, whereas corresponding declines were observed in CON (-3 ± 5%, p = 0.04, and -2.5 ± 2.9%-points, p = 0.02, respectively). Power output at 4 mmol·L-1 blood lactate concentration decreased similarly in SPR (-4 ± 4%, p = 0.02) and CON (-5 ± 5%, p = 0.01), while VO2max, maximal aerobic power (Wmax), and total burnout score were unaffected in both groups. Including sprints in one weekly LIT-session in the transition period improves sprint performance and maintains 20-min all-out power and fractional utilization of VO2max without compromising mental recovery. Inclusion of sprints in LIT-sessions may therefore be a plausible, time-efficient strategy during short periods of reduced training.

12.
Front Physiol ; 11: 1098, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32982801

RESUMO

Introduction: Variable power output (VP) is one of the main characteristics of a road cycling mass-start. Tolerating VP during outdoor road cycling highly influences performance. There is a lack of continuous and comprehensive measurements during this power condition. Accordingly, the aim of the present study was to investigate physiological response to VP vs. constant power output (CP) as well as the perceived exertion of these two power conditions, and to investigate if variations in power output which span above lactate threshold (LT), differ from variations below LT. Methods: 15 elite competitive cyclists completed three test days, including 1 day of baseline testing and 2 days of main testing, consisting of four bouts of 28 min at two different intensities, "low" at 70% of LT and "high" at 95% of LT, with VP and CP. VP was performed with a 15% fluctuation of the average power output every second minute. Maximal oxygen uptake (VO2), respiratory exchange ratio (RER), heart rate (HR), blood lactate (LA), rating of perceived exertion (RPE), cadence (RPM) and power output (W) were measured. Results: At both low and high intensity, the VP condition induced a significantly higher VO2, HR and LA than the CP condition. Whole-bout RPE was similar between power conditions at high intensity. Additionally, at the high intensity, cycling with VP led to a greater increase in LA and lesser increase in RPE compared to cycling with CP. Discussion: The results of this study show that, despite considerable differences in the demand during the VP and CP bouts, there are minor differences in the perceptual and physiological response directly following these two power conditions in a cohort of elite competitive cyclists. A practical implication of these findings is that training with VP seems to be a viable alternative to training with CP, at least at high intensity.

13.
PLoS One ; 15(8): e0237768, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32813742

RESUMO

INTRODUCTION: In cycling, the utilization of the drops position (i.e. the lowest handlebar position relative to the ground) allows for reduced frontal area, likely improved aerodynamics and thus performance compared to the tops (i.e. the position producing the most upright trunk). The reduced trunk angle during seated submaximal cycling has been shown to influence cardiorespiratory factors but the effects on pedalling forces and joint specific power are unclear. The purpose of this study was to investigate the effect of changing handgrip position on joint specific power and cycling kinematics at different external work rates in recreational and professional cyclists. METHOD: Nine professional and nine recreational cyclists performed cycling bouts using three different handgrip positions and three external work rates (i.e. 100W, 200W and external work rate corresponding to the lactate threshold (WRlt)). Joint specific power was calculated from kinematic measurements and pedal forces using 2D inverse dynamics. RESULTS: We found increased hip joint power, decreased knee joint power and increased peak crank torque for the professional cyclist compared to the recreational cyclists, but only at WRlt where the professional cyclists were working at a higher external work rate. There was no main effect of changing handgrip position on any joint, but there was a small interaction effect of external work rate and handgrip position on hip joint power contribution (Generalized eta squared (ηg2) = 0.012). At 100W, changing handgrip position from the tops to the drops decreased the hip joint contribution (-2.0 ± 3.9 percentage points (pct)) and at the WRlt, changing handgrip position increased the hip joint power (1.6 ± 3.1 pct). There was a small effect of handgrip position with the drops leading to increased peak crank torque (ηg2 = 0.02), increased mean dorsiflexion (ηg2 = 0.05) and increased hip flexion (ηg2 = 0.31) compared to the tops. DISCUSSION: The present study demonstrates that there is no main effect of changing handgrip position on joint power. Although there seems to be a small effect on hip joint power when comparing across large ranges in external work rate, any potential negative performance effect would be outweighed by the aerodynamic benefit of the drops position.


Assuntos
Atletas , Desempenho Atlético/fisiologia , Ciclismo/fisiologia , Postura/fisiologia , Articulação do Tornozelo/fisiologia , Fenômenos Biomecânicos , Mãos/fisiologia , Articulação do Quadril/fisiologia , Humanos , Articulação do Joelho/fisiologia , Masculino , Torque , Adulto Jovem
14.
PLoS One ; 14(2): e0212781, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30794700

RESUMO

BACKGROUND: The effect of cadence and work rate on the joint specific power production in cycling has previously been studied, but research has primarily focused on cadences above 60 rpm, without examining the effect of low cadence on joint contribution to power. PURPOSE: Our purpose was to investigate joint specific power production in recreational and elite cyclists during low- and moderate cycling at a range of different cadences. METHODS: 18 male cyclists (30.9 ± 2.7 years with a work rate in watt at lactate threshold of 282.3 ± 9.3 W) performed cycling bouts at seven different pedalling rates and three intensities. Joint specific power was calculated from kinematic measurements and pedal forces using inverse dynamics at a total of 21 different stages. RESULTS: A main effect of cadence on the relative to the total joint power for hip-, knee- and ankle joint power was found (all p < 0.05). Increasing cadence led to increasing knee joint power and decreasing hip joint power (all p < 0.05), with the exception at low cadence (<60 rpm), where there was no effect of cadence. The elite cyclists had higher relative hip joint power compared to the recreational group (p < 0.05). The hip joint power at moderate intensity with a freely chosen cadence (FCC) was lower than the hip joint power at low intensity with a low cadence (<60 rpm) (p < 0.05). CONCLUSION: This study demonstrates that there is an effect of cadence on the hip- and knee joint contribution in cycling, however, the effect only occurs from 60 rpm and upward. It also demonstrates that there is a difference in joint contribution between elite- and recreational cyclists, and provide evidence for the possibility of achieving higher relative hip joint power at low intensity than moderate intensity by altering the cadence.


Assuntos
Articulação do Tornozelo/fisiologia , Ciclismo/fisiologia , Articulação do Quadril/fisiologia , Articulação do Joelho/fisiologia , Adulto , Humanos , Masculino , Pessoa de Meia-Idade , Músculo Esquelético/fisiologia
15.
PLoS One ; 13(10): e0205588, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30379853

RESUMO

OBJECTIVES: The primary aim was to compare physiological and perceptual outcome parameters identified at common gas exchange and blood lactate (BLa) thresholds in Paralympic athletes while upper-body poling. The secondary aim was to compare the fit of the breakpoint models used to identify thresholds in the gas exchange thresholds data versus continuous linear and curvilinear (no-breakpoint) models. METHODS: Fifteen elite Para ice hockey players performed seven to eight 5-min stages at increasing workload until exhaustion during upper-body poling. Two regression lines were fitted to the oxygen uptake (VO2)-carbon dioxide (VCO2) and minute ventilation (VE)/VO2 data to determine the ventilatory threshold (VT), and to the VCO2-VE and VE/VCO2 data to determine the respiratory compensation threshold (RCT). The first lactate threshold (LT1) was determined by the first rise in BLa (+0.4mmol·L-1 and +1.0mmol·L-1) and a breakpoint in the log-log transformed VO2-BLa data, and the second lactate threshold (LT2) by a fixed rise in BLa above 4mmol·L-1 and by employing the modified Dmax method. Paired-samples t-tests were used to compare the outcome parameters within and between the different threshold methods. The fit of the two regression lines (breakpoint model) used to identify thresholds in the gas exchange data was compared to that of a single regression line, an exponential and a 3rd order polynomial curve (no-breakpoint models) by Akaike weights. RESULTS: All outcome parameters identified with the VT (i.e., breakpoints in the VO2-VCO2 or VE/VO2 data) were significantly higher than the ones identified with a fixed rise in BLa (+0.4 or +1.0mmol·L-1) at the LT1 (e.g. BLa: 5.1±2.2 or 4.9±1.8 vs 1.9±0.6 or 2.3±0.5mmol·L-1,p<0.001), but were not significantly different from the log-log transformed VO2-BLa data (4.3±1.6mmol·L-1,p>0.06). The outcome parameters identified with breakpoints in the VCO2-VE data to determine the RCT (e.g. BLa: 5.5±1.4mmol·L-1) were not different from the ones identified with the modified Dmax method at the LT2 (5.5±1.1mmol·L-1) (all p>0.53), but were higher compared to parameters identified with VE/VCO2 method (4.9±1.5mmol·L-1) and a fixed BLa value of 4mmol·L-1 (all p<0.03). Although we were able to determine the VT and RCT via different gas exchange threshold methods with good fit in all 15 participants (mean R2>0.931), the continuous no-breakpoint models had the highest probability (>68%) of being the best models for the VO2-VCO2 and the VCO2-VE data. CONCLUSIONS: In Paralympic athletes who exercise in the upper-body poling mode, the outcome parameters identified at the VT and the ones identified with fixed methods at the LT1 showed large differences, demonstrating that these cannot be used interchangeably to estimate the aerobic threshold. In addition, the close location of the VT, RCT and LT2 does not allow us to distinguish the aerobic and anaerobic threshold, indicating the presence of only one threshold in athletes with a disability exercising in an upper-body mode. Furthermore, the better fit of continuous no-breakpoint models indicates no presence of clear breakpoints in the gas exchange data for most participants. This makes us question if breakpoints in the gas exchange data really exist in an upper-body exercise mode in athletes with disabilities.


Assuntos
Atletas , Pessoas com Deficiência , Exercício Físico/fisiologia , Hóquei/fisiologia , Ácido Láctico/sangue , Troca Gasosa Pulmonar , Adolescente , Adulto , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Extremidade Superior/fisiopatologia , Adulto Jovem
16.
Front Physiol ; 9: 713, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29962959

RESUMO

The present study investigated the effects of initial levels of cycling performance, peak oxygen uptake (O2peak) and gross efficiency (GE) on the subsequent adaptations of these variables and their relationship following high-intensity training (HIT) designed to increase O2peak in competitive cyclists. Sixty cyclists (O2peak = 61 ± 6 mL kg-1 min-1) were assigned a 12-week training program consisting of twenty-four supervised high-intensity interval training sessions and ad libitum low intensity training. GE was calculated at 125, 175, and 225 W and performance was determined by mean power during a 40-min time-trial (Power40 min). In addition to correlation analyses between initial level and pre- to post-intervention changes of the different variables, we compared these changes between four groups where participants were categorized with either low and/or high initial levels of O2peak and GE. Average volume of high- and low-intensity training during the 12-week intervention was 1.5 ± 0.3 and 8.3 ± 2.7 h·week-1, respectively. Following the 12-week training period, there was a significant increase in absolute and body mass normalized O2peak and Power40 min (p < 0.05) and a significant decrease in GE (p < 0.05) for all athletes pooled. There was no change in body mass following the 12-week training period. We found a moderate negative correlation between initial level of O2peak and the change in O2peak following the training period (r = -0.32; p < 0.05). A small negative correlation was also found between initial Power40 min and its change following training both when expressed in absolute power and power normalized for body mass (r = -0.27 and -0.28; both p < 0.05). A moderate negative correlation was also found between initial levels for GE and its change following training (r = -0.44; p < 0.01). There were no differences between the four groups based on initial levels of O2peak and GE in the response to training on O2peak, GE, or Power40 min (all p > 0.12). In conclusion, the present findings suggest that there are statistically significant effects of initial levels of cycling performance and O2peak and on the subsequent adaptations following a 12-week HIT program, but the small and moderate effects indicate limited influence on training practice.

18.
Front Physiol ; 9: 155, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29556201

RESUMO

Purpose: Although strength and sprint training are widely used methods in competitive cycling, no previous studies have compared the acute responses and recovery rates following such sessions among highly trained cyclists. The primary aim of the current study was to compare power production and biochemical markers of metabolic stress and muscle damage following a session of heavy strength (HS) and short-sprint training (SS). Methods: Eleven well-trained male cyclists (18 ± 2 years with maximal oxygen uptake of 67.2 ± 5.0 mL·kg-1·min-1) completed one HS session and one SS session in a randomized order, separated by 48 h. Power production and biochemical variables were measured at baseline and at different time points during the first 45 h post exercise. Results: Lactate and human growth hormone were higher 5 min, 30 min and 1 h post the SS compared to the HS session (all p ≤ 0.019). Myoglobin was higher following the HS than the SS session 5 min, 30 min and 1 h post exercise (all p ≤ 0.005), while creatine kinase (CK) was higher following the HS session 21 and 45 h post exercise (p ≤ 0.038). Counter movement jump and power production during 4 sec sprint returned to baseline levels at 23 and 47 h with no difference between the HS and SS session, whereas the delayed muscle soreness score was higher 45 h following the HS compared to the SS session (p = 0.010). Conclusion: Our findings indicate that SS training provides greater metabolic stress than HS training, whereas HS training leads to more muscle damage compared to that caused by SS training. The ability to produce power remained back to baseline already 23 h after both training sessions, indicating maintained performance levels although higher CK level and muscle soreness were present 45 h post the HS training session.

19.
Front Physiol ; 8: 857, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29163202

RESUMO

Objective: To compare peak oxygen uptake (VO2peak) and the test-retest reliability of physiological parameters between a 1-min and a 3-min closed-end and an incremental open-end upper-body poling test. Methods: On two separate test days, 24 healthy, upper-body trained men (age: 28.3 ± 9.3 years, body mass: 77.4 ± 8.9 kg, height: 182 ± 7 cm) performed a 1-min, a 3-min and an incremental test to volitional exhaustion in the same random order. Respiratory parameters, heart rate (HR), blood lactate concentration (BLa), rating of perceived exertion (RPE), and power output were measured. VO2peak was determined as the single highest 30-s average. Relative reliability was assessed with the intra-class correlation coefficient (ICC2, 1) and absolute reliability with the standard error of measurement (SEM) and smallest detectable change (SDC). Results: The incremental (3.50 ± 0.46 L·min-1 and 45.4 ± 5.5 mL·kg-1·min-1) and the 3-min test (3.42 ± 0.47 L·min-1 and 44.5 ± 5.5 mL·kg-1·min-1) resulted in significantly higher absolute and body-mass normalized VO2peak compared to the 1-min test (3.13 ± 0.40 L·min-1 and 40.4 ± 5.0 mL·kg-1·min-1) (all comparisons, p < 0.001). Furthermore, the incremental test resulted in a significantly higher VO2peak as compared to the 3-min test (p < 0.001). VO2peak was significantly higher on day 1 than day 2 for the 1-min test (p < 0.05) and displayed a trend toward higher values on day 2 for the incremental test (p = 0.07). High and very high ICCs across all physiological parameters were found for the 1-min (0.827-0.956), the 3-min (0.916-0.949), and the incremental test (0.728-0.956). The SDC was consistently small for HR (1-min: 4%, 3-min: 4%, incremental: 3%), moderate for absolute and body-mass normalized VO2peak (1-min: 5%, 3-min: 6%, incremental: 7%) and large for BLa (1-min: 20%, 3-min: 12%, incremental: 22%). Conclusions: Whereas both the 3-min and the incremental test display high relative reliability, the incremental test induces slightly higher VO2peak. However, the 3-min test seems to be more stable with respect to day-to-day differences in VO2peak. The 1-min test would provide a reliable alternative when short test-duration is desirable, but is not recommended for testing VO2peak due to the clearly lower values.

20.
Med Sci Sports Exerc ; 49(6): 1137-1146, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-28121800

RESUMO

PURPOSE: Investigate development of specific performance adaptions and hormonal responses every fourth week during a 12-wk high-intensity training (HIT) period in groups with different interval-training prescriptions. METHODS: Sixty-three well-trained cyclists performing a 12-wk intervention consisting of two to three HIT sessions per week in addition to ad libitum low-intensity training. Groups were matched for total training load, but increasing HIT (INC) group (n = 23) performed interval-sessions as 4 × 16 min in weeks 1-4, 4 × 8 min in weeks 5-8, and 4 × 4 min in weeks 9-12. Decreasing HIT (DEC) group (n = 20) performed interval sessions in the opposite order as INC, and mixed HIT (MIX) group (n = 20) performed all interval-sessions in a mixed distribution during 12 wk. Cycling-tests and measures of resting blood hormones were conducted pre, weeks 4, 8, and 12. RESULTS: INC and MIX achieved >70% of total change in workload eliciting 4 mmol·L [la] (Power4mM) and V˙O2peak during weeks 1-4, versus only 34%-38% in DEC. INC induced larger improvement versus DEC during weeks 1-4 in Power4mM (effect size, 0.7) and V˙O2peak (effect size, 0.8). All groups increased similarly in peak power output during weeks 1-4 (64%-89% of total change). All groups' pooled, total and free testosterone and free testosterone/cortisol ratio decreased by 22% ± 15%, 13% ± 23%, and 14% ± 31% (all P < 0.05), and insulin-like growth factor-1 increased by 10% ± 14% (P < 0.05) during weeks 1-4. CONCLUSIONS: Most of progression in Power4mM, V˙O2peak and peak power output was achieved during weeks 1-4 in INC and MIX, and accompanied by changes in resting blood hormones consistent with increased but compensable stress load. In these well-trained subjects, accumulating 2-3 h·wk performing 4 × 16 min work bouts at best effort induces greater adaptions in Power4mM and V˙O2peak than accumulating ~1 h·wk performing best effort intervals as 4 × 4 min.


Assuntos
Ciclismo/fisiologia , Treinamento Intervalado de Alta Intensidade/métodos , Hormônios/sangue , Adaptação Fisiológica/fisiologia , Adulto , Índice de Massa Corporal , Teste de Esforço , Hormônio do Crescimento Humano/sangue , Humanos , Hidrocortisona/sangue , Proteína 3 de Ligação a Fator de Crescimento Semelhante à Insulina/sangue , Fator de Crescimento Insulin-Like I/metabolismo , Masculino , Prolactina/sangue , Globulina de Ligação a Hormônio Sexual/metabolismo , Testosterona/sangue
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA